blob: 3ddfb8d7abed32074d6cfe886fbded54946a4660 [file] [log] [blame]
/*--------------------------------------------------------------------*/
/*--- Platform-specific syscalls stuff. syscalls-amd64-linux.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright (C) 2000-2005 Nicholas Nethercote
njn@valgrind.org
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#include "core.h"
#include "ume.h" /* for jmp_with_stack */
#include "pub_core_debuglog.h"
#include "pub_core_aspacemgr.h"
#include "pub_core_options.h"
#include "pub_core_libcbase.h"
#include "pub_core_libcassert.h"
#include "pub_core_libcmman.h"
#include "pub_core_libcprint.h"
#include "pub_core_libcsignal.h"
#include "pub_core_sigframe.h"
#include "pub_core_signals.h"
#include "pub_core_syscalls.h"
#include "pub_core_tooliface.h"
#include "priv_types_n_macros.h"
#include "priv_syscalls-generic.h" /* for decls of generic wrappers */
#include "priv_syscalls-linux.h" /* for decls of linux-ish wrappers */
#include "priv_syscalls-main.h"
#include "vki_unistd.h" /* for the __NR_* constants */
/* ---------------------------------------------------------------------
Stacks, thread wrappers
Note. Why is this stuff here?
------------------------------------------------------------------ */
/*
Allocate a stack for this thread.
They're allocated lazily, but never freed.
*/
#define FILL 0xdeadbeefcabafeed
// Valgrind's stack size, in words.
#define STACK_SIZE_W 16384
static UWord* allocstack(ThreadId tid)
{
ThreadState *tst = VG_(get_ThreadState)(tid);
UWord* rsp;
if (tst->os_state.valgrind_stack_base == 0) {
void *stk = VG_(mmap)(0, STACK_SIZE_W * sizeof(UWord) + VKI_PAGE_SIZE,
VKI_PROT_READ|VKI_PROT_WRITE,
VKI_MAP_PRIVATE|VKI_MAP_ANONYMOUS,
SF_VALGRIND,
-1, 0);
if (stk != (void *)-1) {
VG_(mprotect)(stk, VKI_PAGE_SIZE, VKI_PROT_NONE); /* guard page */
tst->os_state.valgrind_stack_base = ((Addr)stk) + VKI_PAGE_SIZE;
tst->os_state.valgrind_stack_szB = STACK_SIZE_W * sizeof(UWord);
} else
return (UWord*)-1;
}
for (rsp = (UWord*) tst->os_state.valgrind_stack_base;
rsp < (UWord*)(tst->os_state.valgrind_stack_base +
tst->os_state.valgrind_stack_szB);
rsp++)
*rsp = FILL;
/* rsp is left at top of stack */
if (0)
VG_(printf)("stack for tid %d at %p (%llx); rsp=%p\n",
tid, tst->os_state.valgrind_stack_base,
*(UWord*)(tst->os_state.valgrind_stack_base), rsp);
return rsp;
}
/* NB: this is identical the the x86 version. */
/* Return how many bytes of this stack have not been used */
SSizeT VGA_(stack_unused)(ThreadId tid)
{
ThreadState *tst = VG_(get_ThreadState)(tid);
UWord* p;
for (p = (UWord*)tst->os_state.valgrind_stack_base;
p && (p < (UWord*)(tst->os_state.valgrind_stack_base +
tst->os_state.valgrind_stack_szB));
p++)
if (*p != FILL)
break;
if (0)
VG_(printf)("p=%p %llx tst->os_state.valgrind_stack_base=%p\n",
p, *p, tst->os_state.valgrind_stack_base);
return ((Addr)p) - tst->os_state.valgrind_stack_base;
}
/* Run a thread all the way to the end, then do appropriate exit actions
(this is the last-one-out-turn-off-the-lights bit).
*/
static void run_a_thread_NORETURN ( Word tidW )
{
ThreadId tid = (ThreadId)tidW;
VG_(debugLog)(1, "syscalls-amd64-linux",
"run_a_thread_NORETURN(tid=%lld): "
"VGO_(thread_wrapper) called\n",
(ULong)tidW);
/* Run the thread all the way through. */
VgSchedReturnCode src = VGO_(thread_wrapper)(tid);
VG_(debugLog)(1, "syscalls-amd64-linux",
"run_a_thread_NORETURN(tid=%lld): "
"VGO_(thread_wrapper) done\n",
(ULong)tidW);
Int c = VG_(count_living_threads)();
vg_assert(c >= 1); /* stay sane */
if (c == 1) {
VG_(debugLog)(1, "syscalls-amd64-linux",
"run_a_thread_NORETURN(tid=%lld): "
"last one standing\n",
(ULong)tidW);
/* We are the last one standing. Keep hold of the lock and
carry on to show final tool results, then exit the entire system. */
VG_(shutdown_actions_NORETURN)(tid, src);
} else {
VG_(debugLog)(1, "syscalls-amd64-linux",
"run_a_thread_NORETURN(tid=%lld): "
"not last one standing\n",
(ULong)tidW);
/* OK, thread is dead, but others still exist. Just exit. */
ThreadState *tst = VG_(get_ThreadState)(tid);
/* This releases the run lock */
VG_(exit_thread)(tid);
vg_assert(tst->status == VgTs_Zombie);
/* We have to use this sequence to terminate the thread to
prevent a subtle race. If VG_(exit_thread)() had left the
ThreadState as Empty, then it could have been reallocated,
reusing the stack while we're doing these last cleanups.
Instead, VG_(exit_thread) leaves it as Zombie to prevent
reallocation. We need to make sure we don't touch the stack
between marking it Empty and exiting. Hence the
assembler. */
asm volatile (
"movl %1, %0\n" /* set tst->status = VgTs_Empty */
"movq %2, %%rax\n" /* set %rax = __NR_exit */
"movq %3, %%rdi\n" /* set %rdi = tst->os_state.exitcode */
"syscall\n" /* exit(tst->os_state.exitcode) */
: "=m" (tst->status)
: "n" (VgTs_Empty), "n" (__NR_exit), "m" (tst->os_state.exitcode));
VG_(core_panic)("Thread exit failed?\n");
}
/*NOTREACHED*/
vg_assert(0);
}
/*
Allocate a stack for the main thread, and run it all the way to the
end.
