| /* |
| This file is part of drd, a data race detector. |
| |
| Copyright (C) 2006-2008 Bart Van Assche |
| bart.vanassche@gmail.com |
| |
| This program is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public License as |
| published by the Free Software Foundation; either version 2 of the |
| License, or (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA |
| 02111-1307, USA. |
| |
| The GNU General Public License is contained in the file COPYING. |
| */ |
| |
| |
| #include "drd_error.h" |
| #include "drd_segment.h" |
| #include "drd_suppression.h" |
| #include "drd_thread.h" |
| #include "pub_tool_basics.h" // Addr, SizeT |
| #include "pub_tool_errormgr.h" // VG_(unique_error)() |
| #include "pub_tool_libcassert.h" // tl_assert() |
| #include "pub_tool_libcbase.h" // VG_(strlen)() |
| #include "pub_tool_libcprint.h" // VG_(printf)() |
| #include "pub_tool_machine.h" |
| #include "pub_tool_mallocfree.h" // VG_(malloc)(), VG_(free)() |
| #include "pub_tool_options.h" // VG_(clo_backtrace_size) |
| #include "pub_tool_threadstate.h" // VG_(get_pthread_id)() |
| |
| |
| // Local functions. |
| |
| static void thread_append_segment(const DrdThreadId tid, |
| Segment* const sg); |
| static void thread_discard_segment(const DrdThreadId tid, Segment* const sg); |
| static void thread_update_danger_set(const DrdThreadId tid); |
| |
| |
| // Local variables. |
| |
| static ULong s_context_switch_count; |
| static ULong s_discard_ordered_segments_count; |
| static ULong s_update_danger_set_count; |
| static ULong s_danger_set_bitmap_creation_count; |
| static ULong s_danger_set_bitmap2_creation_count; |
| static ThreadId s_vg_running_tid = VG_INVALID_THREADID; |
| DrdThreadId s_drd_running_tid = DRD_INVALID_THREADID; |
| ThreadInfo s_threadinfo[DRD_N_THREADS]; |
| struct bitmap* s_danger_set; |
| static Bool s_trace_context_switches = False; |
| static Bool s_trace_danger_set = False; |
| static Bool s_segment_merging = True; |
| |
| |
| // Function definitions. |
| |
| void thread_trace_context_switches(const Bool t) |
| { |
| s_trace_context_switches = t; |
| } |
| |
| void thread_trace_danger_set(const Bool t) |
| { |
| s_trace_danger_set = t; |
| } |
| |
| void thread_set_segment_merging(const Bool m) |
| { |
| s_segment_merging = m; |
| } |
| |
| __inline__ Bool IsValidDrdThreadId(const DrdThreadId tid) |
| { |
| return (0 <= tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID |
| && ! (s_threadinfo[tid].vg_thread_exists == False |
| && s_threadinfo[tid].posix_thread_exists == False |
| && s_threadinfo[tid].detached_posix_thread == False)); |
| } |
| |
| /** |
| * Convert Valgrind's ThreadId into a DrdThreadId. Report failure if |
| * Valgrind's ThreadId does not yet exist. |
| **/ |
| DrdThreadId VgThreadIdToDrdThreadId(const ThreadId tid) |
| { |
| int i; |
| |
| if (tid == VG_INVALID_THREADID) |
| return DRD_INVALID_THREADID; |
| |
| for (i = 1; i < DRD_N_THREADS; i++) |
| { |
| if (s_threadinfo[i].vg_thread_exists == True |
| && s_threadinfo[i].vg_threadid == tid) |
| { |
| return i; |
| } |
| } |
| |
| return DRD_INVALID_THREADID; |
| } |
| |
| static |
| DrdThreadId VgThreadIdToNewDrdThreadId(const ThreadId tid) |
| { |
| int i; |
| |
| tl_assert(VgThreadIdToDrdThreadId(tid) == DRD_INVALID_THREADID); |
| |
| for (i = 1; i < DRD_N_THREADS; i++) |
| { |
| if (s_threadinfo[i].vg_thread_exists == False |
| && s_threadinfo[i].posix_thread_exists == False |
