blob: 62b15dcdddb080496d24e93b7160301824c57bf4 [file] [log] [blame]
/*--------------------------------------------------------------------*/
/*--- Platform-specific syscalls stuff. syscalls-amd64-linux.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright (C) 2000-2005 Nicholas Nethercote
njn@valgrind.org
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#include "core.h"
#include "ume.h" /* for jmp_with_stack */
#include "pub_core_debuglog.h"
#include "pub_core_aspacemgr.h"
#include "pub_core_libcassert.h"
#include "pub_core_libcprint.h"
#include "pub_core_sigframe.h"
#include "pub_core_syscalls.h"
#include "pub_core_tooliface.h"
#include "priv_syscalls.h"
/* COPIED FROM /usr/include/asm-i386/prctl.h (amd64-linux) */
#define ARCH_SET_GS 0x1001
#define ARCH_SET_FS 0x1002
#define ARCH_GET_FS 0x1003
#define ARCH_GET_GS 0x1004
/* ---------------------------------------------------------------------
Stacks, thread wrappers
Note. Why is this stuff here?
------------------------------------------------------------------ */
/* These are addresses within VGA_(client_syscall). See syscall.S for details. */
extern const Addr VGA_(blksys_setup);
extern const Addr VGA_(blksys_restart);
extern const Addr VGA_(blksys_complete);
extern const Addr VGA_(blksys_committed);
extern const Addr VGA_(blksys_finished);
// Back up to restart a system call.
static void restart_syscall(ThreadArchState *arch)
{
arch->vex.guest_RIP -= 2; // sizeof(syscall)
/* Make sure our caller is actually sane, and we're really backing
back over a syscall.
syscall == 0F 05
*/
{
UChar *p = (UChar *)arch->vex.guest_RIP;
if (p[0] != 0x0F || p[1] != 0x05)
VG_(message)(Vg_DebugMsg,
"?! restarting over syscall at %p %02x %02x\n",
arch->vex.guest_RIP, p[0], p[1]);
vg_assert(p[0] == 0x0F && p[1] == 0x05);
}
}
/*
Fix up the VCPU state when a syscall is interrupted by a signal.
To do this, we determine the precise state of the syscall by
looking at the (real) rip at the time the signal happened. The
syscall sequence looks like:
1. unblock signals
2. perform syscall
3. save result to RAX
4. re-block signals
If a signal
happens at Then Why?
[1-2) restart nothing has happened (restart syscall)
[2] restart syscall hasn't started, or kernel wants to restart
[2-3) save syscall complete, but results not saved
[3-4) syscall complete, results saved
Sometimes we never want to restart an interrupted syscall (because
sigaction says not to), so we only restart if "restart" is True.
This will also call VG_(post_syscall)() if the syscall has actually
completed (either because it was interrupted, or because it
actually finished). It will not call VG_(post_syscall)() if the
syscall is set up for restart, which means that the pre-wrapper may
get called multiple times.
*/
/* NB: this is identical to the x86 version */
void VGP_(interrupted_syscall)(ThreadId tid,
Word ip, UWord sysnum, UWord sysret,
Bool restart)
{
static const Bool debug = 0;
ThreadState *tst = VG_(get_ThreadState)(tid);
ThreadArchState *th_regs = &tst->arch;
if (debug)
VG_(printf)("interrupted_syscall: ip=%p; restart=%d eax=%d\n",
ip, restart, sysnum);
if (ip < VGA_(blksys_setup) || ip >= VGA_(blksys_finished)) {
VG_(printf)(" not in syscall (%p - %p)\n", VGA_(blksys_setup), VGA_(blksys_finished));
vg_assert(tst->syscallno == -1);
return;
}
vg_assert(tst->syscallno != -1);
if (ip >= VGA_(blksys_setup) && ip < VGA_(blksys_restart)) {
/* syscall hasn't even started; go around again */
if (debug)
VG_(printf)(" not started: restart\n");
restart_syscall(th_regs);
} else if (ip == VGA_(blksys_restart)) {
/* We're either about to run the syscall, or it was interrupted
and the kernel restarted it. Restart if asked, otherwise
EINTR it. */
if (restart)
restart_syscall(th_regs);
else {
th_regs->vex.VGP_SYSCALL_RET = -VKI_EINTR;
VG_(post_syscall)(tid);
}
} else if (ip >= VGA_(blksys_complete) && ip < VGA_(blksys_committed)) {
/* Syscall complete, but result hasn't been written back yet.
The saved real CPU %rax has the result, which we need to move
to RAX. */
if (debug)
VG_(printf)(" completed: ret=%d\n", sysret);
th_regs->vex.VGP_SYSCALL_RET = sysret;
VG_(post_syscall)(tid);
} else if (ip >= VGA_(blksys_committed) && ip < VGA_(blksys_finished)) {
/* Result committed, but the signal mask has not been restored;
we expect our caller (the signal handler) will have fixed
this up. */
if (debug)
VG_(printf)(" all done\n");
VG_(post_syscall)(tid);
} else
VG_(core_panic)("?? strange syscall interrupt state?");
tst->syscallno = -1;
}
extern void VGA_(_client_syscall)(Int syscallno,
void* guest_state,
const vki_sigset_t *syscall_mask,
const vki_sigset_t *restore_mask,
Int nsigwords);
void VGA_(client_syscall)(Int syscallno, ThreadState *tst,
const vki_sigset_t *syscall_mask)
{
vki_sigset_t saved;
VGA_(_client_syscall)(syscallno, &tst->arch.vex,
syscall_mask, &saved, _VKI_NSIG_WORDS * sizeof(UWord));
}
/*
Allocate a stack for this thread.
They're allocated lazily, but never freed.
*/
#define FILL 0xdeadbeefcabafeed
// Valgrind's stack size, in words.