*/
void VGP_(main_thread_wrapper_NORETURN)(ThreadId tid)
{
VG_(debugLog)(1, "syscalls-amd64-linux",
"entering VGP_(main_thread_wrapper_NORETURN)\n");
UWord* rsp = allocstack(tid);
/* shouldn't be any other threads around yet */
vg_assert( VG_(count_living_threads)() == 1 );
call_on_new_stack_0_1(
(Addr)rsp, /* stack */
0, /*bogus return address*/
run_a_thread_NORETURN, /* fn to call */
(Word)tid /* arg to give it */
);
/*NOTREACHED*/
vg_assert(0);
}
static Long start_thread_NORETURN ( void* arg )
{
ThreadState* tst = (ThreadState*)arg;
ThreadId tid = tst->tid;
run_a_thread_NORETURN ( (Word)tid );
/*NOTREACHED*/
vg_assert(0);
}
/* ---------------------------------------------------------------------
clone() handling
------------------------------------------------------------------ */
/*
Perform a clone system call. clone is strange because it has
fork()-like return-twice semantics, so it needs special
handling here.
Upon entry, we have:
int (*fn)(void*) in %rdi
void* child_stack in %rsi
int flags in %rdx
void* arg in %rcx
pid_t* child_tid in %r8
pid_t* parent_tid in %r9
void* tls_ptr at 8(%rsp)
System call requires:
int $__NR_clone in %rax
int flags in %rdi
void* child_stack in %rsi
pid_t* parent_tid in %rdx
pid_t* child_tid in %r10
void* tls_ptr in %r8
Returns a Long encoded in the linux-amd64 way, not a SysRes.
*/
#define STRINGIFZ(__str) #__str
#define STRINGIFY(__str) STRINGIFZ(__str)
#define __NR_CLONE STRINGIFY(__NR_clone)
#define __NR_EXIT STRINGIFY(__NR_exit)
extern
Long do_syscall_clone_amd64_linux ( Long (*fn)(void *),
void* stack,
Long flags,
void* arg,
Long* child_tid,
Long* parent_tid,
vki_modify_ldt_t * );
asm(
"\n"
"do_syscall_clone_amd64_linux:\n"
// set up child stack, temporarily preserving fn and arg
" subq $16, %rsi\n" // make space on stack
" movq %rcx, 8(%rsi)\n" // save arg
" movq %rdi, 0(%rsi)\n" // save fn
// setup syscall
" movq $"__NR_CLONE", %rax\n" // syscall number
" movq %rdx, %rdi\n" // syscall arg1: flags
// %rsi already setup // syscall arg2: child_stack
" movq %r9, %rdx\n" // syscall arg3: parent_tid
" movq %r8, %r10\n" // syscall arg4: child_tid
" movq 8(%rsp), %r8\n" // syscall arg5: tls_ptr
" syscall\n" // clone()
" testq %rax, %rax\n" // child if retval == 0
" jnz 1f\n"
// CHILD - call thread function
" pop %rax\n" // pop fn
" pop %rdi\n" // pop fn arg1: arg
" call *%rax\n" // call fn
// exit with result
" movq %rax, %rdi\n" // arg1: return value from fn
" movq $"__NR_EXIT", %rax\n"
" syscall\n"
// Exit returned?!
" ud2\n"
"1:\n" // PARENT or ERROR
" ret\n"
);
#undef __NR_CLONE
#undef __NR_EXIT
#undef STRINGIFY
#undef STRINGIFZ
// forward declaration
static void setup_child ( ThreadArchState*, ThreadArchState* );
/*
When a client clones, we need to keep track of the new thread. This means:
1. allocate a ThreadId+ThreadState+stack for the the thread
2. initialize the thread's new VCPU state
3. create the thread using the same args as the client requested,
but using the scheduler entrypoint for EIP, and a separate stack
for ESP.
*/
static SysRes do_clone ( ThreadId ptid,
ULong flags, Addr rsp,
Long* parent_tidptr,
Long* child_tidptr,
Addr tlsaddr )
{
static const Bool debug = False;
ThreadId ctid = VG_(alloc_ThreadState)();
ThreadState* ptst = VG_(get_ThreadState)(ptid);
ThreadState* ctst = VG_(get_ThreadState)(ctid);
UWord* stack;
Segment* seg;
SysRes res;
Long rax;
vki_sigset_t blockall, savedmask;
VG_(sigfillset)(&blockall);
vg_assert(VG_(is_running_thread)(ptid));
vg_assert(VG_(is_valid_tid)(ctid));
stack = allocstack(ctid);
/* Copy register state
Both parent and child return to the same place, and the code
following the clone syscall works out which is which, so we
don't need to worry about it.
The parent gets the child's new tid returned from clone, but the
child gets 0.
If the clone call specifies a NULL rsp for the new thread, then
it actually gets a copy of the parent's rsp.
