blob: f28fb2c14026ec55c809e083e4b5a494a192da41 [file] [log] [blame]
sewardjf98e1c02008-10-25 16:22:41 +00001
2/*--------------------------------------------------------------------*/
3/*--- LibHB: a library for implementing and checking ---*/
4/*--- the happens-before relationship in concurrent programs. ---*/
5/*--- libhb_main.c ---*/
6/*--------------------------------------------------------------------*/
7
8/*
9 This file is part of LibHB, a library for implementing and checking
10 the happens-before relationship in concurrent programs.
11
12 Copyright (C) 2008-2008 OpenWorks Ltd
13 info@open-works.co.uk
14
15 This program is free software; you can redistribute it and/or
16 modify it under the terms of the GNU General Public License as
17 published by the Free Software Foundation; either version 2 of the
18 License, or (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful, but
21 WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
28 02111-1307, USA.
29
30 The GNU General Public License is contained in the file COPYING.
31*/
32
33#include "pub_tool_basics.h"
34#include "pub_tool_libcassert.h"
35#include "pub_tool_libcbase.h"
36#include "pub_tool_libcprint.h"
37#include "pub_tool_mallocfree.h"
38#include "pub_tool_wordfm.h"
sewardjbc307e52008-12-06 22:10:54 +000039#include "pub_tool_sparsewa.h"
sewardjf98e1c02008-10-25 16:22:41 +000040#include "pub_tool_xarray.h"
41#include "pub_tool_oset.h"
42#include "pub_tool_threadstate.h"
43#include "pub_tool_aspacemgr.h"
44#include "pub_tool_execontext.h"
45#include "pub_tool_errormgr.h"
sewardjd024ae52008-11-09 20:47:57 +000046#include "pub_tool_options.h" // VG_(clo_verbosity)
sewardjf98e1c02008-10-25 16:22:41 +000047#include "hg_basics.h"
48#include "hg_wordset.h"
49#include "hg_lock_n_thread.h"
50#include "hg_errors.h"
51
52#include "libhb.h"
53
54
sewardj8f5374e2008-12-07 11:40:17 +000055/////////////////////////////////////////////////////////////////
56/////////////////////////////////////////////////////////////////
57// //
58// Debugging #defines //
59// //
60/////////////////////////////////////////////////////////////////
61/////////////////////////////////////////////////////////////////
62
63/* Check the sanity of shadow values in the core memory state
64 machine. Change #if 0 to #if 1 to enable this. */
65#if 0
66# define CHECK_MSM 1
67#else
68# define CHECK_MSM 0
69#endif
70
71
72/* Check sanity (reference counts, etc) in the conflicting access
73 machinery. Change #if 0 to #if 1 to enable this. */
74#if 0
75# define CHECK_CEM 1
76#else
77# define CHECK_CEM 0
78#endif
79
80
81/* Check sanity in the compressed shadow memory machinery,
82 particularly in its caching innards. Unfortunately there's no
83 almost-zero-cost way to make them selectable at run time. Hence
84 set the #if 0 to #if 1 and rebuild if you want them. */
85#if 0
86# define CHECK_ZSM 1 /* do sanity-check CacheLine stuff */
87# define inline __attribute__((noinline))
88 /* probably want to ditch -fomit-frame-pointer too */
89#else
90# define CHECK_ZSM 0 /* don't sanity-check CacheLine stuff */
91#endif
92
93
94/////////////////////////////////////////////////////////////////
95/////////////////////////////////////////////////////////////////
96// //
97// Forward declarations //
98// //
99/////////////////////////////////////////////////////////////////
100/////////////////////////////////////////////////////////////////
101
sewardjf98e1c02008-10-25 16:22:41 +0000102/* fwds for
103 Globals needed by other parts of the library. These are set
104 once at startup and then never changed. */
105static void (*main_get_stacktrace)( Thr*, Addr*, UWord ) = NULL;
sewardjd52392d2008-11-08 20:36:26 +0000106static ExeContext* (*main_get_EC)( Thr* ) = NULL;
sewardjf98e1c02008-10-25 16:22:41 +0000107
sewardjf98e1c02008-10-25 16:22:41 +0000108
109
110/////////////////////////////////////////////////////////////////
111/////////////////////////////////////////////////////////////////
112// //
113// SECTION BEGIN compressed shadow memory //
114// //
115/////////////////////////////////////////////////////////////////
116/////////////////////////////////////////////////////////////////
117
118#ifndef __HB_ZSM_H
119#define __HB_ZSM_H
120
121typedef ULong SVal;
122
123/* This value has special significance to the implementation, and callers
124 may not store it in the shadow memory. */
125#define SVal_INVALID (3ULL << 62)
126
127/* This is the default value for shadow memory. Initially the shadow
128 memory contains no accessible areas and so all reads produce this
129 value. TODO: make this caller-defineable. */
130#define SVal_NOACCESS (2ULL << 62)
131
132/* Initialise the library. Once initialised, it will (or may) call
133 rcinc and rcdec in response to all the calls below, in order to
134 allow the user to do reference counting on the SVals stored herein.
135 It is important to understand, however, that due to internal
136 caching, the reference counts are in general inaccurate, and can be
137 both above or below the true reference count for an item. In
138 particular, the library may indicate that the reference count for
139 an item is zero, when in fact it is not.
140
141 To make the reference counting exact and therefore non-pointless,
142 call zsm_flush_cache. Immediately after it returns, the reference
143 counts for all items, as deduced by the caller by observing calls
144 to rcinc and rcdec, will be correct, and so any items with a zero
145 reference count may be freed (or at least considered to be
146 unreferenced by this library).
147*/
148static void zsm_init ( void(*rcinc)(SVal), void(*rcdec)(SVal) );
149
150static void zsm_set_range ( Addr, SizeT, SVal );
151static SVal zsm_read8 ( Addr );
152static void zsm_copy_range ( Addr, Addr, SizeT );
153static void zsm_flush_cache ( void );
154
155#endif /* ! __HB_ZSM_H */
156
157
sewardjf98e1c02008-10-25 16:22:41 +0000158/* Round a up to the next multiple of N. N must be a power of 2 */
159#define ROUNDUP(a, N) ((a + N - 1) & ~(N-1))
160/* Round a down to the next multiple of N. N must be a power of 2 */
161#define ROUNDDN(a, N) ((a) & ~(N-1))
162
163
164
165/* ------ User-supplied RC functions ------ */
166static void(*rcinc)(SVal) = NULL;
167static void(*rcdec)(SVal) = NULL;
168
169
170/* ------ CacheLine ------ */
171
172#define N_LINE_BITS 6 /* must be >= 3 */
173#define N_LINE_ARANGE (1 << N_LINE_BITS)
174#define N_LINE_TREES (N_LINE_ARANGE >> 3)
175
176typedef
177 struct {
178 UShort descrs[N_LINE_TREES];
179 SVal svals[N_LINE_ARANGE]; // == N_LINE_TREES * 8
180 }
181 CacheLine;
182
183#define TREE_DESCR_16_0 (1<<0)
184#define TREE_DESCR_32_0 (1<<1)
185#define TREE_DESCR_16_1 (1<<2)
186#define TREE_DESCR_64 (1<<3)
187#define TREE_DESCR_16_2 (1<<4)
188#define TREE_DESCR_32_1 (1<<5)
189#define TREE_DESCR_16_3 (1<<6)
190#define TREE_DESCR_8_0 (1<<7)
191#define TREE_DESCR_8_1 (1<<8)
192#define TREE_DESCR_8_2 (1<<9)
193#define TREE_DESCR_8_3 (1<<10)
194#define TREE_DESCR_8_4 (1<<11)
195#define TREE_DESCR_8_5 (1<<12)
196#define TREE_DESCR_8_6 (1<<13)
197#define TREE_DESCR_8_7 (1<<14)
198#define TREE_DESCR_DTY (1<<15)
199
200typedef
201 struct {
202 SVal dict[4]; /* can represent up to 4 diff values in the line */
203 UChar ix2s[N_LINE_ARANGE/4]; /* array of N_LINE_ARANGE 2-bit
204 dict indexes */
205 /* if dict[0] == SVal_INVALID then dict[1] is the index of the
206 LineF to use, and dict[2..] are also SVal_INVALID. */
207 }
208 LineZ; /* compressed rep for a cache line */
209
210typedef
211 struct {
212 Bool inUse;
213 SVal w64s[N_LINE_ARANGE];
214 }
215 LineF; /* full rep for a cache line */
216
217/* Shadow memory.
218 Primary map is a WordFM Addr SecMap*.
219 SecMaps cover some page-size-ish section of address space and hold
220 a compressed representation.
221 CacheLine-sized chunks of SecMaps are copied into a Cache, being
222 decompressed when moved into the cache and recompressed on the
223 way out. Because of this, the cache must operate as a writeback
224 cache, not a writethrough one.
225
226 Each SecMap must hold a power-of-2 number of CacheLines. Hence
227 N_SECMAP_BITS must >= N_LINE_BITS.
228*/
229#define N_SECMAP_BITS 13
230#define N_SECMAP_ARANGE (1 << N_SECMAP_BITS)
231
232// # CacheLines held by a SecMap
233#define N_SECMAP_ZLINES (N_SECMAP_ARANGE / N_LINE_ARANGE)
234
235/* The data in the SecMap is held in the array of LineZs. Each LineZ
236 either carries the required data directly, in a compressed
237 representation, or it holds (in .dict[0]) an index to the LineF in
238 .linesF that holds the full representation.
239
240 Currently-unused LineF's have their .inUse bit set to zero.
241 Since each in-use LineF is referred to be exactly one LineZ,
242 the number of .linesZ[] that refer to .linesF should equal
243 the number of .linesF[] that have .inUse == True.