#define STACK_SIZE_W 16384
static UWord* allocstack(ThreadId tid)
{
ThreadState *tst = VG_(get_ThreadState)(tid);
UWord* rsp;
if (tst->os_state.valgrind_stack_base == 0) {
void *stk = VG_(mmap)(0, STACK_SIZE_W * sizeof(UWord) + VKI_PAGE_SIZE,
VKI_PROT_READ|VKI_PROT_WRITE,
VKI_MAP_PRIVATE|VKI_MAP_ANONYMOUS,
SF_VALGRIND,
-1, 0);
if (stk != (void *)-1) {
VG_(mprotect)(stk, VKI_PAGE_SIZE, VKI_PROT_NONE); /* guard page */
tst->os_state.valgrind_stack_base = ((Addr)stk) + VKI_PAGE_SIZE;
tst->os_state.valgrind_stack_szB = STACK_SIZE_W * sizeof(UWord);
} else
return (UWord*)-1;
}
for (rsp = (UWord*) tst->os_state.valgrind_stack_base;
rsp < (UWord*)(tst->os_state.valgrind_stack_base +
tst->os_state.valgrind_stack_szB);
rsp++)
*rsp = FILL;
/* rsp is left at top of stack */
if (0)
VG_(printf)("stack for tid %d at %p (%llx); rsp=%p\n",
tid, tst->os_state.valgrind_stack_base,
*(UWord*)(tst->os_state.valgrind_stack_base), rsp);
return rsp;
}
/* NB: this is identical the the x86 version. */
/* Return how many bytes of this stack have not been used */
SSizeT VGA_(stack_unused)(ThreadId tid)
{
ThreadState *tst = VG_(get_ThreadState)(tid);
UWord* p;
for (p = (UWord*)tst->os_state.valgrind_stack_base;
p && (p < (UWord*)(tst->os_state.valgrind_stack_base +
tst->os_state.valgrind_stack_szB));
p++)
if (*p != FILL)
break;
if (0)
VG_(printf)("p=%p %llx tst->os_state.valgrind_stack_base=%p\n",
p, *p, tst->os_state.valgrind_stack_base);
return ((Addr)p) - tst->os_state.valgrind_stack_base;
}
/* Run a thread all the way to the end, then do appropriate exit actions
(this is the last-one-out-turn-off-the-lights bit).
*/
static void run_a_thread_NORETURN ( Word tidW )
{
ThreadId tid = (ThreadId)tidW;
VG_(debugLog)(1, "syscalls-x86-linux",
"run_a_thread_NORETURN(tid=%lld): "
"VGO_(thread_wrapper) called\n",
(ULong)tidW);
/* Run the thread all the way through. */
VgSchedReturnCode src = VGO_(thread_wrapper)(tid);
VG_(debugLog)(1, "syscalls-x86-linux",
"run_a_thread_NORETURN(tid=%lld): "
"VGO_(thread_wrapper) done\n",
(ULong)tidW);
Int c = VG_(count_living_threads)();
vg_assert(c >= 1); /* stay sane */
if (c == 1) {
VG_(debugLog)(1, "syscalls-x86-linux",
"run_a_thread_NORETURN(tid=%lld): "
"last one standing\n",
(ULong)tidW);
/* We are the last one standing. Keep hold of the lock and
carry on to show final tool results, then exit the entire system. */
VG_(shutdown_actions_NORETURN)(tid, src);
} else {
VG_(debugLog)(1, "syscalls-x86-linux",
"run_a_thread_NORETURN(tid=%lld): "
"not last one standing\n",
(ULong)tidW);
/* OK, thread is dead, but others still exist. Just exit. */
ThreadState *tst = VG_(get_ThreadState)(tid);
/* This releases the run lock */
VG_(exit_thread)(tid);
vg_assert(tst->status == VgTs_Zombie);
/* We have to use this sequence to terminate the thread to
prevent a subtle race. If VG_(exit_thread)() had left the
ThreadState as Empty, then it could have been reallocated,
reusing the stack while we're doing these last cleanups.
Instead, VG_(exit_thread) leaves it as Zombie to prevent
reallocation. We need to make sure we don't touch the stack
between marking it Empty and exiting. Hence the
assembler. */
asm volatile (
"movl %1, %0\n" /* set tst->status = VgTs_Empty */
"movq %2, %%rax\n" /* set %rax = __NR_exit */
"movq %3, %%rdi\n" /* set %rdi = tst->os_state.exitcode */
"syscall\n" /* exit(tst->os_state.exitcode) */
: "=m" (tst->status)
: "n" (VgTs_Empty), "n" (__NR_exit), "m" (tst->os_state.exitcode));
VG_(core_panic)("Thread exit failed?\n");
}
/*NOTREACHED*/
vg_assert(0);
}
/*
Allocate a stack for the main thread, and run it all the way to the
end.
*/
void VGP_(main_thread_wrapper_NORETURN)(ThreadId tid)
{
VG_(debugLog)(1, "syscalls-amd64-linux",
"entering VGP_(main_thread_wrapper_NORETURN)\n");
UWord* rsp = allocstack(tid);
/* shouldn't be any other threads around yet */
vg_assert( VG_(count_living_threads)() == 1 );
call_on_new_stack_0_1(
(Addr)rsp, /* stack */
0, /*bogus return address*/
run_a_thread_NORETURN, /* fn to call */
(Word)tid /* arg to give it */
);
/*NOTREACHED*/
vg_assert(0);
}
static Int start_thread_NORETURN ( void* arg )
{
ThreadState* tst = (ThreadState*)arg;
ThreadId tid = tst->tid;
run_a_thread_NORETURN ( (Word)tid );
/*NOTREACHED*/
vg_assert(0);
}
/* ---------------------------------------------------------------------
clone() handling
------------------------------------------------------------------ */
// forward declaration
static void setup_child ( ThreadArchState*, ThreadArchState* );
/*
When a client clones, we need to keep track of the new thread. This means:
1. allocate a ThreadId+ThreadState+stack for the the thread
2. initialize the thread's new VCPU state
3. create the thread using the same args as the client requested,
but using the scheduler entrypoint for EIP, and a separate stack
for ESP.
*/
static Int do_clone(ThreadId ptid,
UInt flags, Addr rsp,
Int *parent_tidptr,
Int *child_tidptr,
Addr tlsaddr)
{
static const Bool debug = False;
ThreadId ctid = VG_(alloc_ThreadState)();
ThreadState *ptst = VG_(get_ThreadState)(ptid);
ThreadState *ctst = VG_(get_ThreadState)(ctid);
UWord *stack;
Segment *seg;
Int ret;
vki_sigset_t blockall, savedmask;
VG_(sigfillset)(&blockall);
vg_assert(VG_(is_running_thread)(ptid));
vg_assert(VG_(is_valid_tid)(ctid));
stack = allocstack(ctid);
/* Copy register state
Both parent and child return to the same place, and the code
following the clone syscall works out which is which, so we
don't need to worry about it.