*/
setup_child( &ctst->arch, &ptst->arch );
/* Make sys_clone appear to have returned Success(0) in the
child. */
ctst->arch.vex.guest_RAX = 0;
if (rsp != 0)
ctst->arch.vex.guest_RSP = rsp;
ctst->os_state.parent = ptid;
/* inherit signal mask */
ctst->sig_mask = ptst->sig_mask;
ctst->tmp_sig_mask = ptst->sig_mask;
/* We don't really know where the client stack is, because its
allocated by the client. The best we can do is look at the
memory mappings and try to derive some useful information. We
assume that esp starts near its highest possible value, and can
only go down to the start of the mmaped segment. */
seg = VG_(find_segment)((Addr)rsp);
if (seg) {
ctst->client_stack_highest_word = (Addr)VG_PGROUNDUP(rsp);
ctst->client_stack_szB = ctst->client_stack_highest_word - seg->addr;
if (debug)
VG_(printf)("tid %d: guessed client stack range %p-%p\n",
ctid, seg->addr, VG_PGROUNDUP(rsp));
} else {
VG_(message)(Vg_UserMsg, "!? New thread %d starts with RSP(%p) unmapped\n",
ctid, rsp);
ctst->client_stack_szB = 0;
}
if (flags & VKI_CLONE_SETTLS) {
if (debug)
VG_(printf)("clone child has SETTLS: tls at %p\n", tlsaddr);
ctst->arch.vex.guest_FS_ZERO = tlsaddr;
}
flags &= ~VKI_CLONE_SETTLS;
/* start the thread with everything blocked */
VG_(sigprocmask)(VKI_SIG_SETMASK, &blockall, &savedmask);
/* Create the new thread */
rax = do_syscall_clone_amd64_linux(
start_thread_NORETURN, stack, flags, &VG_(threads)[ctid],
child_tidptr, parent_tidptr, NULL
);
res = VG_(mk_SysRes_amd64_linux)( rax );
VG_(sigprocmask)(VKI_SIG_SETMASK, &savedmask, NULL);
if (res.isError) {
/* clone failed */
VGP_(cleanup_thread)(&ctst->arch);
ctst->status = VgTs_Empty;
}
return res;
}
/* Do a clone which is really a fork() */
static SysRes do_fork_clone ( ThreadId tid,
ULong flags, Addr rsp,
Long* parent_tidptr,
Long* child_tidptr )
{
vki_sigset_t fork_saved_mask;
vki_sigset_t mask;
SysRes res;
if (flags & (VKI_CLONE_SETTLS | VKI_CLONE_FS | VKI_CLONE_VM
| VKI_CLONE_FILES | VKI_CLONE_VFORK))
return VG_(mk_SysRes_Error)( VKI_EINVAL );
/* Block all signals during fork, so that we can fix things up in
the child without being interrupted. */
VG_(sigfillset)(&mask);
VG_(sigprocmask)(VKI_SIG_SETMASK, &mask, &fork_saved_mask);
VG_(do_atfork_pre)(tid);
/* Since this is the fork() form of clone, we don't need all that
VG_(clone) stuff */
res = VG_(do_syscall5)( __NR_clone, flags,
(UWord)NULL, (UWord)parent_tidptr,
(UWord)NULL, (UWord)child_tidptr );
if (!res.isError && res.val == 0) {
/* child */
VG_(do_atfork_child)(tid);
/* restore signal mask */
VG_(sigprocmask)(VKI_SIG_SETMASK, &fork_saved_mask, NULL);
}
else
if (!res.isError && res.val > 0) {
/* parent */
if (VG_(clo_trace_syscalls))
VG_(printf)(" clone(fork): process %d created child %d\n",
VG_(getpid)(), res.val);
VG_(do_atfork_parent)(tid);
/* restore signal mask */
VG_(sigprocmask)(VKI_SIG_SETMASK, &fork_saved_mask, NULL);
}
return res;
}
/* ---------------------------------------------------------------------
More thread stuff
------------------------------------------------------------------ */
void VGP_(cleanup_thread) ( ThreadArchState *arch )
{
}
void setup_child ( /*OUT*/ ThreadArchState *child,
/*IN*/ ThreadArchState *parent )
{
/* We inherit our parent's guest state. */
child->vex = parent->vex;
child->vex_shadow = parent->vex_shadow;
}
/* ---------------------------------------------------------------------
PRE/POST wrappers for AMD64/Linux-specific syscalls
------------------------------------------------------------------ */
#define PRE(name) DEFN_PRE_TEMPLATE(amd64_linux, name)
#define POST(name) DEFN_POST_TEMPLATE(amd64_linux, name)
/* Add prototypes for the wrappers declared here, so that gcc doesn't
harass us for not having prototypes. Really this is a kludge --
the right thing to do is to make these wrappers 'static' since they
aren't visible outside this file, but that requires even more macro
magic. */
DECL_TEMPLATE(amd64_linux, sys_clone);
DECL_TEMPLATE(amd64_linux, sys_rt_sigreturn);
DECL_TEMPLATE(amd64_linux, sys_socket);
DECL_TEMPLATE(amd64_linux, sys_setsockopt);
DECL_TEMPLATE(amd64_linux, sys_getsockopt);
DECL_TEMPLATE(amd64_linux, sys_connect);
DECL_TEMPLATE(amd64_linux, sys_accept);
DECL_TEMPLATE(amd64_linux, sys_sendto);
DECL_TEMPLATE(amd64_linux, sys_recvfrom);
DECL_TEMPLATE(amd64_linux, sys_sendmsg);
DECL_TEMPLATE(amd64_linux, sys_recvmsg);
DECL_TEMPLATE(amd64_linux, sys_shutdown);
DECL_TEMPLATE(amd64_linux, sys_bind);
DECL_TEMPLATE(amd64_linux, sys_listen);
DECL_TEMPLATE(amd64_linux, sys_getsockname);
DECL_TEMPLATE(amd64_linux, sys_getpeername);
DECL_TEMPLATE(amd64_linux, sys_socketpair);
DECL_TEMPLATE(amd64_linux, sys_semget);
DECL_TEMPLATE(amd64_linux, sys_semop);
DECL_TEMPLATE(amd64_linux, sys_semtimedop);
DECL_TEMPLATE(amd64_linux, sys_semctl);
DECL_TEMPLATE(amd64_linux, sys_msgget);
DECL_TEMPLATE(amd64_linux, sys_msgrcv);
DECL_TEMPLATE(amd64_linux, sys_msgsnd);