244
245 RC obligations: the RCs presented to the user include exactly
246 the values in:
247 * direct Z reps, that is, ones for which .dict[0] != SVal_INVALID
248 * F reps that are in use (.inUse == True)
249
250 Hence the following actions at the following transitions are required:
251
252 F rep: .inUse==True -> .inUse==False -- rcdec_LineF
253 F rep: .inUse==False -> .inUse==True -- rcinc_LineF
254 Z rep: .dict[0] from other to SVal_INVALID -- rcdec_LineZ
255 Z rep: .dict[0] from SVal_INVALID to other -- rcinc_LineZ
256*/
257typedef
258 struct {
259 UInt magic;
260 LineZ linesZ[N_SECMAP_ZLINES];
261 LineF* linesF;
262 UInt linesF_size;
263 }
264 SecMap;
265
266#define SecMap_MAGIC 0x571e58cbU
267
268static inline Bool is_sane_SecMap ( SecMap* sm ) {
269 return sm != NULL && sm->magic == SecMap_MAGIC;
270}
271
272/* ------ Cache ------ */
273
274#define N_WAY_BITS 16
275#define N_WAY_NENT (1 << N_WAY_BITS)
276
277/* Each tag is the address of the associated CacheLine, rounded down
278 to a CacheLine address boundary. A CacheLine size must be a power
279 of 2 and must be 8 or more. Hence an easy way to initialise the
280 cache so it is empty is to set all the tag values to any value % 8
281 != 0, eg 1. This means all queries in the cache initially miss.
282 It does however require us to detect and not writeback, any line
283 with a bogus tag. */
284typedef
285 struct {
286 CacheLine lyns0[N_WAY_NENT];
287 Addr tags0[N_WAY_NENT];
288 }
289 Cache;
290
291static inline Bool is_valid_scache_tag ( Addr tag ) {
292 /* a valid tag should be naturally aligned to the start of
293 a CacheLine. */
294 return 0 == (tag & (N_LINE_ARANGE - 1));
295}
296
297
298/* --------- Primary data structures --------- */
299
300/* Shadow memory primary map */
301static WordFM* map_shmem = NULL; /* WordFM Addr SecMap* */
302static Cache cache_shmem;
303
304
305static UWord stats__secmaps_search = 0; // # SM finds
306static UWord stats__secmaps_search_slow = 0; // # SM lookupFMs
307static UWord stats__secmaps_allocd = 0; // # SecMaps issued
308static UWord stats__secmap_ga_space_covered = 0; // # ga bytes covered
309static UWord stats__secmap_linesZ_allocd = 0; // # LineZ's issued
310static UWord stats__secmap_linesZ_bytes = 0; // .. using this much storage
311static UWord stats__secmap_linesF_allocd = 0; // # LineF's issued
312static UWord stats__secmap_linesF_bytes = 0; // .. using this much storage
313static UWord stats__secmap_iterator_steppings = 0; // # calls to stepSMIter
314static UWord stats__cache_Z_fetches = 0; // # Z lines fetched
315static UWord stats__cache_Z_wbacks = 0; // # Z lines written back
316static UWord stats__cache_F_fetches = 0; // # F lines fetched
317static UWord stats__cache_F_wbacks = 0; // # F lines written back
318static UWord stats__cache_invals = 0; // # cache invals
319static UWord stats__cache_flushes = 0; // # cache flushes
320static UWord stats__cache_totrefs = 0; // # total accesses
321static UWord stats__cache_totmisses = 0; // # misses
322static ULong stats__cache_make_New_arange = 0; // total arange made New
323static ULong stats__cache_make_New_inZrep = 0; // arange New'd on Z reps
324static UWord stats__cline_normalises = 0; // # calls to cacheline_normalise
325static UWord stats__cline_read64s = 0; // # calls to s_m_read64
326static UWord stats__cline_read32s = 0; // # calls to s_m_read32
327static UWord stats__cline_read16s = 0; // # calls to s_m_read16
328static UWord stats__cline_read8s = 0; // # calls to s_m_read8
329static UWord stats__cline_write64s = 0; // # calls to s_m_write64
330static UWord stats__cline_write32s = 0; // # calls to s_m_write32
331static UWord stats__cline_write16s = 0; // # calls to s_m_write16
332static UWord stats__cline_write8s = 0; // # calls to s_m_write8
333static UWord stats__cline_set64s = 0; // # calls to s_m_set64
334static UWord stats__cline_set32s = 0; // # calls to s_m_set32
335static UWord stats__cline_set16s = 0; // # calls to s_m_set16
336static UWord stats__cline_set8s = 0; // # calls to s_m_set8
337static UWord stats__cline_get8s = 0; // # calls to s_m_get8
338static UWord stats__cline_copy8s = 0; // # calls to s_m_copy8
339static UWord stats__cline_64to32splits = 0; // # 64-bit accesses split
340static UWord stats__cline_32to16splits = 0; // # 32-bit accesses split
341static UWord stats__cline_16to8splits = 0; // # 16-bit accesses split
342static UWord stats__cline_64to32pulldown = 0; // # calls to pulldown_to_32
343static UWord stats__cline_32to16pulldown = 0; // # calls to pulldown_to_16
344static UWord stats__cline_16to8pulldown = 0; // # calls to pulldown_to_8
345
346static inline Addr shmem__round_to_SecMap_base ( Addr a ) {
347 return a & ~(N_SECMAP_ARANGE - 1);
348}
349static inline UWord shmem__get_SecMap_offset ( Addr a ) {
350 return a & (N_SECMAP_ARANGE - 1);
351}
352
353
354/*----------------------------------------------------------------*/
355/*--- map_shmem :: WordFM Addr SecMap ---*/
356/*--- shadow memory (low level handlers) (shmem__* fns) ---*/
357/*----------------------------------------------------------------*/
358
359/*--------------- SecMap allocation --------------- */
360
361static HChar* shmem__bigchunk_next = NULL;
362static HChar* shmem__bigchunk_end1 = NULL;
363
364static void* shmem__bigchunk_alloc ( SizeT n )
365{
366 const SizeT sHMEM__BIGCHUNK_SIZE = 4096 * 256 * 4;
367 tl_assert(n > 0);
368 n = VG_ROUNDUP(n, 16);
369 tl_assert(shmem__bigchunk_next <= shmem__bigchunk_end1);
370 tl_assert(shmem__bigchunk_end1 - shmem__bigchunk_next
371 <= (SSizeT)sHMEM__BIGCHUNK_SIZE);
372 if (shmem__bigchunk_next + n > shmem__bigchunk_end1) {
373 if (0)
374 VG_(printf)("XXXXX bigchunk: abandoning %d bytes\n",
375 (Int)(shmem__bigchunk_end1 - shmem__bigchunk_next));
376 shmem__bigchunk_next = VG_(am_shadow_alloc)( sHMEM__BIGCHUNK_SIZE );
377 if (shmem__bigchunk_next == NULL)
378 VG_(out_of_memory_NORETURN)(
379 "helgrind:shmem__bigchunk_alloc", sHMEM__BIGCHUNK_SIZE );
380 shmem__bigchunk_end1 = shmem__bigchunk_next + sHMEM__BIGCHUNK_SIZE;
381 }
382 tl_assert(shmem__bigchunk_next);
383 tl_assert( 0 == (((Addr)shmem__bigchunk_next) & (16-1)) );
384 tl_assert(shmem__bigchunk_next + n <= shmem__bigchunk_end1);
385 shmem__bigchunk_next += n;
386 return shmem__bigchunk_next - n;
387}
388
389static SecMap* shmem__alloc_SecMap ( void )
390{
391 Word i, j;
392 SecMap* sm = shmem__bigchunk_alloc( sizeof(SecMap) );
393 if (0) VG_(printf)("alloc_SecMap %p\n",sm);
394 tl_assert(sm);
395 sm->magic = SecMap_MAGIC;
396 for (i = 0; i < N_SECMAP_ZLINES; i++) {
397 sm->linesZ[i].dict[0] = SVal_NOACCESS;
398 sm->linesZ[i].dict[1] = SVal_INVALID;
399 sm->linesZ[i].dict[2] = SVal_INVALID;
400 sm->linesZ[i].dict[3] = SVal_INVALID;
401 for (j = 0; j < N_LINE_ARANGE/4; j++)
402 sm->linesZ[i].ix2s[j] = 0; /* all reference dict[0] */
403 }
404 sm->linesF = NULL;
405 sm->linesF_size = 0;
406 stats__secmaps_allocd++;
407 stats__secmap_ga_space_covered += N_SECMAP_ARANGE;
408 stats__secmap_linesZ_allocd += N_SECMAP_ZLINES;
409 stats__secmap_linesZ_bytes += N_SECMAP_ZLINES * sizeof(LineZ);
410 return sm;
411}
412
413typedef struct { Addr gaKey; SecMap* sm; } SMCacheEnt;
414static SMCacheEnt smCache[3] = { {1,NULL}, {1,NULL}, {1,NULL} };
415
416static SecMap* shmem__find_SecMap ( Addr ga )
417{
418 SecMap* sm = NULL;
419 Addr gaKey = shmem__round_to_SecMap_base(ga);
420 // Cache
421 stats__secmaps_search++;
422 if (LIKELY(gaKey == smCache[0].gaKey))
423 return smCache[0].sm;
424 if (LIKELY(gaKey == smCache[1].gaKey)) {
425 SMCacheEnt tmp = smCache[0];
426 smCache[0] = smCache[1];
427 smCache[1] = tmp;
428 return smCache[0].sm;
429 }
430 if (gaKey == smCache[2].gaKey) {
431 SMCacheEnt tmp = smCache[1];
432 smCache[1] = smCache[2];
433 smCache[2] = tmp;
434 return smCache[1].sm;
435 }
436 // end Cache
437 stats__secmaps_search_slow++;
438 if (VG_(lookupFM)( map_shmem,
439 NULL/*keyP*/, (UWord*)&sm, (UWord)gaKey )) {
440 tl_assert(sm != NULL);
441 smCache[2] = smCache[1];
442 smCache[1] = smCache[0];
443 smCache[0].gaKey = gaKey;
444 smCache[0].sm = sm;
445 } else {
446 tl_assert(sm == NULL);
447 }
448 return sm;
449}
450
451static SecMap* shmem__find_or_alloc_SecMap ( Addr ga )
452{
453 SecMap* sm = shmem__find_SecMap ( ga );
454 if (LIKELY(sm)) {
455 return sm;
456 } else {
457 /* create a new one */
458 Addr gaKey = shmem__round_to_SecMap_base(ga);
459 sm = shmem__alloc_SecMap();
460 tl_assert(sm);
461 VG_(addToFM)( map_shmem, (UWord)gaKey, (UWord)sm );
462 return sm;
463 }
464}
465
466
467/* ------------ LineF and LineZ related ------------ */
468
469static void rcinc_LineF ( LineF* lineF ) {
470 UWord i;
471 tl_assert(lineF->inUse);
472 for (i = 0; i < N_LINE_ARANGE; i++)
473 rcinc(lineF->w64s[i]);
474}
475
476static void rcdec_LineF ( LineF* lineF ) {
477 UWord i;
478 tl_assert(lineF->inUse);
479 for (i = 0; i < N_LINE_ARANGE; i++)
480 rcdec(lineF->w64s[i]);
481}
482
483static void rcinc_LineZ ( LineZ* lineZ ) {
484 tl_assert(lineZ->dict[0] != SVal_INVALID);
485 rcinc(lineZ->dict[0]);
486 if (lineZ->dict[1] != SVal_INVALID) rcinc(lineZ->dict[1]);
487 if (lineZ->dict[2] != SVal_INVALID) rcinc(lineZ->dict[2]);
488 if (lineZ->dict[3] != SVal_INVALID) rcinc(lineZ->dict[3]);
489}
490
491static void rcdec_LineZ ( LineZ* lineZ ) {
492 tl_assert(lineZ->dict[0] != SVal_INVALID);
493 rcdec(lineZ->dict[0]);
494 if (lineZ->dict[1] != SVal_INVALID) rcdec(lineZ->dict[1]);
495 if (lineZ->dict[2] != SVal_INVALID) rcdec(lineZ->dict[2]);
496 if (lineZ->dict[3] != SVal_INVALID) rcdec(lineZ->dict[3]);
497}
498
499inline
500static void write_twobit_array ( UChar* arr, UWord ix, UWord b2 ) {
501 Word bix, shft, mask, prep;
502 tl_assert(ix >= 0);
503 bix = ix >> 2;
504 shft = 2 * (ix & 3); /* 0, 2, 4 or 6 */
505 mask = 3 << shft;
506 prep = b2 << shft;
507 arr[bix] = (arr[bix] & ~mask) | prep;
508}
509
510inline
511static UWord read_twobit_array ( UChar* arr, UWord ix ) {
512 Word bix, shft;
513 tl_assert(ix >= 0);
514 bix = ix >> 2;
515 shft = 2 * (ix & 3); /* 0, 2, 4 or 6 */
516 return (arr[bix] >> shft) & 3;
517}
518
519/* Given address 'tag', find either the Z or F line containing relevant
520 data, so it can be read into the cache.