| && s_threadinfo[i].detached_posix_thread == False) |
| { |
| s_threadinfo[i].vg_thread_exists = True; |
| s_threadinfo[i].vg_threadid = tid; |
| s_threadinfo[i].pt_threadid = INVALID_POSIX_THREADID; |
| s_threadinfo[i].stack_min = 0; |
| s_threadinfo[i].stack_startup = 0; |
| s_threadinfo[i].stack_max = 0; |
| s_threadinfo[i].is_recording = True; |
| s_threadinfo[i].synchr_nesting = 0; |
| if (s_threadinfo[i].first != 0) |
| VG_(printf)("drd thread id = %d\n", i); |
| tl_assert(s_threadinfo[i].first == 0); |
| tl_assert(s_threadinfo[i].last == 0); |
| return i; |
| } |
| } |
| |
| tl_assert(False); |
| |
| return DRD_INVALID_THREADID; |
| } |
| |
| DrdThreadId PtThreadIdToDrdThreadId(const PThreadId tid) |
| { |
| int i; |
| |
| tl_assert(tid != INVALID_POSIX_THREADID); |
| |
| for (i = 1; i < DRD_N_THREADS; i++) |
| { |
| if (s_threadinfo[i].posix_thread_exists |
| && s_threadinfo[i].pt_threadid == tid) |
| { |
| return i; |
| } |
| } |
| return DRD_INVALID_THREADID; |
| } |
| |
| ThreadId DrdThreadIdToVgThreadId(const DrdThreadId tid) |
| { |
| tl_assert(0 <= tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); |
| return (s_threadinfo[tid].vg_thread_exists |
| ? s_threadinfo[tid].vg_threadid |
| : VG_INVALID_THREADID); |
| } |
| |
| /** Sanity check of the doubly linked list of segments referenced by a |
| * ThreadInfo struct. |
| * @return True if sane, False if not. |
| */ |
| static Bool sane_ThreadInfo(const ThreadInfo* const ti) |
| { |
| Segment* p; |
| for (p = ti->first; p; p = p->next) { |
| if (p->next && p->next->prev != p) |
| return False; |
| if (p->next == 0 && p != ti->last) |
| return False; |
| } |
| for (p = ti->last; p; p = p->prev) { |
| if (p->prev && p->prev->next != p) |
| return False; |
| if (p->prev == 0 && p != ti->first) |
| return False; |
| } |
| return True; |
| } |
| |
| DrdThreadId thread_pre_create(const DrdThreadId creator, |
| const ThreadId vg_created) |
| { |
| DrdThreadId created; |
| |
| tl_assert(VgThreadIdToDrdThreadId(vg_created) == DRD_INVALID_THREADID); |
| created = VgThreadIdToNewDrdThreadId(vg_created); |
| tl_assert(0 <= created && created < DRD_N_THREADS |
| && created != DRD_INVALID_THREADID); |
| |
| tl_assert(s_threadinfo[created].first == 0); |
| tl_assert(s_threadinfo[created].last == 0); |
| thread_append_segment(created, sg_new(creator, created)); |
| |
| return created; |
| } |
| |
| /** Allocate the first segment for a thread. Call this just after |
| * pthread_create(). |
| */ |
| DrdThreadId thread_post_create(const ThreadId vg_created) |
| { |
| const DrdThreadId created = VgThreadIdToDrdThreadId(vg_created); |
| |
| tl_assert(0 <= created && created < DRD_N_THREADS |
| && created != DRD_INVALID_THREADID); |
| |
| s_threadinfo[created].stack_max = VG_(thread_get_stack_max)(vg_created); |
| s_threadinfo[created].stack_startup = s_threadinfo[created].stack_max; |
| s_threadinfo[created].stack_min = s_threadinfo[created].stack_max; |
| tl_assert(s_threadinfo[created].stack_max != 0); |
| |
| return created; |
| } |
| |
| /* NPTL hack: NPTL allocates the 'struct pthread' on top of the stack, */ |
| /* and accesses this data structure from multiple threads without locking. */ |
| /* Any conflicting accesses in the range stack_startup..stack_max will be */ |
| /* ignored. */ |
| void thread_set_stack_startup(const DrdThreadId tid, const Addr stack_startup) |
| { |
