blob: dc98f46bea48afe5d680ceda1b1913f6315ef8a4 [file] [log] [blame]
/*
This file is part of drd, a data race detector.
Copyright (C) 2006-2008 Bart Van Assche
bart.vanassche@gmail.com
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#ifndef __DRD_BITMAP_H
#define __DRD_BITMAP_H
#include "pub_tool_basics.h"
#include "pub_tool_oset.h"
#include "pub_tool_libcbase.h"
/*
Bitmap representation. A bitmap is a data structure in which two bits are
reserved per 32 bit address: one bit that indicates that the data at the
specified address has been read, and one bit that indicates that the data has
been written to.
*/
/* Macro definitions. */
#define ADDR0_BITS 14
#define ADDR0_COUNT ((UWord)1 << ADDR0_BITS)
#define ADDR0_MASK (ADDR0_COUNT - 1)
#define SPLIT_ADDRESS(a) \
UWord a##0 = ((a) & ADDR0_MASK); \
UWord a##1 = ((a) >> ADDR0_BITS);
// Assumption: sizeof(Addr) == sizeof(UWord).
#define MAKE_ADDRESS(a1, a0) \
(Addr)(((UWord)(a1) << (ADDR0_BITS)) | ((UWord)(a0)))
#define BITS_PER_UWORD (8UL*sizeof(UWord))
#if defined(VGA_x86) || defined(VGA_ppc32)
#define BITS_PER_BITS_PER_UWORD 5
#elif defined(VGA_amd64) || defined(VGA_ppc64)
#define BITS_PER_BITS_PER_UWORD 6
#else
#error Unknown platform.
#endif
#define BITMAP1_UWORD_COUNT (ADDR0_COUNT >> BITS_PER_BITS_PER_UWORD)
/* Highest bits of an address that fit into the same UWord of bm0[]. */
#define UWORD_MSB(a) ((a) & ~(BITS_PER_UWORD - 1))
/* Lowest bits of an address that fit into the same UWord of bm0[]. */
#define UWORD_LSB(a) ((a) & (BITS_PER_UWORD - 1))
/* Highest address that fits in the same UWord as a. */
#define UWORD_HIGHEST_ADDRESS(a) ((a) | (BITS_PER_UWORD - 1))
/* Local variables. */
static ULong s_bitmap2_creation_count;
static ULong s_bitmap2_node_creation_count;
/*********************************************************************/
/* Functions for manipulating a struct bitmap1. */
/*********************************************************************/
/* Lowest level, corresponding to the lowest ADDR0_BITS of an address. */
struct bitmap1
{
UWord bm0_r[BITMAP1_UWORD_COUNT];
UWord bm0_w[BITMAP1_UWORD_COUNT];
};
static __inline__ UWord bm0_mask(const Addr a)
{
return ((UWord)1 << UWORD_LSB(a));
}
static __inline__ void bm0_set(UWord* bm0, const Addr a)
{
#ifdef ENABLE_DRD_CONSISTENCY_CHECKS
tl_assert(a < ADDR0_COUNT);
#endif
bm0[a >> BITS_PER_BITS_PER_UWORD] |= (UWord)1 << UWORD_LSB(a);
}
/** Set all of the addresses in range [ a1 .. a1 + size [ in bitmap bm0. */
static __inline__ void bm0_set_range(UWord* bm0,
const Addr a1, const SizeT size)
{
#ifdef ENABLE_DRD_CONSISTENCY_CHECKS
tl_assert(a1 < ADDR0_COUNT);
tl_assert(size > 0);
tl_assert(a1 + size <= ADDR0_COUNT);
tl_assert(UWORD_MSB(a1) == UWORD_MSB(a1 + size - 1));
#endif
bm0[a1 >> BITS_PER_BITS_PER_UWORD]
|= (((UWord)1 << size) - 1) << UWORD_LSB(a1);
}
static __inline__ void bm0_clear(UWord* bm0, const Addr a)
{
#ifdef ENABLE_DRD_CONSISTENCY_CHECKS
tl_assert(a < ADDR0_COUNT);
#endif
bm0[a >> BITS_PER_BITS_PER_UWORD] &= ~((UWord)1 << UWORD_LSB(a));
}
/** Clear all of the addresses in range [ a1 .. a1 + size [ in bitmap bm0. */
static __inline__ void bm0_clear_range(UWord* bm0,
const Addr a1, const SizeT size)
{
#ifdef ENABLE_DRD_CONSISTENCY_CHECKS
tl_assert(a1 < ADDR0_COUNT);
tl_assert(size > 0);
tl_assert(a1 + size <= ADDR0_COUNT);
tl_assert(UWORD_MSB(a1) == UWORD_MSB(a1 + size - 1));
#endif
bm0[a1 >> BITS_PER_BITS_PER_UWORD]
&= ~(((UWord)1 << size) - 1) << UWORD_LSB(a1);