521*/
522static void find_ZF_for_reading ( /*OUT*/LineZ** zp,
523 /*OUT*/LineF** fp, Addr tag ) {
524 LineZ* lineZ;
525 LineF* lineF;
526 UWord zix;
527 SecMap* sm = shmem__find_or_alloc_SecMap(tag);
528 UWord smoff = shmem__get_SecMap_offset(tag);
529 /* since smoff is derived from a valid tag, it should be
530 cacheline-aligned. */
531 tl_assert(0 == (smoff & (N_LINE_ARANGE - 1)));
532 zix = smoff >> N_LINE_BITS;
533 tl_assert(zix < N_SECMAP_ZLINES);
534 lineZ = &sm->linesZ[zix];
535 lineF = NULL;
536 if (lineZ->dict[0] == SVal_INVALID) {
537 UInt fix = (UInt)lineZ->dict[1];
538 tl_assert(sm->linesF);
539 tl_assert(sm->linesF_size > 0);
540 tl_assert(fix >= 0 && fix < sm->linesF_size);
541 lineF = &sm->linesF[fix];
542 tl_assert(lineF->inUse);
543 lineZ = NULL;
544 }
545 *zp = lineZ;
546 *fp = lineF;
547}
548
549/* Given address 'tag', return the relevant SecMap and the index of
550 the LineZ within it, in the expectation that the line is to be
551 overwritten. Regardless of whether 'tag' is currently associated
552 with a Z or F representation, to rcdec on the current
553 representation, in recognition of the fact that the contents are
554 just about to be overwritten. */
555static __attribute__((noinline))
556void find_Z_for_writing ( /*OUT*/SecMap** smp,
557 /*OUT*/Word* zixp,
558 Addr tag ) {
559 LineZ* lineZ;
560 LineF* lineF;
561 UWord zix;
562 SecMap* sm = shmem__find_or_alloc_SecMap(tag);
563 UWord smoff = shmem__get_SecMap_offset(tag);
564 /* since smoff is derived from a valid tag, it should be
565 cacheline-aligned. */
566 tl_assert(0 == (smoff & (N_LINE_ARANGE - 1)));
567 zix = smoff >> N_LINE_BITS;
568 tl_assert(zix < N_SECMAP_ZLINES);
569 lineZ = &sm->linesZ[zix];
570 lineF = NULL;
571 /* re RCs, we are freeing up this LineZ/LineF so that new data can
572 be parked in it. Hence have to rcdec it accordingly. */
573 /* If lineZ has an associated lineF, free it up. */
574 if (lineZ->dict[0] == SVal_INVALID) {
575 UInt fix = (UInt)lineZ->dict[1];
576 tl_assert(sm->linesF);
577 tl_assert(sm->linesF_size > 0);
578 tl_assert(fix >= 0 && fix < sm->linesF_size);
579 lineF = &sm->linesF[fix];
580 tl_assert(lineF->inUse);
581 rcdec_LineF(lineF);
582 lineF->inUse = False;
583 } else {
584 rcdec_LineZ(lineZ);
585 }
586 *smp = sm;
587 *zixp = zix;
588}
589
590static __attribute__((noinline))
591void alloc_F_for_writing ( /*MOD*/SecMap* sm, /*OUT*/Word* fixp ) {
592 UInt i, new_size;
593 LineF* nyu;
594
595 if (sm->linesF) {
596 tl_assert(sm->linesF_size > 0);
597 } else {
598 tl_assert(sm->linesF_size == 0);
599 }
600
601 if (sm->linesF) {
602 for (i = 0; i < sm->linesF_size; i++) {
603 if (!sm->linesF[i].inUse) {
604 *fixp = (Word)i;
605 return;
606 }
607 }
608 }
609
610 /* No free F line found. Expand existing array and try again. */
611 new_size = sm->linesF_size==0 ? 1 : 2 * sm->linesF_size;
612 nyu = HG_(zalloc)( "libhb.aFfw.1 (LineF storage)",
613 new_size * sizeof(LineF) );
614 tl_assert(nyu);
615
616 stats__secmap_linesF_allocd += (new_size - sm->linesF_size);
617 stats__secmap_linesF_bytes += (new_size - sm->linesF_size)
618 * sizeof(LineF);
619
620 if (0)
621 VG_(printf)("SM %p: expand F array from %d to %d\n",
622 sm, (Int)sm->linesF_size, new_size);
623
624 for (i = 0; i < new_size; i++)
625 nyu[i].inUse = False;
626
627 if (sm->linesF) {
628 for (i = 0; i < sm->linesF_size; i++) {
629 tl_assert(sm->linesF[i].inUse);
630 nyu[i] = sm->linesF[i];
631 }
632 VG_(memset)(sm->linesF, 0, sm->linesF_size * sizeof(LineF) );
633 HG_(free)(sm->linesF);
634 }
635
636 sm->linesF = nyu;
637 sm->linesF_size = new_size;
638
639 for (i = 0; i < sm->linesF_size; i++) {
640 if (!sm->linesF[i].inUse) {
641 *fixp = (Word)i;
642 return;
643 }
644 }
645
646 /*NOTREACHED*/
647 tl_assert(0);
648}
649
650
651/* ------------ CacheLine and implicit-tree related ------------ */
652
653__attribute__((unused))
654static void pp_CacheLine ( CacheLine* cl ) {
655 Word i;
656 if (!cl) {
657 VG_(printf)("%s","pp_CacheLine(NULL)\n");
658 return;
659 }
660 for (i = 0; i < N_LINE_TREES; i++)
661 VG_(printf)(" descr: %04lx\n", (UWord)cl->descrs[i]);
662 for (i = 0; i < N_LINE_ARANGE; i++)
663 VG_(printf)(" sval: %08lx\n", (UWord)cl->svals[i]);
664}
665
666static UChar descr_to_validbits ( UShort descr )
667{
668 /* a.k.a Party Time for gcc's constant folder */
669# define DESCR(b8_7, b8_6, b8_5, b8_4, b8_3, b8_2, b8_1, b8_0, \
670 b16_3, b32_1, b16_2, b64, b16_1, b32_0, b16_0) \
671 ( (UShort) ( ( (b8_7) << 14) | ( (b8_6) << 13) | \
672 ( (b8_5) << 12) | ( (b8_4) << 11) | \
673 ( (b8_3) << 10) | ( (b8_2) << 9) | \
674 ( (b8_1) << 8) | ( (b8_0) << 7) | \
675 ( (b16_3) << 6) | ( (b32_1) << 5) | \
676 ( (b16_2) << 4) | ( (b64) << 3) | \
677 ( (b16_1) << 2) | ( (b32_0) << 1) | \
678 ( (b16_0) << 0) ) )
679
680# define BYTE(bit7, bit6, bit5, bit4, bit3, bit2, bit1, bit0) \
681 ( (UChar) ( ( (bit7) << 7) | ( (bit6) << 6) | \
682 ( (bit5) << 5) | ( (bit4) << 4) | \
683 ( (bit3) << 3) | ( (bit2) << 2) | \
684 ( (bit1) << 1) | ( (bit0) << 0) ) )
685
686 /* these should all get folded out at compile time */
687 tl_assert(DESCR(1,0,0,0,0,0,0,0, 0,0,0, 0, 0,0,0) == TREE_DESCR_8_7);
688 tl_assert(DESCR(0,0,0,0,0,0,0,1, 0,0,0, 0, 0,0,0) == TREE_DESCR_8_0);
689 tl_assert(DESCR(0,0,0,0,0,0,0,0, 1,0,0, 0, 0,0,0) == TREE_DESCR_16_3);
690 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,1,0, 0, 0,0,0) == TREE_DESCR_32_1);
691 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,0,1, 0, 0,0,0) == TREE_DESCR_16_2);
692 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,0,0, 1, 0,0,0) == TREE_DESCR_64);
693 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,0,0, 0, 1,0,0) == TREE_DESCR_16_1);
694 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,0,0, 0, 0,1,0) == TREE_DESCR_32_0);
695 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,0,0, 0, 0,0,1) == TREE_DESCR_16_0);
696
697 switch (descr) {
698 /*
699 +--------------------------------- TREE_DESCR_8_7
700 | +------------------- TREE_DESCR_8_0
701 | | +---------------- TREE_DESCR_16_3
702 | | | +-------------- TREE_DESCR_32_1
703 | | | | +------------ TREE_DESCR_16_2
704 | | | | | +--------- TREE_DESCR_64
705 | | | | | | +------ TREE_DESCR_16_1
706 | | | | | | | +---- TREE_DESCR_32_0
707 | | | | | | | | +-- TREE_DESCR_16_0
708 | | | | | | | | |
709 | | | | | | | | | GRANULARITY, 7 -> 0 */
710 case DESCR(1,1,1,1,1,1,1,1, 0,0,0, 0, 0,0,0): /* 8 8 8 8 8 8 8 8 */
711 return BYTE(1,1,1,1,1,1,1,1);
712 case DESCR(1,1,0,0,1,1,1,1, 0,0,1, 0, 0,0,0): /* 8 8 16 8 8 8 8 */
713 return BYTE(1,1,0,1,1,1,1,1);
714 case DESCR(0,0,1,1,1,1,1,1, 1,0,0, 0, 0,0,0): /* 16 8 8 8 8 8 8 */
715 return BYTE(0,1,1,1,1,1,1,1);
716 case DESCR(0,0,0,0,1,1,1,1, 1,0,1, 0, 0,0,0): /* 16 16 8 8 8 8 */