DECL_TEMPLATE(amd64_linux, sys_msgctl);
DECL_TEMPLATE(amd64_linux, sys_shmget);
DECL_TEMPLATE(amd64_linux, wrap_sys_shmat);
DECL_TEMPLATE(amd64_linux, sys_shmdt);
DECL_TEMPLATE(amd64_linux, sys_shmdt);
DECL_TEMPLATE(amd64_linux, sys_shmctl);
DECL_TEMPLATE(amd64_linux, sys_arch_prctl);
PRE(sys_clone)
{
ULong cloneflags;
PRINT("sys_clone ( %x, %p, %p, %p, %p )",ARG1,ARG2,ARG3,ARG4,ARG5);
PRE_REG_READ5(int, "clone",
unsigned long, flags,
void *, child_stack,
int *, parent_tidptr,
int *, child_tidptr,
void *, tlsaddr);
if (ARG1 & VKI_CLONE_PARENT_SETTID) {
PRE_MEM_WRITE("clone(parent_tidptr)", ARG3, sizeof(Int));
if (!VG_(is_addressable)(ARG3, sizeof(Int), VKI_PROT_WRITE)) {
SET_STATUS_Failure( VKI_EFAULT );
return;
}
}
if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID)) {
PRE_MEM_WRITE("clone(child_tidptr)", ARG4, sizeof(Int));
if (!VG_(is_addressable)(ARG4, sizeof(Int), VKI_PROT_WRITE)) {
SET_STATUS_Failure( VKI_EFAULT );
return;
}
}
cloneflags = ARG1;
if (!VG_(client_signal_OK)(ARG1 & VKI_CSIGNAL)) {
SET_STATUS_Failure( VKI_EINVAL );
return;
}
/* Only look at the flags we really care about */
switch (cloneflags & (VKI_CLONE_VM | VKI_CLONE_FS
| VKI_CLONE_FILES | VKI_CLONE_VFORK)) {
case VKI_CLONE_VM | VKI_CLONE_FS | VKI_CLONE_FILES:
/* thread creation */
SET_STATUS_from_SysRes(
do_clone(tid,
ARG1, /* flags */
(Addr)ARG2, /* child ESP */
(Long *)ARG3, /* parent_tidptr */
(Long *)ARG4, /* child_tidptr */
(Addr)ARG5)); /* set_tls */
break;
case VKI_CLONE_VFORK | VKI_CLONE_VM: /* vfork */
/* FALLTHROUGH - assume vfork == fork */
cloneflags &= ~(VKI_CLONE_VFORK | VKI_CLONE_VM);
case 0: /* plain fork */
SET_STATUS_from_SysRes(
do_fork_clone(tid,
cloneflags, /* flags */
(Addr)ARG2, /* child ESP */
(Long *)ARG3, /* parent_tidptr */
(Long *)ARG4)); /* child_tidptr */
break;
default:
/* should we just ENOSYS? */
VG_(message)(Vg_UserMsg, "Unsupported clone() flags: 0x%x", ARG1);
VG_(message)(Vg_UserMsg, "");
VG_(message)(Vg_UserMsg, "The only supported clone() uses are:");
VG_(message)(Vg_UserMsg, " - via a threads library (LinuxThreads or NPTL)");
VG_(message)(Vg_UserMsg, " - via the implementation of fork or vfork");
VG_(unimplemented)
("Valgrind does not support general clone().");
}
if (SUCCESS) {
if (ARG1 & VKI_CLONE_PARENT_SETTID)
POST_MEM_WRITE(ARG3, sizeof(Int));
if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID))
POST_MEM_WRITE(ARG4, sizeof(Int));
/* Thread creation was successful; let the child have the chance
to run */
*flags |= SfYieldAfter;
}
}
PRE(sys_rt_sigreturn)
{
ThreadState* tst;
PRINT("rt_sigreturn ( )");
vg_assert(VG_(is_valid_tid)(tid));
vg_assert(tid >= 1 && tid < VG_N_THREADS);
vg_assert(VG_(is_running_thread)(tid));
/* Adjust esp to point to start of frame; skip back up over handler
ret addr */
tst = VG_(get_ThreadState)(tid);
tst->arch.vex.guest_RSP -= sizeof(Addr);
/* This is only so that the RIP is (might be) useful to report if
something goes wrong in the sigreturn */
VG_(fixup_guest_state_to_restart_syscall)(&tst->arch);
VG_(sigframe_destroy)(tid, True);
/* For unclear reasons, it appears we need the syscall to return
without changing %RAX. Since %RAX is the return value, and can
denote either success or failure, we must set up so that the
driver logic copies it back unchanged. Also, note %RAX is of
the guest registers written by VG_(sigframe_destroy). */
SET_STATUS_from_SysRes(
VG_(mk_SysRes_amd64_linux)( tst->arch.vex.guest_RAX )
);
/* Check to see if some any signals arose as a result of this. */
*flags |= SfPollAfter;
}
PRE(sys_arch_prctl)
{
ThreadState* tst;
PRINT( "arch_prctl ( %d, %llx )", ARG1, ARG2 );
vg_assert(VG_(is_valid_tid)(tid));
vg_assert(tid >= 1 && tid < VG_N_THREADS);
vg_assert(VG_(is_running_thread)(tid));
// Nb: can't use "ARG2".."ARG5" here because that's our own macro...
PRE_REG_READ2(long, "arch_prctl",
int, option, unsigned long, arg2);
// XXX: totally wrong... we need to look at the 'option' arg, and do
// PRE_MEM_READs/PRE_MEM_WRITEs as necessary...
/* "do" the syscall ourselves; the kernel never sees it */
vg_assert(ARG1 == VKI_ARCH_SET_FS);
tst = VG_(get_ThreadState)(tid);
tst->arch.vex.guest_FS_ZERO = ARG2;
/* Note; the Status writeback to guest state that happens after
this wrapper returns does not change guest_FS_ZERO; hence that
direct assignment to the guest state is safe here. */
SET_STATUS_Success( 0 );
}
PRE(sys_socket)
{
PRINT("sys_socket ( %d, %d, %d )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "socket", int, domain, int, type, int, protocol);
}
POST(sys_socket)
{
SysRes r;
vg_assert(SUCCESS);
r = VG_(generic_POST_sys_socket)(tid, VG_(mk_SysRes_Success)(RES));
SET_STATUS_from_SysRes(r);
}
PRE(sys_setsockopt)
{
PRINT("sys_setsockopt ( %d, %d, %d, %p, %d )",ARG1,ARG2,ARG3,ARG4,ARG5);
PRE_REG_READ5(long, "setsockopt",
int, s, int, level, int, optname,
const void *, optval, int, optlen);
VG_(generic_PRE_sys_setsockopt)(tid, ARG1,ARG2,ARG3,ARG4,ARG5);
}