The parent gets the child's new tid returned from clone, but the
child gets 0.
If the clone call specifies a NULL rsp for the new thread, then
it actually gets a copy of the parent's rsp.
*/
setup_child( &ctst->arch, &ptst->arch );
VGP_SET_SYSCALL_RESULT(ctst->arch, 0);
if (rsp != 0)
ctst->arch.vex.guest_RSP = rsp;
ctst->os_state.parent = ptid;
/* inherit signal mask */
ctst->sig_mask = ptst->sig_mask;
ctst->tmp_sig_mask = ptst->sig_mask;
/* We don't really know where the client stack is, because its
allocated by the client. The best we can do is look at the
memory mappings and try to derive some useful information. We
assume that esp starts near its highest possible value, and can
only go down to the start of the mmaped segment. */
seg = VG_(find_segment)((Addr)rsp);
if (seg) {
ctst->client_stack_highest_word = (Addr)VG_PGROUNDUP(rsp);
ctst->client_stack_szB = ctst->client_stack_highest_word - seg->addr;
if (debug)
VG_(printf)("tid %d: guessed client stack range %p-%p\n",
ctid, seg->addr, VG_PGROUNDUP(rsp));
} else {
VG_(message)(Vg_UserMsg, "!? New thread %d starts with RSP(%p) unmapped\n",
ctid, rsp);
ctst->client_stack_szB = 0;
}
if (flags & VKI_CLONE_SETTLS) {
if (debug)
VG_(printf)("clone child has SETTLS: tls at %p\n", tlsaddr);
ctst->arch.vex.guest_FS_ZERO = tlsaddr;
}
flags &= ~VKI_CLONE_SETTLS;
/* start the thread with everything blocked */
VG_(sigprocmask)(VKI_SIG_SETMASK, &blockall, &savedmask);
/* Create the new thread */
ret = VG_(clone)(start_thread_NORETURN, stack, flags, &VG_(threads)[ctid],
child_tidptr, parent_tidptr, NULL);
VG_(sigprocmask)(VKI_SIG_SETMASK, &savedmask, NULL);
if (ret < 0) {
/* clone failed */
VGP_(cleanup_thread)(&ctst->arch);
ctst->status = VgTs_Empty;
}
return ret;
}
/* Do a clone which is really a fork() */
static Int do_fork_clone(ThreadId tid, UInt flags, Addr rsp, Int *parent_tidptr, Int *child_tidptr)
{
vki_sigset_t fork_saved_mask;
vki_sigset_t mask;
Int ret;
if (flags & (VKI_CLONE_SETTLS | VKI_CLONE_FS | VKI_CLONE_VM | VKI_CLONE_FILES | VKI_CLONE_VFORK))
return -VKI_EINVAL;
/* Block all signals during fork, so that we can fix things up in
the child without being interrupted. */
VG_(sigfillset)(&mask);
VG_(sigprocmask)(VKI_SIG_SETMASK, &mask, &fork_saved_mask);
VG_(do_atfork_pre)(tid);
/* Since this is the fork() form of clone, we don't need all that
VG_(clone) stuff */
ret = VG_(do_syscall5)(__NR_clone, flags, (UWord)NULL, (UWord)parent_tidptr,
(UWord)NULL, (UWord)child_tidptr);
if (ret == 0) {
/* child */
VG_(do_atfork_child)(tid);
/* restore signal mask */
VG_(sigprocmask)(VKI_SIG_SETMASK, &fork_saved_mask, NULL);
} else if (ret > 0) {
/* parent */
if (VG_(clo_trace_syscalls))
VG_(printf)(" clone(fork): process %d created child %d\n", VG_(getpid)(), ret);
VG_(do_atfork_parent)(tid);
/* restore signal mask */
VG_(sigprocmask)(VKI_SIG_SETMASK, &fork_saved_mask, NULL);
}
return ret;
}
/* ---------------------------------------------------------------------
More thread stuff
------------------------------------------------------------------ */
void VGP_(cleanup_thread) ( ThreadArchState *arch )
{
}
void setup_child ( /*OUT*/ ThreadArchState *child,
/*IN*/ ThreadArchState *parent )
{
/* We inherit our parent's guest state. */
child->vex = parent->vex;
child->vex_shadow = parent->vex_shadow;
}
/* ---------------------------------------------------------------------
PRE/POST wrappers for AMD64/Linux-specific syscalls
------------------------------------------------------------------ */
// Nb: See the comment above the generic PRE/POST wrappers in
// coregrind/vg_syscalls.c for notes about how they work.