717 return BYTE(0,1,0,1,1,1,1,1);
718
719 case DESCR(1,1,1,1,1,1,0,0, 0,0,0, 0, 0,0,1): /* 8 8 8 8 8 8 16 */
720 return BYTE(1,1,1,1,1,1,0,1);
721 case DESCR(1,1,0,0,1,1,0,0, 0,0,1, 0, 0,0,1): /* 8 8 16 8 8 16 */
722 return BYTE(1,1,0,1,1,1,0,1);
723 case DESCR(0,0,1,1,1,1,0,0, 1,0,0, 0, 0,0,1): /* 16 8 8 8 8 16 */
724 return BYTE(0,1,1,1,1,1,0,1);
725 case DESCR(0,0,0,0,1,1,0,0, 1,0,1, 0, 0,0,1): /* 16 16 8 8 16 */
726 return BYTE(0,1,0,1,1,1,0,1);
727
728 case DESCR(1,1,1,1,0,0,1,1, 0,0,0, 0, 1,0,0): /* 8 8 8 8 16 8 8 */
729 return BYTE(1,1,1,1,0,1,1,1);
730 case DESCR(1,1,0,0,0,0,1,1, 0,0,1, 0, 1,0,0): /* 8 8 16 16 8 8 */
731 return BYTE(1,1,0,1,0,1,1,1);
732 case DESCR(0,0,1,1,0,0,1,1, 1,0,0, 0, 1,0,0): /* 16 8 8 16 8 8 */
733 return BYTE(0,1,1,1,0,1,1,1);
734 case DESCR(0,0,0,0,0,0,1,1, 1,0,1, 0, 1,0,0): /* 16 16 16 8 8 */
735 return BYTE(0,1,0,1,0,1,1,1);
736
737 case DESCR(1,1,1,1,0,0,0,0, 0,0,0, 0, 1,0,1): /* 8 8 8 8 16 16 */
738 return BYTE(1,1,1,1,0,1,0,1);
739 case DESCR(1,1,0,0,0,0,0,0, 0,0,1, 0, 1,0,1): /* 8 8 16 16 16 */
740 return BYTE(1,1,0,1,0,1,0,1);
741 case DESCR(0,0,1,1,0,0,0,0, 1,0,0, 0, 1,0,1): /* 16 8 8 16 16 */
742 return BYTE(0,1,1,1,0,1,0,1);
743 case DESCR(0,0,0,0,0,0,0,0, 1,0,1, 0, 1,0,1): /* 16 16 16 16 */
744 return BYTE(0,1,0,1,0,1,0,1);
745
746 case DESCR(0,0,0,0,1,1,1,1, 0,1,0, 0, 0,0,0): /* 32 8 8 8 8 */
747 return BYTE(0,0,0,1,1,1,1,1);
748 case DESCR(0,0,0,0,1,1,0,0, 0,1,0, 0, 0,0,1): /* 32 8 8 16 */
749 return BYTE(0,0,0,1,1,1,0,1);
750 case DESCR(0,0,0,0,0,0,1,1, 0,1,0, 0, 1,0,0): /* 32 16 8 8 */
751 return BYTE(0,0,0,1,0,1,1,1);
752 case DESCR(0,0,0,0,0,0,0,0, 0,1,0, 0, 1,0,1): /* 32 16 16 */
753 return BYTE(0,0,0,1,0,1,0,1);
754
755 case DESCR(1,1,1,1,0,0,0,0, 0,0,0, 0, 0,1,0): /* 8 8 8 8 32 */
756 return BYTE(1,1,1,1,0,0,0,1);
757 case DESCR(1,1,0,0,0,0,0,0, 0,0,1, 0, 0,1,0): /* 8 8 16 32 */
758 return BYTE(1,1,0,1,0,0,0,1);
759 case DESCR(0,0,1,1,0,0,0,0, 1,0,0, 0, 0,1,0): /* 16 8 8 32 */
760 return BYTE(0,1,1,1,0,0,0,1);
761 case DESCR(0,0,0,0,0,0,0,0, 1,0,1, 0, 0,1,0): /* 16 16 32 */
762 return BYTE(0,1,0,1,0,0,0,1);
763
764 case DESCR(0,0,0,0,0,0,0,0, 0,1,0, 0, 0,1,0): /* 32 32 */
765 return BYTE(0,0,0,1,0,0,0,1);
766
767 case DESCR(0,0,0,0,0,0,0,0, 0,0,0, 1, 0,0,0): /* 64 */
768 return BYTE(0,0,0,0,0,0,0,1);
769
770 default: return BYTE(0,0,0,0,0,0,0,0);
771 /* INVALID - any valid descr produces at least one
772 valid bit in tree[0..7]*/
773 }
774 /* NOTREACHED*/
775 tl_assert(0);
776
777# undef DESCR
778# undef BYTE
779}
780
781__attribute__((unused))
782static Bool is_sane_Descr ( UShort descr ) {
783 return descr_to_validbits(descr) != 0;
784}
785
786static void sprintf_Descr ( /*OUT*/HChar* dst, UShort descr ) {
787 VG_(sprintf)(dst,
788 "%d%d%d%d%d%d%d%d %d%d%d %d %d%d%d",
789 (Int)((descr & TREE_DESCR_8_7) ? 1 : 0),
790 (Int)((descr & TREE_DESCR_8_6) ? 1 : 0),
791 (Int)((descr & TREE_DESCR_8_5) ? 1 : 0),
792 (Int)((descr & TREE_DESCR_8_4) ? 1 : 0),
793 (Int)((descr & TREE_DESCR_8_3) ? 1 : 0),
794 (Int)((descr & TREE_DESCR_8_2) ? 1 : 0),
795 (Int)((descr & TREE_DESCR_8_1) ? 1 : 0),
796 (Int)((descr & TREE_DESCR_8_0) ? 1 : 0),
797 (Int)((descr & TREE_DESCR_16_3) ? 1 : 0),
798 (Int)((descr & TREE_DESCR_32_1) ? 1 : 0),
799 (Int)((descr & TREE_DESCR_16_2) ? 1 : 0),
800 (Int)((descr & TREE_DESCR_64) ? 1 : 0),
801 (Int)((descr & TREE_DESCR_16_1) ? 1 : 0),
802 (Int)((descr & TREE_DESCR_32_0) ? 1 : 0),
803 (Int)((descr & TREE_DESCR_16_0) ? 1 : 0)
804 );
805}
806static void sprintf_Byte ( /*OUT*/HChar* dst, UChar byte ) {
807 VG_(sprintf)(dst, "%d%d%d%d%d%d%d%d",
808 (Int)((byte & 128) ? 1 : 0),
809 (Int)((byte & 64) ? 1 : 0),
810 (Int)((byte & 32) ? 1 : 0),
811 (Int)((byte & 16) ? 1 : 0),
812 (Int)((byte & 8) ? 1 : 0),
813 (Int)((byte & 4) ? 1 : 0),
814 (Int)((byte & 2) ? 1 : 0),
815 (Int)((byte & 1) ? 1 : 0)
816 );
817}
818
819static Bool is_sane_Descr_and_Tree ( UShort descr, SVal* tree ) {
820 Word i;
821 UChar validbits = descr_to_validbits(descr);
822 HChar buf[128], buf2[128];
823 if (validbits == 0)
824 goto bad;
825 for (i = 0; i < 8; i++) {
826 if (validbits & (1<<i)) {
827 if (tree[i] == SVal_INVALID)
828 goto bad;
829 } else {
830 if (tree[i] != SVal_INVALID)
831 goto bad;
832 }
833 }
834 return True;
835 bad:
836 sprintf_Descr( buf, descr );
837 sprintf_Byte( buf2, validbits );
838 VG_(printf)("%s","is_sane_Descr_and_Tree: bad tree {\n");
839 VG_(printf)(" validbits 0x%02lx %s\n", (UWord)validbits, buf2);
840 VG_(printf)(" descr 0x%04lx %s\n", (UWord)descr, buf);
841 for (i = 0; i < 8; i++)
842 VG_(printf)(" [%ld] 0x%016llx\n", i, tree[i]);
843 VG_(printf)("%s","}\n");
844 return 0;
845}
846
847static Bool is_sane_CacheLine ( CacheLine* cl )
848{
849 Word tno, cloff;
850
851 if (!cl) goto bad;
852
853 for (tno = 0, cloff = 0; tno < N_LINE_TREES; tno++, cloff += 8) {
854 UShort descr = cl->descrs[tno];
855 SVal* tree = &cl->svals[cloff];
856 if (!is_sane_Descr_and_Tree(descr, tree))
857 goto bad;
858 }
859 tl_assert(cloff == N_LINE_ARANGE);
860 return True;
861 bad:
862 pp_CacheLine(cl);
863 return False;
864}
865
866static UShort normalise_tree ( /*MOD*/SVal* tree )
867{
868 UShort descr;
869 /* pre: incoming tree[0..7] does not have any invalid shvals, in
870 particular no zeroes. */
871 if (UNLIKELY(tree[7] == SVal_INVALID || tree[6] == SVal_INVALID
872 || tree[5] == SVal_INVALID || tree[4] == SVal_INVALID
873 || tree[3] == SVal_INVALID || tree[2] == SVal_INVALID
874 || tree[1] == SVal_INVALID || tree[0] == SVal_INVALID))
875 tl_assert(0);
876
877 descr = TREE_DESCR_8_7 | TREE_DESCR_8_6 | TREE_DESCR_8_5
878 | TREE_DESCR_8_4 | TREE_DESCR_8_3 | TREE_DESCR_8_2
879 | TREE_DESCR_8_1 | TREE_DESCR_8_0;
880 /* build 16-bit layer */
881 if (tree[1] == tree[0]) {
882 tree[1] = SVal_INVALID;
883 descr &= ~(TREE_DESCR_8_1 | TREE_DESCR_8_0);
884 descr |= TREE_DESCR_16_0;
885 }
886 if (tree[3] == tree[2]) {
887 tree[3] = SVal_INVALID;
888 descr &= ~(TREE_DESCR_8_3 | TREE_DESCR_8_2);
889 descr |= TREE_DESCR_16_1;
890 }
891 if (tree[5] == tree[4]) {
892 tree[5] = SVal_INVALID;
893 descr &= ~(TREE_DESCR_8_5 | TREE_DESCR_8_4);
894 descr |= TREE_DESCR_16_2;
895 }
896 if (tree[7] == tree[6]) {
897 tree[7] = SVal_INVALID;
898 descr &= ~(TREE_DESCR_8_7 | TREE_DESCR_8_6);
899 descr |= TREE_DESCR_16_3;
900 }
901 /* build 32-bit layer */
902 if (tree[2] == tree[0]
903 && (descr & TREE_DESCR_16_1) && (descr & TREE_DESCR_16_0)) {
904 tree[2] = SVal_INVALID; /* [3,1] must already be SVal_INVALID */
905 descr &= ~(TREE_DESCR_16_1 | TREE_DESCR_16_0);
906 descr |= TREE_DESCR_32_0;
907 }
908 if (tree[6] == tree[4]
909 && (descr & TREE_DESCR_16_3) && (descr & TREE_DESCR_16_2)) {
910 tree[6] = SVal_INVALID; /* [7,5] must already be SVal_INVALID */
911 descr &= ~(TREE_DESCR_16_3 | TREE_DESCR_16_2);