| tl_assert(0 <= tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); |
| tl_assert(s_threadinfo[tid].stack_min <= stack_startup); |
| tl_assert(stack_startup <= s_threadinfo[tid].stack_max); |
| s_threadinfo[tid].stack_startup = stack_startup; |
| } |
| |
| Addr thread_get_stack_min(const DrdThreadId tid) |
| { |
| tl_assert(0 <= tid && tid < DRD_N_THREADS |
| && tid != DRD_INVALID_THREADID); |
| return s_threadinfo[tid].stack_min; |
| } |
| |
| Addr thread_get_stack_max(const DrdThreadId tid) |
| { |
| tl_assert(0 <= tid && tid < DRD_N_THREADS |
| && tid != DRD_INVALID_THREADID); |
| return s_threadinfo[tid].stack_max; |
| } |
| |
| /** Clean up thread-specific data structures. Call this just after |
| * pthread_join(). |
| */ |
| void thread_delete(const DrdThreadId tid) |
| { |
| Segment* sg; |
| Segment* sg_prev; |
| |
| tl_assert(0 <= tid && tid < DRD_N_THREADS |
| && tid != DRD_INVALID_THREADID); |
| tl_assert(s_threadinfo[tid].synchr_nesting == 0); |
| for (sg = s_threadinfo[tid].last; sg; sg = sg_prev) |
| { |
| sg_prev = sg->prev; |
| sg->prev = 0; |
| sg->next = 0; |
| sg_put(sg); |
| } |
| s_threadinfo[tid].vg_thread_exists = False; |
| s_threadinfo[tid].posix_thread_exists = False; |
| tl_assert(s_threadinfo[tid].detached_posix_thread == False); |
| s_threadinfo[tid].first = 0; |
| s_threadinfo[tid].last = 0; |
| } |
| |
| /* Called after a thread performed its last memory access and before */ |
| /* thread_delete() is called. Note: thread_delete() is only called for */ |
| /* joinable threads, not for detached threads. */ |
| void thread_finished(const DrdThreadId tid) |
| { |
| tl_assert(0 <= tid && tid < DRD_N_THREADS |
| && tid != DRD_INVALID_THREADID); |
| |
| s_threadinfo[tid].vg_thread_exists = False; |
| |
| if (s_threadinfo[tid].detached_posix_thread) |
| { |
| /* Once a detached thread has finished, its stack is deallocated and */ |
| /* should no longer be taken into account when computing the danger set*/ |
| s_threadinfo[tid].stack_min = s_threadinfo[tid].stack_max; |
| |
| /* For a detached thread, calling pthread_exit() invalidates the */ |
| /* POSIX thread ID associated with the detached thread. For joinable */ |
| /* POSIX threads however, the POSIX thread ID remains live after the */ |
| /* pthread_exit() call until pthread_join() is called. */ |
| s_threadinfo[tid].posix_thread_exists = False; |
| } |
| } |
| |
| void thread_set_pthreadid(const DrdThreadId tid, const PThreadId ptid) |
| { |
| tl_assert(0 <= tid && tid < DRD_N_THREADS |
| && tid != DRD_INVALID_THREADID); |
| tl_assert(s_threadinfo[tid].pt_threadid == INVALID_POSIX_THREADID); |
| tl_assert(ptid != INVALID_POSIX_THREADID); |
| s_threadinfo[tid].posix_thread_exists = True; |
| s_threadinfo[tid].pt_threadid = ptid; |
| } |
| |
| Bool thread_get_joinable(const DrdThreadId tid) |
| { |
| tl_assert(0 <= tid && tid < DRD_N_THREADS |
| && tid != DRD_INVALID_THREADID); |
| return ! s_threadinfo[tid].detached_posix_thread; |
| } |
| |
| void thread_set_joinable(const DrdThreadId tid, const Bool joinable) |
| { |
| tl_assert(0 <= tid && tid < DRD_N_THREADS |
| && tid != DRD_INVALID_THREADID); |
| tl_assert(!! joinable == joinable); |
| tl_assert(s_threadinfo[tid].pt_threadid != INVALID_POSIX_THREADID); |
| #if 0 |
| VG_(message)(Vg_DebugMsg, |
| "thread_set_joinable(%d/%d, %s)", |
| tid, |
| s_threadinfo[tid].vg_threadid, |
| joinable ? "joinable" : "detached"); |