#define PRE(name, f) PRE_TEMPLATE(static, amd64_linux, name, f)
#define POST(name) POST_TEMPLATE(static, amd64_linux, name)
PRE(sys_clone, Special)
{
UInt cloneflags;
PRINT("sys_clone ( %x, %p, %p, %p, %p )",ARG1,ARG2,ARG3,ARG4,ARG5);
PRE_REG_READ5(int, "clone",
unsigned long, flags,
void *, child_stack,
int *, parent_tidptr,
int *, child_tidptr,
void *, tlsaddr);
if (ARG1 & VKI_CLONE_PARENT_SETTID) {
PRE_MEM_WRITE("clone(parent_tidptr)", ARG3, sizeof(Int));
if (!VG_(is_addressable)(ARG3, sizeof(Int), VKI_PROT_WRITE)) {
SET_RESULT( -VKI_EFAULT );
return;
}
}
if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID)) {
PRE_MEM_WRITE("clone(child_tidptr)", ARG4, sizeof(Int));
if (!VG_(is_addressable)(ARG4, sizeof(Int), VKI_PROT_WRITE)) {
SET_RESULT( -VKI_EFAULT );
return;
}
}
cloneflags = ARG1;
if (!VG_(client_signal_OK)(ARG1 & VKI_CSIGNAL)) {
SET_RESULT( -VKI_EINVAL );
return;
}
/* Only look at the flags we really care about */
switch(cloneflags & (VKI_CLONE_VM | VKI_CLONE_FS | VKI_CLONE_FILES | VKI_CLONE_VFORK)) {
case VKI_CLONE_VM | VKI_CLONE_FS | VKI_CLONE_FILES:
/* thread creation */
SET_RESULT(do_clone(tid,
ARG1, /* flags */
(Addr)ARG2, /* child ESP */
(Int *)ARG3, /* parent_tidptr */
(Int *)ARG4, /* child_tidptr */
(Addr)ARG5)); /* set_tls */
break;
case VKI_CLONE_VFORK | VKI_CLONE_VM: /* vfork */
/* FALLTHROUGH - assume vfork == fork */
cloneflags &= ~(VKI_CLONE_VFORK | VKI_CLONE_VM);
case 0: /* plain fork */
SET_RESULT(do_fork_clone(tid,
cloneflags, /* flags */
(Addr)ARG2, /* child ESP */
(Int *)ARG3, /* parent_tidptr */
(Int *)ARG4)); /* child_tidptr */
break;
default:
/* should we just ENOSYS? */
VG_(message)(Vg_UserMsg, "Unsupported clone() flags: %x", ARG1);
VG_(unimplemented)
("Valgrind does not support general clone(). The only supported uses "
"are via a threads library, fork, or vfork.");
}
if (!VG_(is_kerror)(RES)) {
if (ARG1 & VKI_CLONE_PARENT_SETTID)
POST_MEM_WRITE(ARG3, sizeof(Int));
if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID))
POST_MEM_WRITE(ARG4, sizeof(Int));
/* Thread creation was successful; let the child have the chance
to run */
XXX FIXME VG_(vg_yield)();
}
}
PRE(sys_rt_sigreturn, Special)
{
PRINT("rt_sigreturn ( )");
/* Adjust esp to point to start of frame; skip back up over handler
ret addr */
tst->arch.vex.guest_RSP -= sizeof(Addr);
/* This is only so that the RIP is (might be) useful to report if
something goes wrong in the sigreturn */
restart_syscall(&tst->arch);
VG_(sigframe_destroy)(tid, True);
/* Keep looking for signals until there are none */
XXX FIXME VG_(poll_signals)(tid);
/* placate return-must-be-set assertion */
SET_RESULT(RES);
}
PRE(sys_arch_prctl, 0)
{
PRINT( "arch_prctl ( %d, %llx )", ARG1, ARG2 );
// Nb: can't use "ARG2".."ARG5" here because that's our own macro...
PRE_REG_READ2(long, "arch_prctl",
int, option, unsigned long, arg2);
// XXX: totally wrong... we need to look at the 'option' arg, and do
// PRE_MEM_READs/PRE_MEM_WRITEs as necessary...
/* "do" the syscall ourselves; the kernel never sees it */
vg_assert(ARG1 == ARCH_SET_FS);
tst->arch.vex.guest_FS_ZERO = ARG2;
SET_RESULT( 0 );
}
PRE(sys_socket, 0)
{
PRINT("sys_socket ( %d, %d, %d )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "socket", int, domain, int, type, int, protocol);
}
POST(sys_socket)
{
UWord r = VG_(generic_POST_sys_socket)(tid, RES);
SET_RESULT(r);
}
PRE(sys_setsockopt, 0)
{
PRINT("sys_setsockopt ( %d, %d, %d, %p, %d )",ARG1,ARG2,ARG3,ARG4,ARG5);
PRE_REG_READ5(long, "setsockopt",
int, s, int, level, int, optname,
const void *, optval, int, optlen);
VG_(generic_PRE_sys_setsockopt)(tid, ARG1,ARG2,ARG3,ARG4,ARG5);
}
PRE(sys_getsockopt, 0)
{
PRINT("sys_getsockopt ( %d, %d, %d, %p, %p )",ARG1,ARG2,ARG3,ARG4,ARG5);
PRE_REG_READ5(long, "getsockopt",
int, s, int, level, int, optname,
void *, optval, int, *optlen);
VG_(generic_PRE_sys_getsockopt)(tid, ARG1,ARG2,ARG3,ARG4,ARG5);
}
POST(sys_getsockopt)
{
VG_(generic_POST_sys_getsockopt)(tid, RES,ARG1,ARG2,ARG3,ARG4,ARG5);
}
PRE(sys_connect, MayBlock)
{
PRINT("sys_connect ( %d, %p, %d )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "connect",
int, sockfd, struct sockaddr *, serv_addr, int, addrlen);
VG_(generic_PRE_sys_connect)(tid, ARG1,ARG2,ARG3);
}
PRE(sys_accept, MayBlock)
{
PRINT("sys_accept ( %d, %p, %d )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "accept",
int, s, struct sockaddr *, addr, int, *addrlen);
VG_(generic_PRE_sys_accept)(tid, ARG1,ARG2,ARG3);
}
POST(sys_accept)
{
UWord r = VG_(generic_POST_sys_accept)(tid, RES,ARG1,ARG2,ARG3);
SET_RESULT(r);
}
PRE(sys_sendto, MayBlock)
{
PRINT("sys_sendto ( %d, %s, %d, %u, %p, %d )",ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
PRE_REG_READ6(long, "sendto",
int, s, const void *, msg, int, len,
unsigned int, flags,
const struct sockaddr *, to, int, tolen);
VG_(generic_PRE_sys_sendto)(tid, ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
}
PRE(sys_recvfrom, MayBlock)
{
PRINT("sys_recvfrom ( %d, %p, %d, %u, %p, %p )",ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
PRE_REG_READ6(long, "recvfrom",
int, s, void *, buf, int, len, unsigned int, flags,
struct sockaddr *, from, int *, fromlen);
VG_(generic_PRE_sys_recvfrom)(tid, ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
}
POST(sys_recvfrom)
{
VG_(generic_POST_sys_recvfrom)(tid, RES,ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
}
PRE(sys_sendmsg, MayBlock)
{
PRINT("sys_sendmsg ( %d, %p, %d )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "sendmsg",
int, s, const struct msghdr *, msg, int, flags);
VG_(generic_PRE_sys_sendmsg)(tid, ARG1,ARG2);
}
PRE(sys_recvmsg, MayBlock)
{
PRINT("sys_recvmsg ( %d, %p, %d )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "recvmsg", int, s, struct msghdr *, msg, int, flags);