}
static __inline__ UWord bm0_is_set(const UWord* bm0, const Addr a)
{
#ifdef ENABLE_DRD_CONSISTENCY_CHECKS
tl_assert(a < ADDR0_COUNT);
#endif
return (bm0[a >> BITS_PER_BITS_PER_UWORD] & ((UWord)1 << UWORD_LSB(a)));
}
/** Return true if any of the bits [ a1 .. a1+size [ are set in bm0. */
static __inline__ UWord bm0_is_any_set(const UWord* bm0,
const Addr a1, const SizeT size)
{
#ifdef ENABLE_DRD_CONSISTENCY_CHECKS
tl_assert(a1 < ADDR0_COUNT);
tl_assert(size > 0);
tl_assert(a1 + size <= ADDR0_COUNT);
tl_assert(UWORD_MSB(a1) == UWORD_MSB(a1 + size - 1));
#endif
return (bm0[a1 >> BITS_PER_BITS_PER_UWORD]
& ((((UWord)1 << size) - 1) << UWORD_LSB(a1)));
}
/*********************************************************************/
/* Functions for manipulating a struct bitmap. */
/*********************************************************************/
/* Second level bitmap. */
struct bitmap2
{
Addr addr; ///< address >> ADDR0_BITS
int refcnt;
struct bitmap1 bm1;
};
/* One node of bitmap::oset. */
struct bitmap2ref
{
Addr addr; ///< address >> ADDR0_BITS
struct bitmap2* bm2;
};
struct bm_cache_elem
{
Addr a1;
struct bitmap2* bm2;
};
#define N_CACHE_ELEM 4
/* Complete bitmap. */
struct bitmap
{
struct bm_cache_elem cache[N_CACHE_ELEM];
OSet* oset;
};
static struct bitmap2* bm2_new(const UWord a1);
static struct bitmap2* bm2_make_exclusive(struct bitmap* const bm,
struct bitmap2ref* const bm2ref);
/** Rotate elements cache[0..n-1] such that the element at position n-1 is
* moved to position 0. This allows to speed up future cache lookups.
*/
static __inline__
void bm_cache_rotate(struct bm_cache_elem cache[], const int n)
{
#if 0
struct bm_cache_elem t;
tl_assert(2 <= n && n <= 8);
t = cache[0];
if (n > 1)
cache[0] = cache[1];
if (n > 2)
cache[1] = cache[2];
if (n > 3)
cache[2] = cache[3];
if (n > 4)
cache[3] = cache[4];
if (n > 5)
cache[4] = cache[5];
if (n > 6)
cache[5] = cache[6];
if (n > 7)
cache[6] = cache[7];
cache[n - 1] = t;
#endif
}
static __inline__
Bool bm_cache_lookup(struct bitmap* const bm, const UWord a1,
struct bitmap2** bm2)
{
#ifdef ENABLE_DRD_CONSISTENCY_CHECKS
tl_assert(bm);
tl_assert(bm2);
#endif
#if N_CACHE_ELEM > 8
#error Please update the code below.
#endif
#if N_CACHE_ELEM >= 1
if (a1 == bm->cache[0].a1)
{
*bm2 = bm->cache[0].bm2;
return True;
}
#endif
#if N_CACHE_ELEM >= 2
if (a1 == bm->cache[1].a1)
{
*bm2 = bm->cache[1].bm2;
return True;
}
#endif
#if N_CACHE_ELEM >= 3
if (a1 == bm->cache[2].a1)
{
*bm2 = bm->cache[2].bm2;
bm_cache_rotate(bm->cache, 3);
return True;
}
#endif
#if N_CACHE_ELEM >= 4
if (a1 == bm->cache[3].a1)
{
*bm2 = bm->cache[3].bm2;
bm_cache_rotate(bm->cache, 4);
return True;
}
#endif
#if N_CACHE_ELEM >= 5
if (a1 == bm->cache[4].a1)
{
*bm2 = bm->cache[4].bm2;
bm_cache_rotate(bm->cache, 5);
return True;
}
#endif
#if N_CACHE_ELEM >= 6
if (a1 == bm->cache[5].a1)
{
*bm2 = bm->cache[5].bm2;
bm_cache_rotate(bm->cache, 6);
return True;
}
#endif
#if N_CACHE_ELEM >= 7
if (a1 == bm->cache[6].a1)
{
*bm2 = bm->cache[6].bm2;
bm_cache_rotate(bm->cache, 7);
return True;
}
#endif
#if N_CACHE_ELEM >= 8
if (a1 == bm->cache[7].a1)
{
*bm2 = bm->cache[7].bm2;
bm_cache_rotate(bm->cache, 8);
return True;
}
#endif
*bm2 = 0;
return False;
}
static __inline__
void bm_update_cache(struct bitmap* const bm,
const UWord a1,
struct bitmap2* const bm2)
{
#ifdef ENABLE_DRD_CONSISTENCY_CHECKS
tl_assert(bm);
#endif
#if N_CACHE_ELEM > 8
#error Please update the code below.