912 descr |= TREE_DESCR_32_1;
913 }
914 /* build 64-bit layer */
915 if (tree[4] == tree[0]
916 && (descr & TREE_DESCR_32_1) && (descr & TREE_DESCR_32_0)) {
917 tree[4] = SVal_INVALID; /* [7,6,5,3,2,1] must already be SVal_INVALID */
918 descr &= ~(TREE_DESCR_32_1 | TREE_DESCR_32_0);
919 descr |= TREE_DESCR_64;
920 }
921 return descr;
922}
923
924/* This takes a cacheline where all the data is at the leaves
925 (w8[..]) and builds a correctly normalised tree. */
926static void normalise_CacheLine ( /*MOD*/CacheLine* cl )
927{
928 Word tno, cloff;
929 for (tno = 0, cloff = 0; tno < N_LINE_TREES; tno++, cloff += 8) {
930 SVal* tree = &cl->svals[cloff];
931 cl->descrs[tno] = normalise_tree( tree );
932 }
933 tl_assert(cloff == N_LINE_ARANGE);
sewardj8f5374e2008-12-07 11:40:17 +0000934 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +0000935 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
936 stats__cline_normalises++;
937}
938
939
940typedef struct { UChar count; SVal sval; } CountedSVal;
941
942static
943void sequentialise_CacheLine ( /*OUT*/CountedSVal* dst,
944 /*OUT*/Word* dstUsedP,
945 Word nDst, CacheLine* src )
946{
947 Word tno, cloff, dstUsed;
948
949 tl_assert(nDst == N_LINE_ARANGE);
950 dstUsed = 0;
951
952 for (tno = 0, cloff = 0; tno < N_LINE_TREES; tno++, cloff += 8) {
953 UShort descr = src->descrs[tno];
954 SVal* tree = &src->svals[cloff];
955
956 /* sequentialise the tree described by (descr,tree). */
957# define PUT(_n,_v) \
958 do { dst[dstUsed ].count = (_n); \
959 dst[dstUsed++].sval = (_v); \
960 } while (0)
961
962 /* byte 0 */
963 if (descr & TREE_DESCR_64) PUT(8, tree[0]); else
964 if (descr & TREE_DESCR_32_0) PUT(4, tree[0]); else
965 if (descr & TREE_DESCR_16_0) PUT(2, tree[0]); else
966 if (descr & TREE_DESCR_8_0) PUT(1, tree[0]);
967 /* byte 1 */
968 if (descr & TREE_DESCR_8_1) PUT(1, tree[1]);
969 /* byte 2 */
970 if (descr & TREE_DESCR_16_1) PUT(2, tree[2]); else
971 if (descr & TREE_DESCR_8_2) PUT(1, tree[2]);
972 /* byte 3 */
973 if (descr & TREE_DESCR_8_3) PUT(1, tree[3]);
974 /* byte 4 */
975 if (descr & TREE_DESCR_32_1) PUT(4, tree[4]); else
976 if (descr & TREE_DESCR_16_2) PUT(2, tree[4]); else
977 if (descr & TREE_DESCR_8_4) PUT(1, tree[4]);
978 /* byte 5 */
979 if (descr & TREE_DESCR_8_5) PUT(1, tree[5]);
980 /* byte 6 */
981 if (descr & TREE_DESCR_16_3) PUT(2, tree[6]); else
982 if (descr & TREE_DESCR_8_6) PUT(1, tree[6]);
983 /* byte 7 */
984 if (descr & TREE_DESCR_8_7) PUT(1, tree[7]);
985
986# undef PUT
987 /* END sequentialise the tree described by (descr,tree). */
988
989 }
990 tl_assert(cloff == N_LINE_ARANGE);
991 tl_assert(dstUsed <= nDst);
992
993 *dstUsedP = dstUsed;
994}
995
996/* Write the cacheline 'wix' to backing store. Where it ends up
997 is determined by its tag field. */
998static __attribute__((noinline)) void cacheline_wback ( UWord wix )
999{
1000 Word i, j, k, m;
1001 Addr tag;
1002 SecMap* sm;
1003 CacheLine* cl;
1004 LineZ* lineZ;
1005 LineF* lineF;
1006 Word zix, fix, csvalsUsed;
1007 CountedSVal csvals[N_LINE_ARANGE];
1008 SVal sv;
1009
1010 if (0)
1011 VG_(printf)("scache wback line %d\n", (Int)wix);
1012
1013 tl_assert(wix >= 0 && wix < N_WAY_NENT);
1014
1015 tag = cache_shmem.tags0[wix];
1016 cl = &cache_shmem.lyns0[wix];
1017
1018 /* The cache line may have been invalidated; if so, ignore it. */
1019 if (!is_valid_scache_tag(tag))
1020 return;
1021
1022 /* Where are we going to put it? */
1023 sm = NULL;
1024 lineZ = NULL;
1025 lineF = NULL;
1026 zix = fix = -1;
1027
1028 /* find the Z line to write in and rcdec it or the associated F
1029 line. */
1030 find_Z_for_writing( &sm, &zix, tag );
1031
1032 tl_assert(sm);
1033 tl_assert(zix >= 0 && zix < N_SECMAP_ZLINES);
1034 lineZ = &sm->linesZ[zix];
1035
1036 /* Generate the data to be stored */
sewardj8f5374e2008-12-07 11:40:17 +00001037 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00001038 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
1039
1040 csvalsUsed = -1;
1041 sequentialise_CacheLine( csvals, &csvalsUsed,
1042 N_LINE_ARANGE, cl );
1043 tl_assert(csvalsUsed >= 1 && csvalsUsed <= N_LINE_ARANGE);
1044 if (0) VG_(printf)("%lu ", csvalsUsed);
1045
1046 lineZ->dict[0] = lineZ->dict[1]
1047 = lineZ->dict[2] = lineZ->dict[3] = SVal_INVALID;
1048
1049 /* i indexes actual shadow values, k is cursor in csvals */
1050 i = 0;
1051 for (k = 0; k < csvalsUsed; k++) {
1052
1053 sv = csvals[k].sval;
sewardj8f5374e2008-12-07 11:40:17 +00001054 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00001055 tl_assert(csvals[k].count >= 1 && csvals[k].count <= 8);
1056 /* do we already have it? */
1057 if (sv == lineZ->dict[0]) { j = 0; goto dict_ok; }
1058 if (sv == lineZ->dict[1]) { j = 1; goto dict_ok; }
1059 if (sv == lineZ->dict[2]) { j = 2; goto dict_ok; }
1060 if (sv == lineZ->dict[3]) { j = 3; goto dict_ok; }
1061 /* no. look for a free slot. */
sewardj8f5374e2008-12-07 11:40:17 +00001062 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00001063 tl_assert(sv != SVal_INVALID);
1064 if (lineZ->dict[0]
1065 == SVal_INVALID) { lineZ->dict[0] = sv; j = 0; goto dict_ok; }
1066 if (lineZ->dict[1]
1067 == SVal_INVALID) { lineZ->dict[1] = sv; j = 1; goto dict_ok; }
1068 if (lineZ->dict[2]
1069 == SVal_INVALID) { lineZ->dict[2] = sv; j = 2; goto dict_ok; }
1070 if (lineZ->dict[3]
1071 == SVal_INVALID) { lineZ->dict[3] = sv; j = 3; goto dict_ok; }
1072 break; /* we'll have to use the f rep */
1073 dict_ok:
1074 m = csvals[k].count;
1075 if (m == 8) {
1076 write_twobit_array( lineZ->ix2s, i+0, j );
1077 write_twobit_array( lineZ->ix2s, i+1, j );
1078 write_twobit_array( lineZ->ix2s, i+2, j );
1079 write_twobit_array( lineZ->ix2s, i+3, j );
1080 write_twobit_array( lineZ->ix2s, i+4, j );
1081 write_twobit_array( lineZ->ix2s, i+5, j );
1082 write_twobit_array( lineZ->ix2s, i+6, j );
1083 write_twobit_array( lineZ->ix2s, i+7, j );
1084 i += 8;
1085 }
1086 else if (m == 4) {
1087 write_twobit_array( lineZ->ix2s, i+0, j );
1088 write_twobit_array( lineZ->ix2s, i+1, j );
1089 write_twobit_array( lineZ->ix2s, i+2, j );
1090 write_twobit_array( lineZ->ix2s, i+3, j );
1091 i += 4;
1092 }
1093 else if (m == 1) {
1094 write_twobit_array( lineZ->ix2s, i+0, j );
1095 i += 1;
1096 }
1097 else if (m == 2) {
1098 write_twobit_array( lineZ->ix2s, i+0, j );
1099 write_twobit_array( lineZ->ix2s, i+1, j );
1100 i += 2;
1101 }
1102 else {
1103 tl_assert(0); /* 8 4 2 or 1 are the only legitimate values for m */
1104 }
1105
1106 }
1107
1108 if (LIKELY(i == N_LINE_ARANGE)) {
1109 /* Construction of the compressed representation was
1110 successful. */
1111 rcinc_LineZ(lineZ);
1112 stats__cache_Z_wbacks++;
1113 } else {
1114 /* Cannot use the compressed(z) representation. Use the full(f)