VG_(generic_PRE_sys_recvmsg)(tid, ARG1,ARG2);
}
POST(sys_recvmsg)
{
VG_(generic_POST_sys_recvmsg)(tid, RES,ARG1,ARG2);
}
PRE(sys_shutdown, MayBlock)
{
PRINT("sys_shutdown ( %d, %d )",ARG1,ARG2);
PRE_REG_READ2(int, "shutdown", int, s, int, how);
}
PRE(sys_bind, 0)
{
PRINT("sys_bind ( %d, %p, %d )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "bind",
int, sockfd, struct sockaddr *, my_addr, int, addrlen);
VG_(generic_PRE_sys_bind)(tid, ARG1,ARG2,ARG3);
}
PRE(sys_listen, 0)
{
PRINT("sys_listen ( %d, %d )",ARG1,ARG2);
PRE_REG_READ2(long, "listen", int, s, int, backlog);
}
PRE(sys_getsockname, 0)
{
PRINT("sys_getsockname ( %d, %p, %p )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "getsockname",
int, s, struct sockaddr *, name, int *, namelen);
VG_(generic_PRE_sys_getsockname)(tid, ARG1,ARG2,ARG3);
}
POST(sys_getsockname)
{
VG_(generic_POST_sys_getsockname)(tid, RES,ARG1,ARG2,ARG3);
}
PRE(sys_getpeername, 0)
{
PRINT("sys_getpeername ( %d, %p, %p )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "getpeername",
int, s, struct sockaddr *, name, int *, namelen);
VG_(generic_PRE_sys_getpeername)(tid, ARG1,ARG2,ARG3);
}
POST(sys_getpeername)
{
VG_(generic_POST_sys_getpeername)(tid, RES,ARG1,ARG2,ARG3);
}
PRE(sys_socketpair, 0)
{
PRINT("sys_socketpair ( %d, %d, %d, %p )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "socketpair",
int, d, int, type, int, protocol, int [2], sv);
VG_(generic_PRE_sys_socketpair)(tid, ARG1,ARG2,ARG3,ARG4);
}
POST(sys_socketpair)
{
VG_(generic_POST_sys_socketpair)(tid, RES,ARG1,ARG2,ARG3,ARG4);
}
PRE(sys_semget, 0)
{
PRINT("sys_semget ( %d, %d, %d )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "semget", key_t, key, int, nsems, int, semflg);
}
PRE(sys_semop, MayBlock)
{
PRINT("sys_semop ( %d, %p, %u )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "semop",
int, semid, struct sembuf *, sops, unsigned, nsoops);
VG_(generic_PRE_sys_semop)(tid, ARG1,ARG2,ARG3);
}
PRE(sys_semtimedop, MayBlock)
{
PRINT("sys_semtimedop ( %d, %p, %u, %p )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "semtimedop",
int, semid, struct sembuf *, sops, unsigned, nsoops,
struct timespec *, timeout);
VG_(generic_PRE_sys_semtimedop)(tid, ARG1,ARG2,ARG3,ARG4);
}
PRE(sys_semctl, 0)
{
switch (ARG3 & ~VKI_IPC_64) {
case VKI_IPC_INFO:
case VKI_SEM_INFO:
PRINT("sys_semctl ( %d, %d, %d, %p )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "semctl",
int, semid, int, semnum, int, cmd, struct seminfo *, arg);
break;
case VKI_IPC_STAT:
case VKI_SEM_STAT:
case VKI_IPC_SET:
PRINT("sys_semctl ( %d, %d, %d, %p )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "semctl",
int, semid, int, semnum, int, cmd, struct semid_ds *, arg);
break;
case VKI_GETALL:
case VKI_SETALL:
PRINT("sys_semctl ( %d, %d, %d, %p )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "semctl",
int, semid, int, semnum, int, cmd, unsigned short *, arg);
break;
default:
PRINT("sys_semctl ( %d, %d, %d )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "semctl",
int, semid, int, semnum, int, cmd);
break;
}
VG_(generic_PRE_sys_semctl)(tid, ARG1,ARG2,ARG3,ARG4);
}
POST(sys_semctl)
{
VG_(generic_POST_sys_semctl)(tid, RES,ARG1,ARG2,ARG3,ARG4);
}
PRE(sys_msgget, 0)
{
PRINT("sys_msgget ( %d, %d )",ARG1,ARG2);
PRE_REG_READ2(long, "msgget", key_t, key, int, msgflg);
}
PRE(sys_msgsnd, 0)
{
PRINT("sys_msgsnd ( %d, %p, %d, %d )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "msgsnd",
int, msqid, struct msgbuf *, msgp, size_t, msgsz, int, msgflg);
VG_(generic_PRE_sys_msgsnd)(tid, ARG1,ARG2,ARG3,ARG4);
/* if ((ARG4 & VKI_IPC_NOWAIT) == 0)
tst->sys_flags |= MayBlock;
*/
}
PRE(sys_msgrcv, 0)
{
PRINT("sys_msgrcv ( %d, %p, %d, %d, %d )",ARG1,ARG2,ARG3,ARG4,ARG5);
PRE_REG_READ5(long, "msgrcv",
int, msqid, struct msgbuf *, msgp, size_t, msgsz,
long, msgytp, int, msgflg);
VG_(generic_PRE_sys_msgrcv)(tid, ARG1,ARG2,ARG3,ARG4,ARG5);
/* if ((ARG4 & VKI_IPC_NOWAIT) == 0)
tst->sys_flags |= MayBlock;
*/
}
POST(sys_msgrcv)
{
VG_(generic_POST_sys_msgrcv)(tid, RES,ARG1,ARG2,ARG3,ARG4,ARG5);
}
PRE(sys_msgctl, 0)
{
PRINT("sys_msgctl ( %d, %d, %p )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "msgctl",
int, msqid, int, cmd, struct msqid_ds *, buf);
VG_(generic_PRE_sys_msgctl)(tid, ARG1,ARG2,ARG3);
}
POST(sys_msgctl)
{
VG_(generic_POST_sys_msgctl)(tid, RES,ARG1,ARG2,ARG3);
}
PRE(sys_shmget, 0)
{
PRINT("sys_shmget ( %d, %d, %d )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "shmget", key_t, key, size_t, size, int, shmflg);
}
PRE(wrap_sys_shmat, 0)
{
PRINT("wrap_sys_shmat ( %d, %p, %d )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "shmat",
int, shmid, const void *, shmaddr, int, shmflg);
ARG2 = VG_(generic_PRE_sys_shmat)(tid, ARG1,ARG2,ARG3);
if (ARG2 == 0)
SET_RESULT( -VKI_EINVAL );
}
POST(wrap_sys_shmat)
{
VG_(generic_POST_sys_shmat)(tid, RES,ARG1,ARG2,ARG3);
}
PRE(sys_shmdt, 0)
{
PRINT("sys_shmdt ( %p )",ARG1);
PRE_REG_READ1(long, "shmdt", const void *, shmaddr);
if (!VG_(generic_PRE_sys_shmdt)(tid, ARG1))
SET_RESULT( -VKI_EINVAL );
}
POST(sys_shmdt)
{
VG_(generic_POST_sys_shmdt)(tid, RES,ARG1);
}
PRE(sys_shmctl, 0)
{
PRINT("sys_shmctl ( %d, %d, %p )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "shmctl",
int, shmid, int, cmd, struct shmid_ds *, buf);
VG_(generic_PRE_sys_shmctl)(tid, ARG1,ARG2,ARG3);
}
POST(sys_shmctl)
{
VG_(generic_POST_sys_shmctl)(tid, RES,ARG1,ARG2,ARG3);
}
#undef PRE
#undef POST
/* ---------------------------------------------------------------------
The AMD64/Linux syscall table
------------------------------------------------------------------ */
// Macros for adding AMD64/Linux-specific wrappers to the syscall table.