PRE(sys_getsockopt)
{
PRINT("sys_getsockopt ( %d, %d, %d, %p, %p )",ARG1,ARG2,ARG3,ARG4,ARG5);
PRE_REG_READ5(long, "getsockopt",
int, s, int, level, int, optname,
void *, optval, int, *optlen);
VG_(generic_PRE_sys_getsockopt)(tid, ARG1,ARG2,ARG3,ARG4,ARG5);
}
POST(sys_getsockopt)
{
vg_assert(SUCCESS);
VG_(generic_POST_sys_getsockopt)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3,ARG4,ARG5);
}
PRE(sys_connect)
{
*flags |= SfMayBlock;
PRINT("sys_connect ( %d, %p, %d )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "connect",
int, sockfd, struct sockaddr *, serv_addr, int, addrlen);
VG_(generic_PRE_sys_connect)(tid, ARG1,ARG2,ARG3);
}
PRE(sys_accept)
{
*flags |= SfMayBlock;
PRINT("sys_accept ( %d, %p, %d )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "accept",
int, s, struct sockaddr *, addr, int, *addrlen);
VG_(generic_PRE_sys_accept)(tid, ARG1,ARG2,ARG3);
}
POST(sys_accept)
{
SysRes r;
vg_assert(SUCCESS);
r = VG_(generic_POST_sys_accept)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3);
SET_STATUS_from_SysRes(r);
}
PRE(sys_sendto)
{
*flags |= SfMayBlock;
PRINT("sys_sendto ( %d, %s, %d, %u, %p, %d )",ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
PRE_REG_READ6(long, "sendto",
int, s, const void *, msg, int, len,
unsigned int, flags,
const struct sockaddr *, to, int, tolen);
VG_(generic_PRE_sys_sendto)(tid, ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
}
PRE(sys_recvfrom)
{
*flags |= SfMayBlock;
PRINT("sys_recvfrom ( %d, %p, %d, %u, %p, %p )",ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
PRE_REG_READ6(long, "recvfrom",
int, s, void *, buf, int, len, unsigned int, flags,
struct sockaddr *, from, int *, fromlen);
VG_(generic_PRE_sys_recvfrom)(tid, ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
}
POST(sys_recvfrom)
{
vg_assert(SUCCESS);
VG_(generic_POST_sys_recvfrom)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
}
PRE(sys_sendmsg)
{
*flags |= SfMayBlock;
PRINT("sys_sendmsg ( %d, %p, %d )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "sendmsg",
int, s, const struct msghdr *, msg, int, flags);
VG_(generic_PRE_sys_sendmsg)(tid, ARG1,ARG2);
}
PRE(sys_recvmsg)
{
*flags |= SfMayBlock;
PRINT("sys_recvmsg ( %d, %p, %d )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "recvmsg", int, s, struct msghdr *, msg, int, flags);
VG_(generic_PRE_sys_recvmsg)(tid, ARG1,ARG2);
}
POST(sys_recvmsg)
{
VG_(generic_POST_sys_recvmsg)(tid, ARG1,ARG2);
}
PRE(sys_shutdown)
{
*flags |= SfMayBlock;
PRINT("sys_shutdown ( %d, %d )",ARG1,ARG2);
PRE_REG_READ2(int, "shutdown", int, s, int, how);
}
PRE(sys_bind)
{
PRINT("sys_bind ( %d, %p, %d )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "bind",
int, sockfd, struct sockaddr *, my_addr, int, addrlen);
VG_(generic_PRE_sys_bind)(tid, ARG1,ARG2,ARG3);
}
PRE(sys_listen)
{
PRINT("sys_listen ( %d, %d )",ARG1,ARG2);
PRE_REG_READ2(long, "listen", int, s, int, backlog);
}
PRE(sys_getsockname)
{
PRINT("sys_getsockname ( %d, %p, %p )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "getsockname",
int, s, struct sockaddr *, name, int *, namelen);
VG_(generic_PRE_sys_getsockname)(tid, ARG1,ARG2,ARG3);
}
POST(sys_getsockname)
{
vg_assert(SUCCESS);
VG_(generic_POST_sys_getsockname)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3);
}
PRE(sys_getpeername)
{
PRINT("sys_getpeername ( %d, %p, %p )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "getpeername",
int, s, struct sockaddr *, name, int *, namelen);
VG_(generic_PRE_sys_getpeername)(tid, ARG1,ARG2,ARG3);
}
POST(sys_getpeername)
{
vg_assert(SUCCESS);
VG_(generic_POST_sys_getpeername)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3);
}
PRE(sys_socketpair)
{
PRINT("sys_socketpair ( %d, %d, %d, %p )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "socketpair",
int, d, int, type, int, protocol, int [2], sv);
VG_(generic_PRE_sys_socketpair)(tid, ARG1,ARG2,ARG3,ARG4);
}
POST(sys_socketpair)
{
vg_assert(SUCCESS);
VG_(generic_POST_sys_socketpair)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3,ARG4);
}
PRE(sys_semget)
{
PRINT("sys_semget ( %d, %d, %d )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "semget", key_t, key, int, nsems, int, semflg);
}
PRE(sys_semop)
{
*flags |= SfMayBlock;
PRINT("sys_semop ( %d, %p, %u )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "semop",
int, semid, struct sembuf *, sops, unsigned, nsoops);
VG_(generic_PRE_sys_semop)(tid, ARG1,ARG2,ARG3);
}
PRE(sys_semtimedop)
{
*flags |= SfMayBlock;
PRINT("sys_semtimedop ( %d, %p, %u, %p )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "semtimedop",
int, semid, struct sembuf *, sops, unsigned, nsoops,
struct timespec *, timeout);
VG_(generic_PRE_sys_semtimedop)(tid, ARG1,ARG2,ARG3,ARG4);
}
PRE(sys_semctl)
{
switch (ARG3 & ~VKI_IPC_64) {
case VKI_IPC_INFO:
case VKI_SEM_INFO:
PRINT("sys_semctl ( %d, %d, %d, %p )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "semctl",