| #endif |
| s_threadinfo[tid].detached_posix_thread = ! joinable; |
| } |
| |
| void thread_set_vg_running_tid(const ThreadId vg_tid) |
| { |
| tl_assert(vg_tid != VG_INVALID_THREADID); |
| |
| if (vg_tid != s_vg_running_tid) |
| { |
| thread_set_running_tid(vg_tid, VgThreadIdToDrdThreadId(vg_tid)); |
| } |
| |
| tl_assert(s_vg_running_tid != VG_INVALID_THREADID); |
| tl_assert(s_drd_running_tid != DRD_INVALID_THREADID); |
| } |
| |
| void thread_set_running_tid(const ThreadId vg_tid, const DrdThreadId drd_tid) |
| { |
| tl_assert(vg_tid != VG_INVALID_THREADID); |
| tl_assert(drd_tid != DRD_INVALID_THREADID); |
| |
| if (vg_tid != s_vg_running_tid) |
| { |
| if (s_trace_context_switches |
| && s_drd_running_tid != DRD_INVALID_THREADID) |
| { |
| VG_(message)(Vg_DebugMsg, |
| "Context switch from thread %d/%d to thread %d/%d;" |
| " segments: %llu", |
| s_vg_running_tid, s_drd_running_tid, |
| DrdThreadIdToVgThreadId(drd_tid), drd_tid, |
| sg_get_alive_segments_count()); |
| } |
| s_vg_running_tid = vg_tid; |
| s_drd_running_tid = drd_tid; |
| thread_update_danger_set(drd_tid); |
| s_context_switch_count++; |
| } |
| |
| tl_assert(s_vg_running_tid != VG_INVALID_THREADID); |
| tl_assert(s_drd_running_tid != DRD_INVALID_THREADID); |
| } |
| |
| int thread_enter_synchr(const DrdThreadId tid) |
| { |
| tl_assert(IsValidDrdThreadId(tid)); |
| return s_threadinfo[tid].synchr_nesting++; |
| } |
| |
| int thread_leave_synchr(const DrdThreadId tid) |
| { |
| tl_assert(IsValidDrdThreadId(tid)); |
| tl_assert(s_threadinfo[tid].synchr_nesting >= 1); |
| return --s_threadinfo[tid].synchr_nesting; |
| } |
| |
| int thread_get_synchr_nesting_count(const DrdThreadId tid) |
| { |
| tl_assert(IsValidDrdThreadId(tid)); |
| return s_threadinfo[tid].synchr_nesting; |
| } |
| |
| /** Append a new segment at the end of the segment list. */ |
| static void thread_append_segment(const DrdThreadId tid, Segment* const sg) |
| { |
| tl_assert(0 <= tid && tid < DRD_N_THREADS |
| && tid != DRD_INVALID_THREADID); |
| tl_assert(sane_ThreadInfo(&s_threadinfo[tid])); |
| sg->prev = s_threadinfo[tid].last; |
| sg->next = 0; |
| if (s_threadinfo[tid].last) |
| s_threadinfo[tid].last->next = sg; |
| s_threadinfo[tid].last = sg; |
| if (s_threadinfo[tid].first == 0) |
| s_threadinfo[tid].first = sg; |
| tl_assert(sane_ThreadInfo(&s_threadinfo[tid])); |
| } |
| |
| /** Remove a segment from the segment list of thread threadid, and free the |
| * associated memory. |
| */ |
| static void thread_discard_segment(const DrdThreadId tid, Segment* const sg) |
| { |
| tl_assert(0 <= tid && tid < DRD_N_THREADS |
| && tid != DRD_INVALID_THREADID); |
| tl_assert(sane_ThreadInfo(&s_threadinfo[tid])); |
| |
| if (sg->prev) |
| sg->prev->next = sg->next; |
| if (sg->next) |
| sg->next->prev = sg->prev; |
| if (sg == s_threadinfo[tid].first) |
| s_threadinfo[tid].first = sg->next; |
| if (sg == s_threadinfo[tid].last) |
| s_threadinfo[tid].last = sg->prev; |
| sg_put(sg); |
| tl_assert(sane_ThreadInfo(&s_threadinfo[tid])); |
| } |
| |
| VectorClock* thread_get_vc(const DrdThreadId tid) |
| { |
| tl_assert(0 <= tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); |
| tl_assert(s_threadinfo[tid].last); |
| return &s_threadinfo[tid].last->vc; |
| } |
| |
| /** Return the latest segment of thread 'tid' and increment its reference |
| * count. |
| */ |
| void thread_get_latest_segment(Segment** sg, const DrdThreadId tid) |