#define PLAX_(const, name) SYS_WRAPPER_ENTRY_X_(amd64_linux, const, name)
#define PLAXY(const, name) SYS_WRAPPER_ENTRY_XY(amd64_linux, const, name)
// This table maps from __NR_xxx syscall numbers (from
// linux/include/asm-x86_64/unistd.h) to the appropriate PRE/POST sys_foo()
// wrappers on AMD64 (as per sys_call_table in
// linux/arch/x86_64/kernel/entry.S).
//
// When implementing these wrappers, you need to work out if the wrapper is
// generic, Linux-only (but arch-independent), or AMD64/Linux only.
const struct SyscallTableEntry VGA_(syscall_table)[] = {
GENXY(__NR_read, sys_read), // 0
GENX_(__NR_write, sys_write), // 1
GENXY(__NR_open, sys_open), // 2
GENXY(__NR_close, sys_close), // 3
GENXY(__NR_stat, sys_newstat), // 4
GENXY(__NR_fstat, sys_newfstat), // 5
GENXY(__NR_lstat, sys_newlstat), // 6
GENXY(__NR_poll, sys_poll), // 7
GENX_(__NR_lseek, sys_lseek), // 8
GENXY(__NR_mmap, sys_mmap2), // 9
GENXY(__NR_mprotect, sys_mprotect), // 10
GENXY(__NR_munmap, sys_munmap), // 11
GENX_(__NR_brk, sys_brk), // 12
GENXY(__NR_rt_sigaction, sys_rt_sigaction), // 13
GENXY(__NR_rt_sigprocmask, sys_rt_sigprocmask), // 14
PLAX_(__NR_rt_sigreturn, sys_rt_sigreturn), // 15
GENXY(__NR_ioctl, sys_ioctl), // 16
GENXY(__NR_pread64, sys_pread64), // 17
// (__NR_pwrite64, sys_pwrite64), // 18
GENXY(__NR_readv, sys_readv), // 19
GENX_(__NR_writev, sys_writev), // 20
GENX_(__NR_access, sys_access), // 21
GENXY(__NR_pipe, sys_pipe), // 22
GENX_(__NR_select, sys_select), // 23
// (__NR_sched_yield, sys_sched_yield), // 24
GENX_(__NR_mremap, sys_mremap), // 25
// (__NR_msync, sys_msync), // 26
// (__NR_mincore, sys_mincore), // 27
GENX_(__NR_madvise, sys_madvise), // 28
PLAX_(__NR_shmget, sys_shmget), // 29
PLAXY(__NR_shmat, wrap_sys_shmat), // 30
PLAXY(__NR_shmctl, sys_shmctl), // 31
GENXY(__NR_dup, sys_dup), // 32
GENXY(__NR_dup2, sys_dup2), // 33
GENX_(__NR_pause, sys_pause), // 34
GENXY(__NR_nanosleep, sys_nanosleep), // 35
GENXY(__NR_getitimer, sys_getitimer), // 36
GENX_(__NR_alarm, sys_alarm), // 37
GENXY(__NR_setitimer, sys_setitimer), // 38
GENX_(__NR_getpid, sys_getpid), // 39
// (__NR_sendfile, sys_sendfile64), // 40
PLAXY(__NR_socket, sys_socket), // 41
PLAX_(__NR_connect, sys_connect), // 42
PLAXY(__NR_accept, sys_accept), // 43
PLAX_(__NR_sendto, sys_sendto), // 44
PLAXY(__NR_recvfrom, sys_recvfrom), // 45
PLAX_(__NR_sendmsg, sys_sendmsg), // 46
PLAXY(__NR_recvmsg, sys_recvmsg), // 47
PLAX_(__NR_shutdown, sys_shutdown), // 48
PLAX_(__NR_bind, sys_bind), // 49
PLAX_(__NR_listen, sys_listen), // 50
PLAXY(__NR_getsockname, sys_getsockname), // 51
PLAXY(__NR_getpeername, sys_getpeername), // 52
PLAXY(__NR_socketpair, sys_socketpair), // 53
PLAX_(__NR_setsockopt, sys_setsockopt), // 54
PLAXY(__NR_getsockopt, sys_getsockopt), // 55
PLAX_(__NR_clone, sys_clone), // 56
GENX_(__NR_fork, sys_fork), // 57
GENX_(__NR_vfork, sys_fork), // 58 treat as fork
GENX_(__NR_execve, sys_execve), // 59
GENX_(__NR_exit, sys_exit), // 60
GENXY(__NR_wait4, sys_wait4), // 61
GENX_(__NR_kill, sys_kill), // 62
GENXY(__NR_uname, sys_newuname), // 63
PLAX_(__NR_semget, sys_semget), // 64
PLAX_(__NR_semop, sys_semop), // 65
PLAXY(__NR_semctl, sys_semctl), // 66
PLAXY(__NR_shmdt, sys_shmdt), // 67
PLAX_(__NR_msgget, sys_msgget), // 68
PLAX_(__NR_msgsnd, sys_msgsnd), // 69
PLAXY(__NR_msgrcv, sys_msgrcv), // 70
PLAXY(__NR_msgctl, sys_msgctl), // 71
GENXY(__NR_fcntl, sys_fcntl), // 72
// (__NR_flock, sys_flock), // 73
GENX_(__NR_fsync, sys_fsync), // 74
GENX_(__NR_fdatasync, sys_fdatasync), // 75
// (__NR_truncate, sys_truncate), // 76
GENX_(__NR_ftruncate, sys_ftruncate), // 77
GENXY(__NR_getdents, sys_getdents), // 78
GENXY(__NR_getcwd, sys_getcwd), // 79
GENX_(__NR_chdir, sys_chdir), // 80
GENX_(__NR_fchdir, sys_fchdir), // 81
GENX_(__NR_rename, sys_rename), // 82
GENX_(__NR_mkdir, sys_mkdir), // 83