1115 rep instead. */
1116 tl_assert(i >= 0 && i < N_LINE_ARANGE);
1117 alloc_F_for_writing( sm, &fix );
1118 tl_assert(sm->linesF);
1119 tl_assert(sm->linesF_size > 0);
1120 tl_assert(fix >= 0 && fix < (Word)sm->linesF_size);
1121 lineF = &sm->linesF[fix];
1122 tl_assert(!lineF->inUse);
1123 lineZ->dict[0] = lineZ->dict[2] = lineZ->dict[3] = SVal_INVALID;
1124 lineZ->dict[1] = (SVal)fix;
1125 lineF->inUse = True;
1126 i = 0;
1127 for (k = 0; k < csvalsUsed; k++) {
sewardj8f5374e2008-12-07 11:40:17 +00001128 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00001129 tl_assert(csvals[k].count >= 1 && csvals[k].count <= 8);
1130 sv = csvals[k].sval;
sewardj8f5374e2008-12-07 11:40:17 +00001131 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00001132 tl_assert(sv != SVal_INVALID);
1133 for (m = csvals[k].count; m > 0; m--) {
1134 lineF->w64s[i] = sv;
1135 i++;
1136 }
1137 }
1138 tl_assert(i == N_LINE_ARANGE);
1139 rcinc_LineF(lineF);
1140 stats__cache_F_wbacks++;
1141 }
sewardjf98e1c02008-10-25 16:22:41 +00001142}
1143
1144/* Fetch the cacheline 'wix' from the backing store. The tag
1145 associated with 'wix' is assumed to have already been filled in;
1146 hence that is used to determine where in the backing store to read
1147 from. */
1148static __attribute__((noinline)) void cacheline_fetch ( UWord wix )
1149{
1150 Word i;
1151 Addr tag;
1152 CacheLine* cl;
1153 LineZ* lineZ;
1154 LineF* lineF;
1155
1156 if (0)
1157 VG_(printf)("scache fetch line %d\n", (Int)wix);
1158
1159 tl_assert(wix >= 0 && wix < N_WAY_NENT);
1160
1161 tag = cache_shmem.tags0[wix];
1162 cl = &cache_shmem.lyns0[wix];
1163
1164 /* reject nonsense requests */
1165 tl_assert(is_valid_scache_tag(tag));
1166
1167 lineZ = NULL;
1168 lineF = NULL;
1169 find_ZF_for_reading( &lineZ, &lineF, tag );
1170 tl_assert( (lineZ && !lineF) || (!lineZ && lineF) );
1171
1172 /* expand the data into the bottom layer of the tree, then get
1173 cacheline_normalise to build the descriptor array. */
1174 if (lineF) {
1175 tl_assert(lineF->inUse);
1176 for (i = 0; i < N_LINE_ARANGE; i++) {
1177 cl->svals[i] = lineF->w64s[i];
1178 }
1179 stats__cache_F_fetches++;
1180 } else {
1181 for (i = 0; i < N_LINE_ARANGE; i++) {
1182 SVal sv;
1183 UWord ix = read_twobit_array( lineZ->ix2s, i );
1184 /* correct, but expensive: tl_assert(ix >= 0 && ix <= 3); */
1185 sv = lineZ->dict[ix];
1186 tl_assert(sv != SVal_INVALID);
1187 cl->svals[i] = sv;
1188 }
1189 stats__cache_Z_fetches++;
1190 }
1191 normalise_CacheLine( cl );
1192}
1193
1194static void shmem__invalidate_scache ( void ) {
1195 Word wix;
1196 if (0) VG_(printf)("%s","scache inval\n");
1197 tl_assert(!is_valid_scache_tag(1));
1198 for (wix = 0; wix < N_WAY_NENT; wix++) {
1199 cache_shmem.tags0[wix] = 1/*INVALID*/;
1200 }
1201 stats__cache_invals++;
1202}
1203
1204static void shmem__flush_and_invalidate_scache ( void ) {
1205 Word wix;
1206 Addr tag;
1207 if (0) VG_(printf)("%s","scache flush and invalidate\n");
1208 tl_assert(!is_valid_scache_tag(1));
1209 for (wix = 0; wix < N_WAY_NENT; wix++) {
1210 tag = cache_shmem.tags0[wix];
1211 if (tag == 1/*INVALID*/) {
1212 /* already invalid; nothing to do */
1213 } else {
1214 tl_assert(is_valid_scache_tag(tag));
1215 cacheline_wback( wix );
1216 }
1217 cache_shmem.tags0[wix] = 1/*INVALID*/;
1218 }
1219 stats__cache_flushes++;
1220 stats__cache_invals++;
1221}
1222
1223
1224static inline Bool aligned16 ( Addr a ) {
1225 return 0 == (a & 1);
1226}
1227static inline Bool aligned32 ( Addr a ) {
1228 return 0 == (a & 3);
1229}
1230static inline Bool aligned64 ( Addr a ) {
1231 return 0 == (a & 7);
1232}
1233static inline UWord get_cacheline_offset ( Addr a ) {
1234 return (UWord)(a & (N_LINE_ARANGE - 1));
1235}
1236static inline Addr cacheline_ROUNDUP ( Addr a ) {
1237 return ROUNDUP(a, N_LINE_ARANGE);
1238}
1239static inline Addr cacheline_ROUNDDN ( Addr a ) {
1240 return ROUNDDN(a, N_LINE_ARANGE);
1241}
1242static inline UWord get_treeno ( Addr a ) {
1243 return get_cacheline_offset(a) >> 3;
1244}
1245static inline UWord get_tree_offset ( Addr a ) {
1246 return a & 7;
1247}
1248
1249static __attribute__((noinline))
1250 CacheLine* get_cacheline_MISS ( Addr a ); /* fwds */
1251static inline CacheLine* get_cacheline ( Addr a )
1252{
1253 /* tag is 'a' with the in-line offset masked out,
1254 eg a[31]..a[4] 0000 */
1255 Addr tag = a & ~(N_LINE_ARANGE - 1);
1256 UWord wix = (a >> N_LINE_BITS) & (N_WAY_NENT - 1);
1257 stats__cache_totrefs++;
1258 if (LIKELY(tag == cache_shmem.tags0[wix])) {
1259 return &cache_shmem.lyns0[wix];
1260 } else {
1261 return get_cacheline_MISS( a );
1262 }
1263}
1264
1265static __attribute__((noinline))
1266 CacheLine* get_cacheline_MISS ( Addr a )
1267{
1268 /* tag is 'a' with the in-line offset masked out,
1269 eg a[31]..a[4] 0000 */
1270
1271 CacheLine* cl;
1272 Addr* tag_old_p;
1273 Addr tag = a & ~(N_LINE_ARANGE - 1);
1274 UWord wix = (a >> N_LINE_BITS) & (N_WAY_NENT - 1);
1275
1276 tl_assert(tag != cache_shmem.tags0[wix]);
1277
1278 /* Dump the old line into the backing store. */
1279 stats__cache_totmisses++;
1280
1281 cl = &cache_shmem.lyns0[wix];
1282 tag_old_p = &cache_shmem.tags0[wix];
1283
1284 if (is_valid_scache_tag( *tag_old_p )) {
1285 /* EXPENSIVE and REDUNDANT: callee does it */
sewardj8f5374e2008-12-07 11:40:17 +00001286 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00001287 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
1288 cacheline_wback( wix );
1289 }
1290 /* and reload the new one */
1291 *tag_old_p = tag;
1292 cacheline_fetch( wix );
sewardj8f5374e2008-12-07 11:40:17 +00001293 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00001294 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
1295 return cl;
1296}
1297
1298static UShort pulldown_to_32 ( /*MOD*/SVal* tree, UWord toff, UShort descr ) {
1299 stats__cline_64to32pulldown++;
1300 switch (toff) {
1301 case 0: case 4:
1302 tl_assert(descr & TREE_DESCR_64);
1303 tree[4] = tree[0];
1304 descr &= ~TREE_DESCR_64;
1305 descr |= (TREE_DESCR_32_1 | TREE_DESCR_32_0);
1306 break;
1307 default:
1308 tl_assert(0);
1309 }
1310 return descr;
1311}
1312
1313static UShort pulldown_to_16 ( /*MOD*/SVal* tree, UWord toff, UShort descr ) {
1314 stats__cline_32to16pulldown++;
1315 switch (toff) {
1316 case 0: case 2:
1317 if (!(descr & TREE_DESCR_32_0)) {
1318 descr = pulldown_to_32(tree, 0, descr);
1319 }
1320 tl_assert(descr & TREE_DESCR_32_0);
1321 tree[2] = tree[0];
1322 descr &= ~TREE_DESCR_32_0;
1323 descr |= (TREE_DESCR_16_1 | TREE_DESCR_16_0);
1324 break;
1325 case 4: case 6:
1326 if (!(descr & TREE_DESCR_32_1)) {
1327 descr = pulldown_to_32(tree, 4, descr);
1328 }
1329 tl_assert(descr & TREE_DESCR_32_1);
1330 tree[6] = tree[4];