| { |
| tl_assert(sg); |
| tl_assert(0 <= tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); |
| tl_assert(s_threadinfo[tid].last); |
| |
| sg_put(*sg); |
| *sg = sg_get(s_threadinfo[tid].last); |
| } |
| |
| /** |
| * Compute the minimum of all latest vector clocks of all threads |
| * (Michiel Ronsse calls this "clock snooping" in his papers about DIOTA). |
| * @param vc pointer to a vectorclock, holds result upon return. |
| */ |
| static void thread_compute_minimum_vc(VectorClock* vc) |
| { |
| unsigned i; |
| Bool first; |
| Segment* latest_sg; |
| |
| first = True; |
| for (i = 0; i < sizeof(s_threadinfo) / sizeof(s_threadinfo[0]); i++) |
| { |
| latest_sg = s_threadinfo[i].last; |
| if (latest_sg) |
| { |
| if (first) |
| vc_assign(vc, &latest_sg->vc); |
| else |
| vc_min(vc, &latest_sg->vc); |
| first = False; |
| } |
| } |
| } |
| |
| static void thread_compute_maximum_vc(VectorClock* vc) |
| { |
| unsigned i; |
| Bool first; |
| Segment* latest_sg; |
| |
| first = True; |
| for (i = 0; i < sizeof(s_threadinfo) / sizeof(s_threadinfo[0]); i++) |
| { |
| latest_sg = s_threadinfo[i].last; |
| if (latest_sg) |
| { |
| if (first) |
| vc_assign(vc, &latest_sg->vc); |
| else |
| vc_combine(vc, &latest_sg->vc); |
| first = False; |
| } |
| } |
| } |
| |
| /** |
| * Discard all segments that have a defined order against the latest vector |
| * clock of every thread -- these segments can no longer be involved in a |
| * data race. |
| */ |
| static void thread_discard_ordered_segments(void) |
| { |
| unsigned i; |
| VectorClock thread_vc_min; |
| |
| s_discard_ordered_segments_count++; |
| |
| vc_init(&thread_vc_min, 0, 0); |
| thread_compute_minimum_vc(&thread_vc_min); |
| if (sg_get_trace()) |
| { |
| char msg[256]; |
| VectorClock thread_vc_max; |
| |
| vc_init(&thread_vc_max, 0, 0); |
| thread_compute_maximum_vc(&thread_vc_max); |
| VG_(snprintf)(msg, sizeof(msg), |
| "Discarding ordered segments -- min vc is "); |
| vc_snprint(msg + VG_(strlen)(msg), sizeof(msg) - VG_(strlen)(msg), |
| &thread_vc_min); |
| VG_(snprintf)(msg + VG_(strlen)(msg), sizeof(msg) - VG_(strlen)(msg), |
| ", max vc is "); |
| vc_snprint(msg + VG_(strlen)(msg), sizeof(msg) - VG_(strlen)(msg), |
| &thread_vc_max); |
| VG_(message)(Vg_UserMsg, "%s", msg); |
| vc_cleanup(&thread_vc_max); |
| } |
| |
| for (i = 0; i < sizeof(s_threadinfo) / sizeof(s_threadinfo[0]); i++) |
| { |
| Segment* sg; |
| Segment* sg_next; |
| for (sg = s_threadinfo[i].first; |
| sg && (sg_next = sg->next) && vc_lte(&sg->vc, &thread_vc_min); |
| sg = sg_next) |
| { |
| thread_discard_segment(i, sg); |
| } |
| } |
| vc_cleanup(&thread_vc_min); |
| } |
| |
| /** Merge all segments that may be merged without triggering false positives |
| * or discarding real data races. For the theoretical background of segment |
| * merging, see also the following paper: |
| * Mark Christiaens, Michiel Ronsse and Koen De Bosschere. |
| * Bounding the number of segment histories during data race detection. |
| * Parallel Computing archive, Volume 28, Issue 9, pp 1221-1238, |
| * September 2002. |
| */ |
| static void thread_merge_segments(void) |
| { |
| unsigned i; |
| |
| for (i = 0; i < sizeof(s_threadinfo) / sizeof(s_threadinfo[0]); i++) |
| { |
| Segment* sg; |
| |
| tl_assert(sane_ThreadInfo(&s_threadinfo[i])); |
| |
| for (sg = s_threadinfo[i].first; sg; sg = sg->next) |
| { |
| if (sg_get_refcnt(sg) == 1 |