GENX_(__NR_rmdir, sys_rmdir), // 84
GENXY(__NR_creat, sys_creat), // 85
GENX_(__NR_link, sys_link), // 86
GENX_(__NR_unlink, sys_unlink), // 87
GENX_(__NR_symlink, sys_symlink), // 88
GENX_(__NR_readlink, sys_readlink), // 89
GENX_(__NR_chmod, sys_chmod), // 90
GENX_(__NR_fchmod, sys_fchmod), // 91
GENX_(__NR_chown, sys_chown), // 92
GENX_(__NR_fchown, sys_fchown), // 93
// (__NR_lchown, sys_lchown), // 94
GENX_(__NR_umask, sys_umask), // 95
GENXY(__NR_gettimeofday, sys_gettimeofday), // 96
GENXY(__NR_getrlimit, sys_getrlimit), // 97
GENXY(__NR_getrusage, sys_getrusage), // 98
// (__NR_sysinfo, sys_sysinfo), // 99
GENXY(__NR_times, sys_times), // 100
// (__NR_ptrace, sys_ptrace), // 101
GENX_(__NR_getuid, sys_getuid), // 102
// (__NR_syslog, sys_syslog), // 103
GENX_(__NR_getgid, sys_getgid), // 104
GENX_(__NR_setuid, sys_setuid), // 105
GENX_(__NR_setgid, sys_setgid), // 106
GENX_(__NR_geteuid, sys_geteuid), // 107
GENX_(__NR_getegid, sys_getegid), // 108
GENX_(__NR_setpgid, sys_setpgid), // 109
GENX_(__NR_getppid, sys_getppid), // 110
GENX_(__NR_getpgrp, sys_getpgrp), // 111
GENX_(__NR_setsid, sys_setsid), // 112
// (__NR_setreuid, sys_setreuid), // 113
// (__NR_setregid, sys_setregid), // 114
GENXY(__NR_getgroups, sys_getgroups), // 115
GENX_(__NR_setgroups, sys_setgroups), // 116
LINX_(__NR_setresuid, sys_setresuid), // 117
LINXY(__NR_getresuid, sys_getresuid), // 118
LINX_(__NR_setresgid, sys_setresgid), // 119
LINXY(__NR_getresgid, sys_getresgid), // 120
GENX_(__NR_getpgid, sys_getpgid), // 121
// (__NR_setfsuid, sys_setfsuid), // 122
// (__NR_setfsgid, sys_setfsgid), // 123
// (__NR_getsid, sys_getsid), // 124
// (__NR_capget, sys_capget), // 125
// (__NR_capset, sys_capset), // 126
GENXY(__NR_rt_sigpending, sys_rt_sigpending), // 127
GENXY(__NR_rt_sigtimedwait, sys_rt_sigtimedwait),// 128
GENXY(__NR_rt_sigqueueinfo, sys_rt_sigqueueinfo),// 129
GENX_(__NR_rt_sigsuspend, sys_rt_sigsuspend), // 130
GENXY(__NR_sigaltstack, sys_sigaltstack), // 131
GENX_(__NR_utime, sys_utime), // 132
GENX_(__NR_mknod, sys_mknod), // 133
// (__NR_uselib, sys_uselib), // 134
// (__NR_personality, sys_personality), // 135
// (__NR_ustat, sys_ustat), // 136
GENXY(__NR_statfs, sys_statfs), // 137
// (__NR_fstatfs, sys_fstatfs), // 138
// (__NR_sysfs, sys_sysfs), // 139
// (__NR_getpriority, sys_getpriority), // 140
// (__NR_setpriority, sys_setpriority), // 141
GENXY(__NR_sched_setparam, sys_sched_setparam), // 142
GENXY(__NR_sched_getparam, sys_sched_getparam), // 143
GENX_(__NR_sched_setscheduler, sys_sched_setscheduler), // 144
GENX_(__NR_sched_getscheduler, sys_sched_getscheduler), // 145
GENX_(__NR_sched_get_priority_max, sys_sched_get_priority_max), // 146
GENX_(__NR_sched_get_priority_min, sys_sched_get_priority_min), // 147
// (__NR_sched_rr_get_interval, sys_sched_rr_get_interval), // 148
GENX_(__NR_mlock, sys_mlock), // 149
GENX_(__NR_munlock, sys_munlock), // 150
GENX_(__NR_mlockall, sys_mlockall), // 151
GENX_(__NR_munlockall, sys_munlockall), // 152
// (__NR_vhangup, sys_vhangup), // 153
// (__NR_modify_ldt, sys_modify_ldt), // 154
// (__NR_pivot_root, sys_pivot_root), // 155
LINXY(__NR__sysctl, sys_sysctl), // 156
// (__NR_prctl, sys_prctl), // 157
PLAX_(__NR_arch_prctl, sys_arch_prctl), // 158
// (__NR_adjtimex, sys_adjtimex), // 159
GENX_(__NR_setrlimit, sys_setrlimit), // 160
GENX_(__NR_chroot, sys_chroot), // 161
GENX_(__NR_sync, sys_sync), // 162
// (__NR_acct, sys_acct), // 163
// (__NR_settimeofday, sys_settimeofday), // 164
LINX_(__NR_mount, sys_mount), // 165
// (__NR_umount2, sys_umount), // 166
// (__NR_swapon, sys_swapon), // 167
// (__NR_swapoff, sys_swapoff), // 168
// (__NR_reboot, sys_reboot), // 169
// (__NR_sethostname, sys_sethostname), // 170
// (__NR_setdomainname, sys_setdomainname), // 171
// (__NR_iopl, stub_iopl), // 172
// (__NR_ioperm, sys_ioperm), // 173