1331 descr &= ~TREE_DESCR_32_1;
1332 descr |= (TREE_DESCR_16_3 | TREE_DESCR_16_2);
1333 break;
1334 default:
1335 tl_assert(0);
1336 }
1337 return descr;
1338}
1339
1340static UShort pulldown_to_8 ( /*MOD*/SVal* tree, UWord toff, UShort descr ) {
1341 stats__cline_16to8pulldown++;
1342 switch (toff) {
1343 case 0: case 1:
1344 if (!(descr & TREE_DESCR_16_0)) {
1345 descr = pulldown_to_16(tree, 0, descr);
1346 }
1347 tl_assert(descr & TREE_DESCR_16_0);
1348 tree[1] = tree[0];
1349 descr &= ~TREE_DESCR_16_0;
1350 descr |= (TREE_DESCR_8_1 | TREE_DESCR_8_0);
1351 break;
1352 case 2: case 3:
1353 if (!(descr & TREE_DESCR_16_1)) {
1354 descr = pulldown_to_16(tree, 2, descr);
1355 }
1356 tl_assert(descr & TREE_DESCR_16_1);
1357 tree[3] = tree[2];
1358 descr &= ~TREE_DESCR_16_1;
1359 descr |= (TREE_DESCR_8_3 | TREE_DESCR_8_2);
1360 break;
1361 case 4: case 5:
1362 if (!(descr & TREE_DESCR_16_2)) {
1363 descr = pulldown_to_16(tree, 4, descr);
1364 }
1365 tl_assert(descr & TREE_DESCR_16_2);
1366 tree[5] = tree[4];
1367 descr &= ~TREE_DESCR_16_2;
1368 descr |= (TREE_DESCR_8_5 | TREE_DESCR_8_4);
1369 break;
1370 case 6: case 7:
1371 if (!(descr & TREE_DESCR_16_3)) {
1372 descr = pulldown_to_16(tree, 6, descr);
1373 }
1374 tl_assert(descr & TREE_DESCR_16_3);
1375 tree[7] = tree[6];
1376 descr &= ~TREE_DESCR_16_3;
1377 descr |= (TREE_DESCR_8_7 | TREE_DESCR_8_6);
1378 break;
1379 default:
1380 tl_assert(0);
1381 }
1382 return descr;
1383}
1384
1385
1386static UShort pullup_descr_to_16 ( UShort descr, UWord toff ) {
1387 UShort mask;
1388 switch (toff) {
1389 case 0:
1390 mask = TREE_DESCR_8_1 | TREE_DESCR_8_0;
1391 tl_assert( (descr & mask) == mask );
1392 descr &= ~mask;
1393 descr |= TREE_DESCR_16_0;
1394 break;
1395 case 2:
1396 mask = TREE_DESCR_8_3 | TREE_DESCR_8_2;
1397 tl_assert( (descr & mask) == mask );
1398 descr &= ~mask;
1399 descr |= TREE_DESCR_16_1;
1400 break;
1401 case 4:
1402 mask = TREE_DESCR_8_5 | TREE_DESCR_8_4;
1403 tl_assert( (descr & mask) == mask );
1404 descr &= ~mask;
1405 descr |= TREE_DESCR_16_2;
1406 break;
1407 case 6:
1408 mask = TREE_DESCR_8_7 | TREE_DESCR_8_6;
1409 tl_assert( (descr & mask) == mask );
1410 descr &= ~mask;
1411 descr |= TREE_DESCR_16_3;
1412 break;
1413 default:
1414 tl_assert(0);
1415 }
1416 return descr;
1417}
1418
1419static UShort pullup_descr_to_32 ( UShort descr, UWord toff ) {
1420 UShort mask;
1421 switch (toff) {
1422 case 0:
1423 if (!(descr & TREE_DESCR_16_0))
1424 descr = pullup_descr_to_16(descr, 0);
1425 if (!(descr & TREE_DESCR_16_1))
1426 descr = pullup_descr_to_16(descr, 2);
1427 mask = TREE_DESCR_16_1 | TREE_DESCR_16_0;
1428 tl_assert( (descr & mask) == mask );
1429 descr &= ~mask;
1430 descr |= TREE_DESCR_32_0;
1431 break;
1432 case 4:
1433 if (!(descr & TREE_DESCR_16_2))
1434 descr = pullup_descr_to_16(descr, 4);
1435 if (!(descr & TREE_DESCR_16_3))
1436 descr = pullup_descr_to_16(descr, 6);
1437 mask = TREE_DESCR_16_3 | TREE_DESCR_16_2;
1438 tl_assert( (descr & mask) == mask );
1439 descr &= ~mask;
1440 descr |= TREE_DESCR_32_1;
1441 break;
1442 default:
1443 tl_assert(0);
1444 }
1445 return descr;
1446}
1447
1448static Bool valid_value_is_above_me_32 ( UShort descr, UWord toff ) {
1449 switch (toff) {
1450 case 0: case 4:
1451 return 0 != (descr & TREE_DESCR_64);
1452 default:
1453 tl_assert(0);
1454 }
1455}
1456
1457static Bool valid_value_is_below_me_16 ( UShort descr, UWord toff ) {
1458 switch (toff) {
1459 case 0:
1460 return 0 != (descr & (TREE_DESCR_8_1 | TREE_DESCR_8_0));
1461 case 2:
1462 return 0 != (descr & (TREE_DESCR_8_3 | TREE_DESCR_8_2));
1463 case 4:
1464 return 0 != (descr & (TREE_DESCR_8_5 | TREE_DESCR_8_4));
1465 case 6:
1466 return 0 != (descr & (TREE_DESCR_8_7 | TREE_DESCR_8_6));
1467 default:
1468 tl_assert(0);
1469 }
1470}
1471
1472/* ------------ Cache management ------------ */
1473
1474static void zsm_flush_cache ( void )
1475{
1476 shmem__flush_and_invalidate_scache();
1477}
1478
1479
1480static void zsm_init ( void(*p_rcinc)(SVal), void(*p_rcdec)(SVal) )
1481{
1482 tl_assert( sizeof(UWord) == sizeof(Addr) );
1483
1484 rcinc = p_rcinc;
1485 rcdec = p_rcdec;
1486
1487 tl_assert(map_shmem == NULL);
1488 map_shmem = VG_(newFM)( HG_(zalloc), "libhb.zsm_init.1 (map_shmem)",
1489 HG_(free),
1490 NULL/*unboxed UWord cmp*/);
1491 tl_assert(map_shmem != NULL);
1492 shmem__invalidate_scache();
1493
1494 /* a SecMap must contain an integral number of CacheLines */
1495 tl_assert(0 == (N_SECMAP_ARANGE % N_LINE_ARANGE));
1496 /* also ... a CacheLine holds an integral number of trees */
1497 tl_assert(0 == (N_LINE_ARANGE % 8));
1498}
1499
1500/////////////////////////////////////////////////////////////////
1501/////////////////////////////////////////////////////////////////
1502// //
1503// SECTION END compressed shadow memory //
1504// //
1505/////////////////////////////////////////////////////////////////
1506/////////////////////////////////////////////////////////////////
1507
1508
1509
1510/////////////////////////////////////////////////////////////////
1511/////////////////////////////////////////////////////////////////
1512// //
1513// SECTION BEGIN vts primitives //
1514// //
1515/////////////////////////////////////////////////////////////////
1516/////////////////////////////////////////////////////////////////
1517
1518#ifndef __HB_VTS_H
1519#define __HB_VTS_H
1520
1521/* VtsIDs can't exceed 30 bits, since they have to be packed into the
1522 lowest 30 bits of an SVal. */
1523typedef UInt VtsID;
1524#define VtsID_INVALID 0xFFFFFFFF
1525
1526/* A VTS contains .ts, its vector clock, and also .id, a field to hold
1527 a backlink for the caller's convenience. Since we have no idea
1528 what to set that to in the library, it always gets set to
1529 VtsID_INVALID. */
1530typedef
1531 struct {
1532 VtsID id;
1533 XArray* ts; /* XArray* ScalarTS(abstract) */
1534 }
1535 VTS;
1536
1537
1538/* Create a new, empty VTS. */
1539VTS* VTS__new ( void );
1540
1541/* Delete this VTS in its entirety. */
1542void VTS__delete ( VTS* vts );
1543
1544/* Create a new singleton VTS. */
1545VTS* VTS__singleton ( Thr* thr, ULong tym );
1546
1547/* Return a new VTS in which vts[me]++, so to speak. 'vts' itself is
1548 not modified. */
1549VTS* VTS__tick ( Thr* me, VTS* vts );
1550
1551/* Return a new VTS constructed as the join (max) of the 2 args.
1552 Neither arg is modified. */
1553VTS* VTS__join ( VTS* a, VTS* b );
1554
1555/* Compute the partial ordering relation of the two args. */
1556typedef
1557 enum { POrd_EQ=4, POrd_LT, POrd_GT, POrd_UN }
1558 POrd;
1559
1560POrd VTS__cmp ( VTS* a, VTS* b );
1561
1562/* Compute an arbitrary structural (total) ordering on the two args,
1563 based on their VCs, so they can be looked up in a table, tree, etc.