| && sg->next |
| && sg_get_refcnt(sg->next) == 1 |
| && sg->next->next) |
| { |
| /* Merge sg and sg->next into sg. */ |
| sg_merge(sg, sg->next); |
| thread_discard_segment(i, sg->next); |
| } |
| } |
| |
| tl_assert(sane_ThreadInfo(&s_threadinfo[i])); |
| } |
| } |
| |
| /** Create a new segment for the specified thread, and discard any segments |
| * that cannot cause races anymore. |
| */ |
| void thread_new_segment(const DrdThreadId tid) |
| { |
| tl_assert(0 <= tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); |
| |
| thread_append_segment(tid, sg_new(tid, tid)); |
| |
| thread_discard_ordered_segments(); |
| |
| if (s_segment_merging) |
| thread_merge_segments(); |
| |
| if (tid == s_drd_running_tid) |
| { |
| /* Every change in the vector clock of the current thread may cause */ |
| /* segments that were previously ordered to this thread to become */ |
| /* unordered. Hence, recalculate the danger set if the vector clock */ |
| /* of the current thread is updated. */ |
| thread_update_danger_set(tid); |
| } |
| } |
| |
| /** Call this function after thread 'joiner' joined thread 'joinee'. */ |
| void thread_combine_vc(DrdThreadId joiner, DrdThreadId joinee) |
| { |
| tl_assert(joiner != joinee); |
| tl_assert(0 <= joiner && joiner < DRD_N_THREADS |
| && joiner != DRD_INVALID_THREADID); |
| tl_assert(0 <= joinee && joinee < DRD_N_THREADS |
| && joinee != DRD_INVALID_THREADID); |
| tl_assert(s_threadinfo[joiner].last); |
| tl_assert(s_threadinfo[joinee].last); |
| vc_combine(&s_threadinfo[joiner].last->vc, &s_threadinfo[joinee].last->vc); |
| thread_discard_ordered_segments(); |
| |
| if (joiner == s_drd_running_tid) |
| { |
| thread_update_danger_set(joiner); |
| } |
| } |
| |
| /** Call this function after thread 'tid' had to wait because of thread |
| * synchronization until the memory accesses in the segment with vector clock |
| * 'vc' finished. |
| */ |
| void thread_combine_vc2(DrdThreadId tid, const VectorClock* const vc) |
| { |
| tl_assert(0 <= tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); |
| tl_assert(s_threadinfo[tid].last); |
| tl_assert(vc); |
| vc_combine(&s_threadinfo[tid].last->vc, vc); |
| thread_discard_ordered_segments(); |
| } |
| |
| /** Call this function whenever a thread is no longer using the memory |
| * [ a1, a2 [, e.g. because of a call to free() or a stack pointer |
| * increase. |
| */ |
| void thread_stop_using_mem(const Addr a1, const Addr a2) |
| { |
| DrdThreadId other_user; |
| unsigned i; |
| |
| /* For all threads, mark the range [ a1, a2 [ as no longer in use. */ |
| other_user = DRD_INVALID_THREADID; |
| for (i = 0; i < sizeof(s_threadinfo) / sizeof(s_threadinfo[0]); i++) |
| { |
| Segment* p; |
| for (p = s_threadinfo[i].first; p; p = p->next) |
| { |
| if (other_user == DRD_INVALID_THREADID |
| && i != s_drd_running_tid |
| && bm_has_any_access(p->bm, a1, a2)) |
| { |
| other_user = i; |
| } |
| bm_clear(p->bm, a1, a2); |
| } |
| } |
| |
| /* If any other thread had accessed memory in [ a1, a2 [, update the */ |
| /* danger set. */ |
| if (other_user != DRD_INVALID_THREADID |
| && bm_has_any_access(s_danger_set, a1, a2)) |
| { |
| thread_update_danger_set(thread_get_running_tid()); |
| } |
| } |
| |
| void thread_start_recording(const DrdThreadId tid) |
| { |
| tl_assert(0 <= tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); |
| tl_assert(! s_threadinfo[tid].is_recording); |