int, semid, int, semnum, int, cmd, struct seminfo *, arg);
break;
case VKI_IPC_STAT:
case VKI_SEM_STAT:
case VKI_IPC_SET:
PRINT("sys_semctl ( %d, %d, %d, %p )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "semctl",
int, semid, int, semnum, int, cmd, struct semid_ds *, arg);
break;
case VKI_GETALL:
case VKI_SETALL:
PRINT("sys_semctl ( %d, %d, %d, %p )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "semctl",
int, semid, int, semnum, int, cmd, unsigned short *, arg);
break;
default:
PRINT("sys_semctl ( %d, %d, %d )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "semctl",
int, semid, int, semnum, int, cmd);
break;
}
VG_(generic_PRE_sys_semctl)(tid, ARG1,ARG2,ARG3,ARG4);
}
POST(sys_semctl)
{
VG_(generic_POST_sys_semctl)(tid, RES,ARG1,ARG2,ARG3,ARG4);
}
PRE(sys_msgget)
{
PRINT("sys_msgget ( %d, %d )",ARG1,ARG2);
PRE_REG_READ2(long, "msgget", key_t, key, int, msgflg);
}
PRE(sys_msgsnd)
{
PRINT("sys_msgsnd ( %d, %p, %d, %d )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "msgsnd",
int, msqid, struct msgbuf *, msgp, size_t, msgsz, int, msgflg);
VG_(generic_PRE_sys_msgsnd)(tid, ARG1,ARG2,ARG3,ARG4);
if ((ARG4 & VKI_IPC_NOWAIT) == 0)
*flags |= SfMayBlock;
}
PRE(sys_msgrcv)
{
PRINT("sys_msgrcv ( %d, %p, %d, %d, %d )",ARG1,ARG2,ARG3,ARG4,ARG5);
PRE_REG_READ5(long, "msgrcv",
int, msqid, struct msgbuf *, msgp, size_t, msgsz,
long, msgytp, int, msgflg);
VG_(generic_PRE_sys_msgrcv)(tid, ARG1,ARG2,ARG3,ARG4,ARG5);
if ((ARG4 & VKI_IPC_NOWAIT) == 0)
*flags |= SfMayBlock;
}
POST(sys_msgrcv)
{
VG_(generic_POST_sys_msgrcv)(tid, RES,ARG1,ARG2,ARG3,ARG4,ARG5);
}
PRE(sys_msgctl)
{
PRINT("sys_msgctl ( %d, %d, %p )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "msgctl",
int, msqid, int, cmd, struct msqid_ds *, buf);
VG_(generic_PRE_sys_msgctl)(tid, ARG1,ARG2,ARG3);
}
POST(sys_msgctl)
{
VG_(generic_POST_sys_msgctl)(tid, RES,ARG1,ARG2,ARG3);
}
PRE(sys_shmget)
{
PRINT("sys_shmget ( %d, %d, %d )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "shmget", key_t, key, size_t, size, int, shmflg);
}
PRE(wrap_sys_shmat)
{
UWord arg2tmp;
PRINT("wrap_sys_shmat ( %d, %p, %d )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "shmat",
int, shmid, const void *, shmaddr, int, shmflg);
arg2tmp = VG_(generic_PRE_sys_shmat)(tid, ARG1,ARG2,ARG3);
if (arg2tmp == 0)
SET_STATUS_Failure( VKI_EINVAL );
else
ARG2 = arg2tmp;
}
POST(wrap_sys_shmat)
{
VG_(generic_POST_sys_shmat)(tid, RES,ARG1,ARG2,ARG3);
}
PRE(sys_shmdt)
{
PRINT("sys_shmdt ( %p )",ARG1);
PRE_REG_READ1(long, "shmdt", const void *, shmaddr);
if (!VG_(generic_PRE_sys_shmdt)(tid, ARG1))
SET_STATUS_Failure( VKI_EINVAL );
}
POST(sys_shmdt)
{
VG_(generic_POST_sys_shmdt)(tid, RES,ARG1);
}
PRE(sys_shmctl)
{
PRINT("sys_shmctl ( %d, %d, %p )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "shmctl",
int, shmid, int, cmd, struct shmid_ds *, buf);
VG_(generic_PRE_sys_shmctl)(tid, ARG1,ARG2,ARG3);
}
POST(sys_shmctl)
{
VG_(generic_POST_sys_shmctl)(tid, RES,ARG1,ARG2,ARG3);
}
#undef PRE
#undef POST
/* ---------------------------------------------------------------------
The AMD64/Linux syscall table
------------------------------------------------------------------ */
/* Add an amd64-linux specific wrapper to a syscall table. */
#define PLAX_(const, name) WRAPPER_ENTRY_X_(amd64_linux, const, name)
#define PLAXY(const, name) WRAPPER_ENTRY_XY(amd64_linux, const, name)
// This table maps from __NR_xxx syscall numbers (from
// linux/include/asm-x86_64/unistd.h) to the appropriate PRE/POST sys_foo()
// wrappers on AMD64 (as per sys_call_table in
// linux/arch/x86_64/kernel/entry.S).
//
// When implementing these wrappers, you need to work out if the wrapper is
// generic, Linux-only (but arch-independent), or AMD64/Linux only.
const SyscallTableEntry VGP_(syscall_table)[] = {
GENXY(__NR_read, sys_read), // 0
GENX_(__NR_write, sys_write), // 1
GENXY(__NR_open, sys_open), // 2
GENXY(__NR_close, sys_close), // 3
GENXY(__NR_stat, sys_newstat), // 4
GENXY(__NR_fstat, sys_newfstat), // 5
GENXY(__NR_lstat, sys_newlstat), // 6
GENXY(__NR_poll, sys_poll), // 7
GENX_(__NR_lseek, sys_lseek), // 8
GENXY(__NR_mmap, sys_mmap2), // 9
GENXY(__NR_mprotect, sys_mprotect), // 10
GENXY(__NR_munmap, sys_munmap), // 11
GENX_(__NR_brk, sys_brk), // 12
GENXY(__NR_rt_sigaction, sys_rt_sigaction), // 13
GENXY(__NR_rt_sigprocmask, sys_rt_sigprocmask), // 14
PLAX_(__NR_rt_sigreturn, sys_rt_sigreturn), // 15
GENXY(__NR_ioctl, sys_ioctl), // 16
GENXY(__NR_pread64, sys_pread64), // 17
// (__NR_pwrite64, sys_pwrite64), // 18
GENXY(__NR_readv, sys_readv), // 19
GENX_(__NR_writev, sys_writev), // 20
GENX_(__NR_access, sys_access), // 21
GENXY(__NR_pipe, sys_pipe), // 22
GENX_(__NR_select, sys_select), // 23
// (__NR_sched_yield, sys_sched_yield), // 24
GENX_(__NR_mremap, sys_mremap), // 25
// (__NR_msync, sys_msync), // 26
// (__NR_mincore, sys_mincore), // 27
GENX_(__NR_madvise, sys_madvise), // 28
PLAX_(__NR_shmget, sys_shmget), // 29