#endif
#if N_CACHE_ELEM >= 8
bm->cache[7] = bm->cache[6];
#endif
#if N_CACHE_ELEM >= 7
bm->cache[6] = bm->cache[5];
#endif
#if N_CACHE_ELEM >= 6
bm->cache[5] = bm->cache[4];
#endif
#if N_CACHE_ELEM >= 5
bm->cache[4] = bm->cache[3];
#endif
#if N_CACHE_ELEM >= 4
bm->cache[3] = bm->cache[2];
#endif
#if N_CACHE_ELEM >= 3
bm->cache[2] = bm->cache[1];
#endif
#if N_CACHE_ELEM >= 2
bm->cache[1] = bm->cache[0];
#endif
bm->cache[0].a1 = a1;
bm->cache[0].bm2 = bm2;
}
/** Look up the address a1 in bitmap bm and return a pointer to a potentially
* shared second level bitmap. The bitmap where the returned pointer points
* at may not be modified by the caller.
*
* @param a1 client address shifted right by ADDR0_BITS.
* @param bm bitmap pointer.
*/
static __inline__
const struct bitmap2* bm2_lookup(struct bitmap* const bm, const UWord a1)
{
struct bitmap2* bm2;
struct bitmap2ref* bm2ref;
#ifdef ENABLE_DRD_CONSISTENCY_CHECKS
tl_assert(bm);
#endif
if (! bm_cache_lookup(bm, a1, &bm2))
{
bm2ref = VG_(OSetGen_Lookup)(bm->oset, &a1);
if (bm2ref)
{
bm2 = bm2ref->bm2;
}
bm_update_cache(*(struct bitmap**)&bm, a1, bm2);
}
return bm2;
}
/** Look up the address a1 in bitmap bm and return a pointer to a second
* level bitmap that is not shared and hence may be modified.
*
* @param a1 client address shifted right by ADDR0_BITS.
* @param bm bitmap pointer.
*/
static __inline__
struct bitmap2*
bm2_lookup_exclusive(struct bitmap* const bm, const UWord a1)
{
struct bitmap2ref* bm2ref;
struct bitmap2* bm2;
bm2ref = 0;
if (bm_cache_lookup(bm, a1, &bm2))
{
if (bm2 == 0)
return 0;
if (bm2->refcnt > 1)
{
bm2ref = VG_(OSetGen_Lookup)(bm->oset, &a1);
}
}
else
{
bm2ref = VG_(OSetGen_Lookup)(bm->oset, &a1);
if (bm2ref == 0)
return 0;
bm2 = bm2ref->bm2;
}
#ifdef ENABLE_DRD_CONSISTENCY_CHECKS
tl_assert(bm2);
#endif
if (bm2->refcnt > 1)
{
#ifdef ENABLE_DRD_CONSISTENCY_CHECKS
tl_assert(bm2ref);
#endif
bm2 = bm2_make_exclusive(*(struct bitmap**)&bm, bm2ref);
}
return bm2;
}
/** Look up the address a1 in bitmap bm. The returned second level bitmap has
* reference count one and hence may be modified.
*
* @param a1 client address shifted right by ADDR0_BITS.
* @param bm bitmap pointer.
*/
static __inline__
struct bitmap2* bm2_insert(struct bitmap* const bm, const UWord a1)
{
struct bitmap2ref* bm2ref;
struct bitmap2* bm2;
s_bitmap2_node_creation_count++;
bm2ref = VG_(OSetGen_AllocNode)(bm->oset, sizeof(*bm2ref));
bm2ref->addr = a1;
bm2 = bm2_new(a1);
bm2ref->bm2 = bm2;
VG_(memset)(&bm2->bm1, 0, sizeof(bm2->bm1));
VG_(OSetGen_Insert)(bm->oset, bm2ref);
bm_update_cache(*(struct bitmap**)&bm, a1, bm2);
return bm2;
}
/** Insert a new node in bitmap bm that points to the second level bitmap
* *bm2. This means that *bm2 becomes shared over two or more bitmaps.