| s_threadinfo[tid].is_recording = True; |
| } |
| |
| void thread_stop_recording(const DrdThreadId tid) |
| { |
| tl_assert(0 <= tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); |
| tl_assert(s_threadinfo[tid].is_recording); |
| s_threadinfo[tid].is_recording = False; |
| } |
| |
| void thread_print_all(void) |
| { |
| unsigned i; |
| Segment* p; |
| |
| for (i = 0; i < sizeof(s_threadinfo) / sizeof(s_threadinfo[0]); i++) |
| { |
| if (s_threadinfo[i].first) |
| { |
| VG_(printf)("**************\n" |
| "* thread %3d (%d/%d/%d/0x%lx/%d) *\n" |
| "**************\n", |
| i, |
| s_threadinfo[i].vg_thread_exists, |
| s_threadinfo[i].vg_threadid, |
| s_threadinfo[i].posix_thread_exists, |
| s_threadinfo[i].pt_threadid, |
| s_threadinfo[i].detached_posix_thread); |
| for (p = s_threadinfo[i].first; p; p = p->next) |
| { |
| sg_print(p); |
| } |
| } |
| } |
| } |
| |
| static void show_call_stack(const DrdThreadId tid, |
| const Char* const msg, |
| ExeContext* const callstack) |
| { |
| const ThreadId vg_tid = DrdThreadIdToVgThreadId(tid); |
| |
| VG_(message)(Vg_UserMsg, "%s (thread %d/%d)", msg, vg_tid, tid); |
| |
| if (vg_tid != VG_INVALID_THREADID) |
| { |
| if (callstack) |
| { |
| VG_(pp_ExeContext)(callstack); |
| } |
| else |
| { |
| VG_(get_and_pp_StackTrace)(vg_tid, VG_(clo_backtrace_size)); |
| } |
| } |
| else |
| { |
| VG_(message)(Vg_UserMsg, |
| " (thread finished, call stack no longer available)"); |
| } |
| } |
| |
| static void |
| thread_report_conflicting_segments_segment(const DrdThreadId tid, |
| const Addr addr, |
| const SizeT size, |
| const BmAccessTypeT access_type, |
| const Segment* const p) |
| { |
| unsigned i; |
| |
| tl_assert(0 <= tid && tid < DRD_N_THREADS |
| && tid != DRD_INVALID_THREADID); |
| tl_assert(p); |
| |
| for (i = 0; i < sizeof(s_threadinfo) / sizeof(s_threadinfo[0]); i++) |
| { |
| if (i != tid) |
| { |
| Segment* q; |
| for (q = s_threadinfo[i].last; q; q = q->prev) |
| { |
| // Since q iterates over the segments of thread i in order of |
| // decreasing vector clocks, if q->vc <= p->vc, then |
| // q->next->vc <= p->vc will also hold. Hence, break out of the |
| // loop once this condition is met. |
| if (vc_lte(&q->vc, &p->vc)) |
| break; |
| if (! vc_lte(&p->vc, &q->vc)) |
| { |
| if (bm_has_conflict_with(q->bm, addr, addr + size, access_type)) |
| { |
| tl_assert(q->stacktrace); |
| show_call_stack(i, "Other segment start", |
| q->stacktrace); |
| show_call_stack(i, "Other segment end", |
| q->next ? q->next->stacktrace : 0); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void thread_report_conflicting_segments(const DrdThreadId tid, |
| const Addr addr, |
| const SizeT size, |
| const BmAccessTypeT access_type) |
| { |
| Segment* p; |
| |
| tl_assert(0 <= tid && tid < DRD_N_THREADS |
| && tid != DRD_INVALID_THREADID); |
| |
| for (p = s_threadinfo[tid].first; p; p = p->next) |
| { |
| if (bm_has(p->bm, addr, addr + size, access_type)) |
| { |
| thread_report_conflicting_segments_segment(tid, addr, size, |
| access_type, p); |
| } |
| } |
| } |
| |
| /** Compute a bitmap that represents the union of all memory accesses of all |
| * segments that are unordered to the current segment of the thread tid. |
| */ |
| static void thread_update_danger_set(const DrdThreadId tid) |
| { |
| Segment* p; |
| |
| tl_assert(0 <= tid && tid < DRD_N_THREADS && tid != DRD_INVALID_THREADID); |