PLAXY(__NR_shmat, wrap_sys_shmat), // 30
PLAXY(__NR_shmctl, sys_shmctl), // 31
GENXY(__NR_dup, sys_dup), // 32
GENXY(__NR_dup2, sys_dup2), // 33
GENX_(__NR_pause, sys_pause), // 34
GENXY(__NR_nanosleep, sys_nanosleep), // 35
GENXY(__NR_getitimer, sys_getitimer), // 36
GENX_(__NR_alarm, sys_alarm), // 37
GENXY(__NR_setitimer, sys_setitimer), // 38
GENX_(__NR_getpid, sys_getpid), // 39
// (__NR_sendfile, sys_sendfile64), // 40
PLAXY(__NR_socket, sys_socket), // 41
PLAX_(__NR_connect, sys_connect), // 42
PLAXY(__NR_accept, sys_accept), // 43
PLAX_(__NR_sendto, sys_sendto), // 44
PLAXY(__NR_recvfrom, sys_recvfrom), // 45
PLAX_(__NR_sendmsg, sys_sendmsg), // 46
PLAXY(__NR_recvmsg, sys_recvmsg), // 47
PLAX_(__NR_shutdown, sys_shutdown), // 48
PLAX_(__NR_bind, sys_bind), // 49
PLAX_(__NR_listen, sys_listen), // 50
PLAXY(__NR_getsockname, sys_getsockname), // 51
PLAXY(__NR_getpeername, sys_getpeername), // 52
PLAXY(__NR_socketpair, sys_socketpair), // 53
PLAX_(__NR_setsockopt, sys_setsockopt), // 54
PLAXY(__NR_getsockopt, sys_getsockopt), // 55
PLAX_(__NR_clone, sys_clone), // 56
GENX_(__NR_fork, sys_fork), // 57
GENX_(__NR_vfork, sys_fork), // 58 treat as fork
GENX_(__NR_execve, sys_execve), // 59
GENX_(__NR_exit, sys_exit), // 60
GENXY(__NR_wait4, sys_wait4), // 61
GENX_(__NR_kill, sys_kill), // 62
GENXY(__NR_uname, sys_newuname), // 63
PLAX_(__NR_semget, sys_semget), // 64
PLAX_(__NR_semop, sys_semop), // 65
PLAXY(__NR_semctl, sys_semctl), // 66
PLAXY(__NR_shmdt, sys_shmdt), // 67
PLAX_(__NR_msgget, sys_msgget), // 68
PLAX_(__NR_msgsnd, sys_msgsnd), // 69
PLAXY(__NR_msgrcv, sys_msgrcv), // 70
PLAXY(__NR_msgctl, sys_msgctl), // 71
GENXY(__NR_fcntl, sys_fcntl), // 72
// (__NR_flock, sys_flock), // 73
GENX_(__NR_fsync, sys_fsync), // 74
GENX_(__NR_fdatasync, sys_fdatasync), // 75
// (__NR_truncate, sys_truncate), // 76
GENX_(__NR_ftruncate, sys_ftruncate), // 77
GENXY(__NR_getdents, sys_getdents), // 78
GENXY(__NR_getcwd, sys_getcwd), // 79
GENX_(__NR_chdir, sys_chdir), // 80
GENX_(__NR_fchdir, sys_fchdir), // 81
GENX_(__NR_rename, sys_rename), // 82
GENX_(__NR_mkdir, sys_mkdir), // 83
GENX_(__NR_rmdir, sys_rmdir), // 84
GENXY(__NR_creat, sys_creat), // 85
GENX_(__NR_link, sys_link), // 86
GENX_(__NR_unlink, sys_unlink), // 87
GENX_(__NR_symlink, sys_symlink), // 88
GENX_(__NR_readlink, sys_readlink), // 89
GENX_(__NR_chmod, sys_chmod), // 90
GENX_(__NR_fchmod, sys_fchmod), // 91
//zz GENX_(__NR_chown, sys_chown), // 92
//zz GENX_(__NR_fchown, sys_fchown), // 93
// (__NR_lchown, sys_lchown), // 94
GENX_(__NR_umask, sys_umask), // 95
GENXY(__NR_gettimeofday, sys_gettimeofday), // 96
GENXY(__NR_getrlimit, sys_getrlimit), // 97
GENXY(__NR_getrusage, sys_getrusage), // 98
// (__NR_sysinfo, sys_sysinfo), // 99
GENXY(__NR_times, sys_times), // 100
// (__NR_ptrace, sys_ptrace), // 101
GENX_(__NR_getuid, sys_getuid), // 102
// (__NR_syslog, sys_syslog), // 103
GENX_(__NR_getgid, sys_getgid), // 104
//zz GENX_(__NR_setuid, sys_setuid), // 105
//zz GENX_(__NR_setgid, sys_setgid), // 106
GENX_(__NR_geteuid, sys_geteuid), // 107
GENX_(__NR_getegid, sys_getegid), // 108
GENX_(__NR_setpgid, sys_setpgid), // 109
GENX_(__NR_getppid, sys_getppid), // 110
GENX_(__NR_getpgrp, sys_getpgrp), // 111
GENX_(__NR_setsid, sys_setsid), // 112
// (__NR_setreuid, sys_setreuid), // 113
// (__NR_setregid, sys_setregid), // 114
GENXY(__NR_getgroups, sys_getgroups), // 115
//zz GENX_(__NR_setgroups, sys_setgroups), // 116
//zz LINX_(__NR_setresuid, sys_setresuid), // 117
LINXY(__NR_getresuid, sys_getresuid), // 118
//zz LINX_(__NR_setresgid, sys_setresgid), // 119
LINXY(__NR_getresgid, sys_getresgid), // 120
GENX_(__NR_getpgid, sys_getpgid), // 121
// (__NR_setfsuid, sys_setfsuid), // 122
// (__NR_setfsgid, sys_setfsgid), // 123
// (__NR_getsid, sys_getsid), // 124
// (__NR_capget, sys_capget), // 125
// (__NR_capset, sys_capset), // 126
//zz GENXY(__NR_rt_sigpending, sys_rt_sigpending), // 127
GENXY(__NR_rt_sigtimedwait, sys_rt_sigtimedwait),// 128
//zz GENXY(__NR_rt_sigqueueinfo, sys_rt_sigqueueinfo),// 129
GENX_(__NR_rt_sigsuspend, sys_rt_sigsuspend), // 130
GENXY(__NR_sigaltstack, sys_sigaltstack), // 131
GENX_(__NR_utime, sys_utime), // 132
GENX_(__NR_mknod, sys_mknod), // 133
// (__NR_uselib, sys_uselib), // 134
// (__NR_personality, sys_personality), // 135
// (__NR_ustat, sys_ustat), // 136
GENXY(__NR_statfs, sys_statfs), // 137
// (__NR_fstatfs, sys_fstatfs), // 138
// (__NR_sysfs, sys_sysfs), // 139
// (__NR_getpriority, sys_getpriority), // 140
// (__NR_setpriority, sys_setpriority), // 141
//zz GENXY(__NR_sched_setparam, sys_sched_setparam), // 142
GENXY(__NR_sched_getparam, sys_sched_getparam), // 143
GENX_(__NR_sched_setscheduler, sys_sched_setscheduler), // 144
GENX_(__NR_sched_getscheduler, sys_sched_getscheduler), // 145
GENX_(__NR_sched_get_priority_max, sys_sched_get_priority_max), // 146
GENX_(__NR_sched_get_priority_min, sys_sched_get_priority_min), // 147