*/
static __inline__
struct bitmap2* bm2_insert_addref(struct bitmap* const bm,
struct bitmap2* const bm2)
{
struct bitmap2ref* bm2ref;
#ifdef ENABLE_DRD_CONSISTENCY_CHECKS
tl_assert(bm);
tl_assert(VG_(OSetGen_Lookup)(bm->oset, &bm2->addr) == 0);
#endif
s_bitmap2_node_creation_count++;
bm2ref = VG_(OSetGen_AllocNode)(bm->oset, sizeof(*bm2ref));
bm2ref->addr = bm2->addr;
bm2ref->bm2 = bm2;
bm2->refcnt++;
VG_(OSetGen_Insert)(bm->oset, bm2ref);
bm_update_cache(*(struct bitmap**)&bm, bm2->addr, bm2);
return bm2;
}
/** Look up the address a1 in bitmap bm, and insert it if not found.
* The returned second level bitmap may not be modified.
*
* @param a1 client address shifted right by ADDR0_BITS.
* @param bm bitmap pointer.
*/
static __inline__
struct bitmap2* bm2_lookup_or_insert(struct bitmap* const bm, const UWord a1)
{
struct bitmap2ref* bm2ref;
struct bitmap2* bm2;
#ifdef ENABLE_DRD_CONSISTENCY_CHECKS
tl_assert(bm);
#endif
if (bm_cache_lookup(bm, a1, &bm2))
{
if (bm2 == 0)
{
bm2 = bm2_insert(bm, a1);
}
}
else
{
bm2ref = VG_(OSetGen_Lookup)(bm->oset, &a1);
if (bm2ref)
{
bm2 = bm2ref->bm2;
}
else
{
bm2 = bm2_insert(bm, a1);
}
bm_update_cache(*(struct bitmap**)&bm, a1, bm2);
}
return bm2;
}
/** Look up the address a1 in bitmap bm, and insert it if not found.
* The returned second level bitmap may be modified.
*
* @param a1 client address shifted right by ADDR0_BITS.
* @param bm bitmap pointer.
*/
static __inline__
struct bitmap2* bm2_lookup_or_insert_exclusive(struct bitmap* const bm,
const UWord a1)
{
struct bitmap2* bm2;
#ifdef ENABLE_DRD_CONSISTENCY_CHECKS
tl_assert(bm);
#endif
bm2 = (struct bitmap2*)bm2_lookup_or_insert(bm, a1);
#ifdef ENABLE_DRD_CONSISTENCY_CHECKS
tl_assert(bm2);
#endif
if (bm2->refcnt > 1)
{
struct bitmap2ref* bm2ref;
bm2ref = VG_(OSetGen_Lookup)(bm->oset, &a1);
bm2 = bm2_make_exclusive(bm, bm2ref);
}
return bm2;
}
static __inline__
void bm_access_aligned_load(struct bitmap* const bm,
const Addr a1, const SizeT size)
{
struct bitmap2* bm2;
bm2 = bm2_lookup_or_insert_exclusive(bm, a1 >> ADDR0_BITS);
bm0_set_range(bm2->bm1.bm0_r, a1 & ADDR0_MASK, size);
}
static __inline__
void bm_access_aligned_store(struct bitmap* const bm,
const Addr a1, const SizeT size)
{
struct bitmap2* bm2;
bm2 = bm2_lookup_or_insert_exclusive(bm, a1 >> ADDR0_BITS);
bm0_set_range(bm2->bm1.bm0_w, a1 & ADDR0_MASK, size);
}
static __inline__
Bool bm_aligned_load_has_conflict_with(struct bitmap* const bm,
const Addr a1, const SizeT size)
{
const struct bitmap2* bm2;
bm2 = bm2_lookup(bm, a1 >> ADDR0_BITS);
return (bm2 && bm0_is_any_set(bm2->bm1.bm0_w, a1 & ADDR0_MASK, size));
}
static __inline__
Bool bm_aligned_store_has_conflict_with(struct bitmap* const bm,
const Addr a1, const SizeT size)
{
const struct bitmap2* bm2;
bm2 = bm2_lookup(bm, a1 >> ADDR0_BITS);
if (bm2)
{
if (bm0_is_any_set(bm2->bm1.bm0_r, a1 & ADDR0_MASK, size)
| bm0_is_any_set(bm2->bm1.bm0_w, a1 & ADDR0_MASK, size))
{
return True;
}
}
return False;
}
#endif /* __DRD_BITMAP_H */