| tl_assert(tid == s_drd_running_tid); |
| |
| s_update_danger_set_count++; |
| s_danger_set_bitmap_creation_count -= bm_get_bitmap_creation_count(); |
| s_danger_set_bitmap2_creation_count -= bm_get_bitmap2_creation_count(); |
| |
| if (s_danger_set) |
| { |
| bm_delete(s_danger_set); |
| } |
| s_danger_set = bm_new(); |
| |
| if (s_trace_danger_set) |
| { |
| char msg[256]; |
| |
| VG_(snprintf)(msg, sizeof(msg), |
| "computing danger set for thread %d/%d with vc ", |
| DrdThreadIdToVgThreadId(tid), tid); |
| vc_snprint(msg + VG_(strlen)(msg), |
| sizeof(msg) - VG_(strlen)(msg), |
| &s_threadinfo[tid].last->vc); |
| VG_(message)(Vg_UserMsg, "%s", msg); |
| } |
| |
| p = s_threadinfo[tid].last; |
| { |
| unsigned j; |
| |
| if (s_trace_danger_set) |
| { |
| char msg[256]; |
| |
| VG_(snprintf)(msg, sizeof(msg), |
| "danger set: thread [%d] at vc ", |
| tid); |
| vc_snprint(msg + VG_(strlen)(msg), |
| sizeof(msg) - VG_(strlen)(msg), |
| &p->vc); |
| VG_(message)(Vg_UserMsg, "%s", msg); |
| } |
| |
| for (j = 0; j < sizeof(s_threadinfo) / sizeof(s_threadinfo[0]); j++) |
| { |
| if (IsValidDrdThreadId(j)) |
| { |
| const Segment* q; |
| for (q = s_threadinfo[j].last; q; q = q->prev) |
| if (j != tid && q != 0 |
| && ! vc_lte(&q->vc, &p->vc) && ! vc_lte(&p->vc, &q->vc)) |
| { |
| if (s_trace_danger_set) |
| { |
| char msg[256]; |
| VG_(snprintf)(msg, sizeof(msg), |
| "danger set: [%d] merging segment ", j); |
| vc_snprint(msg + VG_(strlen)(msg), |
| sizeof(msg) - VG_(strlen)(msg), |
| &q->vc); |
| VG_(message)(Vg_UserMsg, "%s", msg); |
| } |
| bm_merge2(s_danger_set, q->bm); |
| } |
| else |
| { |
| if (s_trace_danger_set) |
| { |
| char msg[256]; |
| VG_(snprintf)(msg, sizeof(msg), |
| "danger set: [%d] ignoring segment ", j); |
| vc_snprint(msg + VG_(strlen)(msg), |
| sizeof(msg) - VG_(strlen)(msg), |
| &q->vc); |
| VG_(message)(Vg_UserMsg, "%s", msg); |
| } |
| } |
| } |
| } |
| |
| for (j = 0; j < sizeof(s_threadinfo) / sizeof(s_threadinfo[0]); j++) |
| { |
| if (IsValidDrdThreadId(j)) |
| { |
| // NPTL hack: don't report data races on sizeof(struct pthread) |
| // bytes at the top of the stack, since the NPTL functions access |
| // this data without locking. |
| if (s_threadinfo[j].stack_min != 0) |
| { |
| tl_assert(s_threadinfo[j].stack_startup != 0); |
| if (s_threadinfo[j].stack_min < s_threadinfo[j].stack_startup) |
| { |
| bm_clear(s_danger_set, |
| s_threadinfo[j].stack_min, |
| s_threadinfo[j].stack_startup); |
| } |
| } |
| } |
| } |
| } |
| |
| s_danger_set_bitmap_creation_count += bm_get_bitmap_creation_count(); |
| s_danger_set_bitmap2_creation_count += bm_get_bitmap2_creation_count(); |
| |
| if (0 && s_trace_danger_set) |
| { |
| VG_(message)(Vg_UserMsg, "[%d] new danger set:", tid); |
| bm_print(s_danger_set); |
| VG_(message)(Vg_UserMsg, "[%d] end of new danger set.", tid); |
| } |
| } |
| |
| ULong thread_get_context_switch_count(void) |
| { |
| return s_context_switch_count; |
| } |
| |
| ULong thread_get_discard_ordered_segments_count(void) |
| { |
| return s_discard_ordered_segments_count; |
| } |
| |
| ULong thread_get_update_danger_set_count(void) |
| { |
| return s_update_danger_set_count; |
| } |
| |
| ULong thread_get_danger_set_bitmap_creation_count(void) |
| { |
| return s_danger_set_bitmap_creation_count; |
| } |
| |
| ULong thread_get_danger_set_bitmap2_creation_count(void) |
| { |
| return s_danger_set_bitmap2_creation_count; |
| } |