// (__NR_sched_rr_get_interval, sys_sched_rr_get_interval), // 148
GENX_(__NR_mlock, sys_mlock), // 149
GENX_(__NR_munlock, sys_munlock), // 150
GENX_(__NR_mlockall, sys_mlockall), // 151
GENX_(__NR_munlockall, sys_munlockall), // 152
// (__NR_vhangup, sys_vhangup), // 153
// (__NR_modify_ldt, sys_modify_ldt), // 154
// (__NR_pivot_root, sys_pivot_root), // 155
LINXY(__NR__sysctl, sys_sysctl), // 156
// (__NR_prctl, sys_prctl), // 157
PLAX_(__NR_arch_prctl, sys_arch_prctl), // 158
// (__NR_adjtimex, sys_adjtimex), // 159
GENX_(__NR_setrlimit, sys_setrlimit), // 160
GENX_(__NR_chroot, sys_chroot), // 161
GENX_(__NR_sync, sys_sync), // 162
// (__NR_acct, sys_acct), // 163
// (__NR_settimeofday, sys_settimeofday), // 164
LINX_(__NR_mount, sys_mount), // 165
// (__NR_umount2, sys_umount), // 166
// (__NR_swapon, sys_swapon), // 167
// (__NR_swapoff, sys_swapoff), // 168
// (__NR_reboot, sys_reboot), // 169
// (__NR_sethostname, sys_sethostname), // 170
// (__NR_setdomainname, sys_setdomainname), // 171
// (__NR_iopl, stub_iopl), // 172
// (__NR_ioperm, sys_ioperm), // 173
// (__NR_create_module, sys_ni_syscall), // 174
// (__NR_init_module, sys_init_module), // 175
// (__NR_delete_module, sys_delete_module), // 176
// (__NR_get_kernel_syms, sys_ni_syscall), // 177
// (__NR_query_module, sys_ni_syscall), // 178
// (__NR_quotactl, sys_quotactl), // 179
// (__NR_nfsservctl, sys_nfsservctl), // 180
// (__NR_getpmsg, sys_ni_syscall), // 181
// (__NR_putpmsg, sys_ni_syscall), // 182
// (__NR_afs_syscall, sys_ni_syscall), // 183
// (__NR_tuxcall, sys_ni_syscall), // 184
// (__NR_security, sys_ni_syscall), // 185
LINX_(__NR_gettid, sys_gettid), // 186
// (__NR_readahead, sys_readahead), // 187
// (__NR_setxattr, sys_setxattr), // 188
// (__NR_lsetxattr, sys_lsetxattr), // 189
// (__NR_fsetxattr, sys_fsetxattr), // 190
GENXY(__NR_getxattr, sys_getxattr), // 191
// (__NR_lgetxattr, sys_lgetxattr), // 192
// (__NR_fgetxattr, sys_fgetxattr), // 193
// (__NR_listxattr, sys_listxattr), // 194
// (__NR_llistxattr, sys_llistxattr), // 195
// (__NR_flistxattr, sys_flistxattr), // 196
// (__NR_removexattr, sys_removexattr), // 197
// (__NR_lremovexattr, sys_lremovexattr), // 198
// (__NR_fremovexattr, sys_fremovexattr), // 199
// (__NR_tkill, sys_tkill), // 200
GENXY(__NR_time, sys_time), /*was sys_time64*/ // 201
LINXY(__NR_futex, sys_futex), // 202
// (__NR_sched_setaffinity, sys_sched_setaffinity), // 203
// (__NR_sched_getaffinity, sys_sched_getaffinity), // 204
// (__NR_set_thread_area, sys_ni_syscall), // 205
//zz LINX_(__NR_io_setup, sys_io_setup), // 206
//zz LINX_(__NR_io_destroy, sys_io_destroy), // 207
//zz LINXY(__NR_io_getevents, sys_io_getevents), // 208
//zz LINX_(__NR_io_submit, sys_io_submit), // 209
//zz LINXY(__NR_io_cancel, sys_io_cancel), // 210
// (__NR_get_thread_area, sys_ni_syscall), // 211
// (__NR_lookup_dcookie, sys_lookup_dcookie), // 212
//zz LINXY(__NR_epoll_create, sys_epoll_create), // 213
// (__NR_epoll_ctl_old, sys_ni_syscall), // 214
// (__NR_epoll_wait_old, sys_ni_syscall), // 215
// (__NR_remap_file_pages, sys_remap_file_pages)// 216
GENXY(__NR_getdents64, sys_getdents64), // 217
LINX_(__NR_set_tid_address, sys_set_tid_address),// 218
// (__NR_restart_syscall, sys_restart_syscall),// 219
PLAX_(__NR_semtimedop, sys_semtimedop), // 220
//zz LINX_(__NR_fadvise64, sys_fadvise64), // 221
// (__NR_timer_create, sys_timer_create), // 222
// (__NR_timer_settime, sys_timer_settime), // 223
// (__NR_timer_gettime, sys_timer_gettime), // 224
// (__NR_timer_getoverrun, sys_timer_getoverrun)// 225
// (__NR_timer_delete, sys_timer_delete), // 226
// (__NR_clock_settime, sys_clock_settime), // 227
GENXY(__NR_clock_gettime, sys_clock_gettime), // 228
// (__NR_clock_getres, sys_clock_getres), // 229
// (__NR_clock_nanosleep, sys_clock_nanosleep),// 230
LINX_(__NR_exit_group, sys_exit_group), // 231
//zz LINXY(__NR_epoll_wait, sys_epoll_wait), // 232
//zz LINX_(__NR_epoll_ctl, sys_epoll_ctl), // 233
LINXY(__NR_tgkill, sys_tgkill), // 234
// (__NR_utimes, sys_utimes), // 235
// (__NR_vserver, sys_ni_syscall), // 236
// (__NR_vserver, sys_ni_syscall), // 236
// (__NR_mbind, sys_mbind), // 237
// (__NR_set_mempolicy, sys_set_mempolicy), // 238
// (__NR_get_mempolicy, sys_get_mempolicy), // 239
GENXY(__NR_mq_open, sys_mq_open), // 240
GENX_(__NR_mq_unlink, sys_mq_unlink), // 241
GENX_(__NR_mq_timedsend, sys_mq_timedsend), // 242
GENX_(__NR_mq_timedreceive, sys_mq_timedreceive),// 243
GENX_(__NR_mq_notify, sys_mq_notify), // 244
GENXY(__NR_mq_getsetattr, sys_mq_getsetattr), // 245
// (__NR_kexec_load, sys_ni_syscall), // 246
// (__NR_waitid, sys_waitid), // 247
};
const UInt VGP_(syscall_table_size) =
sizeof(VGP_(syscall_table)) / sizeof(VGP_(syscall_table)[0]);
/*--------------------------------------------------------------------*/
/*--- end ---*/
/*--------------------------------------------------------------------*/