// (__NR_create_module, sys_ni_syscall), // 174
// (__NR_init_module, sys_init_module), // 175
// (__NR_delete_module, sys_delete_module), // 176
// (__NR_get_kernel_syms, sys_ni_syscall), // 177
// (__NR_query_module, sys_ni_syscall), // 178
// (__NR_quotactl, sys_quotactl), // 179
// (__NR_nfsservctl, sys_nfsservctl), // 180
// (__NR_getpmsg, sys_ni_syscall), // 181
// (__NR_putpmsg, sys_ni_syscall), // 182
// (__NR_afs_syscall, sys_ni_syscall), // 183
// (__NR_tuxcall, sys_ni_syscall), // 184
// (__NR_security, sys_ni_syscall), // 185
LINX_(__NR_gettid, sys_gettid), // 186
// (__NR_readahead, sys_readahead), // 187
// (__NR_setxattr, sys_setxattr), // 188
// (__NR_lsetxattr, sys_lsetxattr), // 189
// (__NR_fsetxattr, sys_fsetxattr), // 190
GENXY(__NR_getxattr, sys_getxattr), // 191
// (__NR_lgetxattr, sys_lgetxattr), // 192
// (__NR_fgetxattr, sys_fgetxattr), // 193
// (__NR_listxattr, sys_listxattr), // 194
// (__NR_llistxattr, sys_llistxattr), // 195
// (__NR_flistxattr, sys_flistxattr), // 196
// (__NR_removexattr, sys_removexattr), // 197
// (__NR_lremovexattr, sys_lremovexattr), // 198
// (__NR_fremovexattr, sys_fremovexattr), // 199
// (__NR_tkill, sys_tkill), // 200
GENXY(__NR_time, sys_time), /*was sys_time64*/ // 201
LINXY(__NR_futex, sys_futex), // 202
// (__NR_sched_setaffinity, sys_sched_setaffinity), // 203
// (__NR_sched_getaffinity, sys_sched_getaffinity), // 204
// (__NR_set_thread_area, sys_ni_syscall), // 205
LINX_(__NR_io_setup, sys_io_setup), // 206
LINX_(__NR_io_destroy, sys_io_destroy), // 207
LINXY(__NR_io_getevents, sys_io_getevents), // 208
LINX_(__NR_io_submit, sys_io_submit), // 209
LINXY(__NR_io_cancel, sys_io_cancel), // 210
// (__NR_get_thread_area, sys_ni_syscall), // 211
// (__NR_lookup_dcookie, sys_lookup_dcookie), // 212
LINXY(__NR_epoll_create, sys_epoll_create), // 213
// (__NR_epoll_ctl_old, sys_ni_syscall), // 214
// (__NR_epoll_wait_old, sys_ni_syscall), // 215
// (__NR_remap_file_pages, sys_remap_file_pages)// 216
GENXY(__NR_getdents64, sys_getdents64), // 217
GENX_(__NR_set_tid_address, sys_set_tid_address),// 218
// (__NR_restart_syscall, sys_restart_syscall),// 219
PLAX_(__NR_semtimedop, sys_semtimedop), // 220
LINX_(__NR_fadvise64, sys_fadvise64), // 221
// (__NR_timer_create, sys_timer_create), // 222
// (__NR_timer_settime, sys_timer_settime), // 223
// (__NR_timer_gettime, sys_timer_gettime), // 224
// (__NR_timer_getoverrun, sys_timer_getoverrun)// 225
// (__NR_timer_delete, sys_timer_delete), // 226
// (__NR_clock_settime, sys_clock_settime), // 227
GENXY(__NR_clock_gettime, sys_clock_gettime), // 228
// (__NR_clock_getres, sys_clock_getres), // 229
// (__NR_clock_nanosleep, sys_clock_nanosleep),// 230
LINX_(__NR_exit_group, sys_exit_group), // 231
LINXY(__NR_epoll_wait, sys_epoll_wait), // 232
LINX_(__NR_epoll_ctl, sys_epoll_ctl), // 233
LINXY(__NR_tgkill, sys_tgkill), // 234
// (__NR_utimes, sys_utimes), // 235
// (__NR_vserver, sys_ni_syscall), // 236
// (__NR_vserver, sys_ni_syscall), // 236
// (__NR_mbind, sys_mbind), // 237
// (__NR_set_mempolicy, sys_set_mempolicy), // 238
// (__NR_get_mempolicy, sys_get_mempolicy), // 239
GENXY(__NR_mq_open, sys_mq_open), // 240
GENX_(__NR_mq_unlink, sys_mq_unlink), // 241
GENX_(__NR_mq_timedsend, sys_mq_timedsend), // 242
GENX_(__NR_mq_timedreceive, sys_mq_timedreceive),// 243
GENX_(__NR_mq_notify, sys_mq_notify), // 244
GENXY(__NR_mq_getsetattr, sys_mq_getsetattr), // 245
// (__NR_kexec_load, sys_ni_syscall), // 246
// (__NR_waitid, sys_waitid), // 247
};
const UInt VGA_(syscall_table_size) =
sizeof(VGA_(syscall_table)) / sizeof(VGA_(syscall_table)[0]);
//void VG_(clear_TLS_for_thread) ( VgLdtEntry* tls )
//{
//}
/*--------------------------------------------------------------------*/
/*--- end ---*/
/*--------------------------------------------------------------------*/