1564 Returns -1, 0 or 1. */
1565Word VTS__cmp_structural ( VTS* a, VTS* b );
1566
1567/* Debugging only. Display the given VTS in the buffer. */
1568void VTS__show ( HChar* buf, Int nBuf, VTS* vts );
1569
1570/* Debugging only. Return vts[index], so to speak. */
sewardj8669fd32008-10-27 21:42:36 +00001571ULong VTS__indexAt_SLOW ( VTS* vts, Thr* idx );
sewardjf98e1c02008-10-25 16:22:41 +00001572
1573#endif /* ! __HB_VTS_H */
1574
1575
1576/*--------------- to do with Vector Timestamps ---------------*/
1577
1578/* Scalar Timestamp */
1579typedef
1580 struct {
1581 Thr* thr;
1582 ULong tym;
1583 }
1584 ScalarTS;
1585
1586
1587static Bool is_sane_VTS ( VTS* vts )
1588{
1589 UWord i, n;
1590 ScalarTS *st1, *st2;
1591 if (!vts) return False;
1592 if (!vts->ts) return False;
1593 n = VG_(sizeXA)( vts->ts );
1594 if (n >= 2) {
1595 for (i = 0; i < n-1; i++) {
1596 st1 = VG_(indexXA)( vts->ts, i );
1597 st2 = VG_(indexXA)( vts->ts, i+1 );
1598 if (st1->thr >= st2->thr)
1599 return False;
1600 if (st1->tym == 0 || st2->tym == 0)
1601 return False;
1602 }
1603 }
1604 return True;
1605}
1606
1607
1608/* Create a new, empty VTS.
1609*/
1610VTS* VTS__new ( void )
1611{
1612 VTS* vts;
1613 vts = HG_(zalloc)( "libhb.VTS__new.1", sizeof(VTS) );
1614 tl_assert(vts);
1615 vts->id = VtsID_INVALID;
1616 vts->ts = VG_(newXA)( HG_(zalloc), "libhb.VTS__new.2",
1617 HG_(free), sizeof(ScalarTS) );
1618 tl_assert(vts->ts);
1619 return vts;
1620}
1621
1622
1623/* Delete this VTS in its entirety.
1624*/
1625void VTS__delete ( VTS* vts )
1626{
1627 tl_assert(vts);
1628 tl_assert(vts->ts);
1629 VG_(deleteXA)( vts->ts );
1630 HG_(free)(vts);
1631}
1632
1633
1634/* Create a new singleton VTS.
1635*/
1636VTS* VTS__singleton ( Thr* thr, ULong tym ) {
1637 ScalarTS st;
1638 VTS* vts;
1639 tl_assert(thr);
1640 tl_assert(tym >= 1);
1641 vts = VTS__new();
1642 st.thr = thr;
1643 st.tym = tym;
1644 VG_(addToXA)( vts->ts, &st );
1645 return vts;
1646}
1647
1648
1649/* Return a new VTS in which vts[me]++, so to speak. 'vts' itself is
1650 not modified.
1651*/
1652VTS* VTS__tick ( Thr* me, VTS* vts )
1653{
1654 ScalarTS* here = NULL;
1655 ScalarTS tmp;
1656 VTS* res;
1657 Word i, n;
1658 tl_assert(me);
1659 tl_assert(is_sane_VTS(vts));
1660 //if (0) VG_(printf)("tick vts thrno %ld szin %d\n",
1661 // (Word)me->errmsg_index, (Int)VG_(sizeXA)(vts) );
1662 res = VTS__new();
1663 n = VG_(sizeXA)( vts->ts );
1664
1665 /* main loop doesn't handle zero-entry case correctly, so
1666 special-case it. */
1667 if (n == 0) {
1668 tmp.thr = me;
1669 tmp.tym = 1;
1670 VG_(addToXA)( res->ts, &tmp );
1671 tl_assert(is_sane_VTS(res));
1672 return res;
1673 }
1674
1675 for (i = 0; i < n; i++) {
1676 here = VG_(indexXA)( vts->ts, i );
1677 if (me < here->thr) {
1678 /* We just went past 'me', without seeing it. */
1679 tmp.thr = me;
1680 tmp.tym = 1;
1681 VG_(addToXA)( res->ts, &tmp );
1682 tmp = *here;
1683 VG_(addToXA)( res->ts, &tmp );
1684 i++;
1685 break;
1686 }
1687 else if (me == here->thr) {
1688 tmp = *here;
1689 tmp.tym++;
1690 VG_(addToXA)( res->ts, &tmp );
1691 i++;
1692 break;
1693 }
1694 else /* me > here->thr */ {
1695 tmp = *here;
1696 VG_(addToXA)( res->ts, &tmp );
1697 }
1698 }
1699 tl_assert(i >= 0 && i <= n);
1700 if (i == n && here && here->thr < me) {
1701 tmp.thr = me;
1702 tmp.tym = 1;
1703 VG_(addToXA)( res->ts, &tmp );
1704 } else {
1705 for (/*keepgoing*/; i < n; i++) {
1706 here = VG_(indexXA)( vts->ts, i );
1707 tmp = *here;
1708 VG_(addToXA)( res->ts, &tmp );
1709 }
1710 }
1711 tl_assert(is_sane_VTS(res));
1712 //if (0) VG_(printf)("tick vts thrno %ld szou %d\n",
1713 // (Word)me->errmsg_index, (Int)VG_(sizeXA)(res) );
1714 return res;
1715}
1716
1717
1718/* Return a new VTS constructed as the join (max) of the 2 args.
1719 Neither arg is modified.
1720*/
1721VTS* VTS__join ( VTS* a, VTS* b )
1722{
1723 Word ia, ib, useda, usedb;
1724 ULong tyma, tymb, tymMax;
1725 Thr* thr;
1726 VTS* res;
1727 ScalarTS *tmpa, *tmpb;
1728
1729 tl_assert(a && a->ts);
1730 tl_assert(b && b->ts);
1731 useda = VG_(sizeXA)( a->ts );
1732 usedb = VG_(sizeXA)( b->ts );
1733
1734 res = VTS__new();
1735 ia = ib = 0;
1736
1737 while (1) {
1738
1739 /* This logic is to enumerate triples (thr, tyma, tymb) drawn
1740 from a and b in order, where thr is the next Thr*
1741 occurring in either a or b, and tyma/b are the relevant
1742 scalar timestamps, taking into account implicit zeroes. */
1743 tl_assert(ia >= 0 && ia <= useda);
1744 tl_assert(ib >= 0 && ib <= usedb);
1745 tmpa = tmpb = NULL;
1746
1747 if (ia == useda && ib == usedb) {
1748 /* both empty - done */
1749 break;
1750 }
1751 else
1752 if (ia == useda && ib != usedb) {
1753 /* a empty, use up b */
1754 tmpb = VG_(indexXA)( b->ts, ib );
1755 thr = tmpb->thr;
1756 tyma = 0;
1757 tymb = tmpb->tym;
1758 ib++;
1759 }
1760 else
1761 if (ia != useda && ib == usedb) {
1762 /* b empty, use up a */
1763 tmpa = VG_(indexXA)( a->ts, ia );
1764 thr = tmpa->thr;
1765 tyma = tmpa->tym;
1766 tymb = 0;
1767 ia++;
1768 }
1769 else {
1770 /* both not empty; extract lowest-Thr*'d triple */
1771 tmpa = VG_(indexXA)( a->ts, ia );
1772 tmpb = VG_(indexXA)( b->ts, ib );
1773 if (tmpa->thr < tmpb->thr) {
1774 /* a has the lowest unconsidered Thr* */
1775 thr = tmpa->thr;
1776 tyma = tmpa->tym;
1777 tymb = 0;
1778 ia++;
1779 }
1780 else
1781 if (tmpa->thr > tmpb->thr) {
1782 /* b has the lowest unconsidered Thr* */
1783 thr = tmpb->thr;
1784 tyma = 0;
1785 tymb = tmpb->tym;
1786 ib++;
1787 } else {
1788 /* they both next mention the same Thr* */
1789 tl_assert(tmpa->thr == tmpb->thr);
1790 thr = tmpa->thr; /* == tmpb->thr */
1791 tyma = tmpa->tym;
1792 tymb = tmpb->tym;
1793 ia++;
1794 ib++;
1795 }
1796 }
1797
1798 /* having laboriously determined (thr, tyma, tymb), do something
1799 useful with it. */
1800 tymMax = tyma > tymb ? tyma : tymb;
1801 if (tymMax > 0) {
1802 ScalarTS st;
1803 st.thr = thr;
1804 st.tym = tymMax;
1805 VG_(addToXA)( res->ts, &st );
1806 }
1807
1808 }
1809
1810 tl_assert(is_sane_VTS( res ));
1811
1812 return res;
1813}
1814
1815
1816/* Compute the partial ordering relation of the two args.
1817*/
1818POrd VTS__cmp ( VTS* a, VTS* b )
1819{
1820 Word ia, ib, useda, usedb;
1821 ULong tyma, tymb;
1822 Thr* thr;
1823 ScalarTS *tmpa, *tmpb;
1824
1825 Bool all_leq = True;
1826 Bool all_geq = True;
1827
1828 tl_assert(a && a->ts);
1829 tl_assert(b && b->ts);
1830 useda = VG_(sizeXA)( a->ts );
1831 usedb = VG_(sizeXA)( b->ts );
1832
1833 ia = ib = 0;
1834
1835 while (1) {
1836
1837 /* This logic is to enumerate triples (thr, tyma, tymb) drawn
1838 from a and b in order, where thr is the next Thr*
1839 occurring in either a or b, and tyma/b are the relevant
1840 scalar timestamps, taking into account implicit zeroes. */
1841 tl_assert(ia >= 0 && ia <= useda);
1842 tl_assert(ib >= 0 && ib <= usedb);
1843 tmpa = tmpb = NULL;
1844
1845 if (ia == useda && ib == usedb) {
1846 /* both empty - done */
1847 break;
1848 }
1849 else
1850 if (ia == useda && ib != usedb) {
1851 /* a empty, use up b */
1852 tmpb = VG_(indexXA)( b->ts, ib );
1853 thr = tmpb->thr;
1854 tyma = 0;
1855 tymb = tmpb->tym;
1856 ib++;
1857 }
1858 else
1859 if (ia != useda && ib == usedb) {
1860 /* b empty, use up a */
1861 tmpa = VG_(indexXA)( a->ts, ia );
1862 thr = tmpa->thr;
1863 tyma = tmpa->tym;
1864 tymb = 0;
1865 ia++;
1866 }
1867 else {
1868 /* both not empty; extract lowest-Thr*'d triple */
1869 tmpa = VG_(indexXA)( a->ts, ia );
1870 tmpb = VG_(indexXA)( b->ts, ib );
1871 if (tmpa->thr < tmpb->thr) {
1872 /* a has the lowest unconsidered Thr* */
1873 thr = tmpa->thr;
1874 tyma = tmpa->tym;
1875 tymb = 0;
1876 ia++;
1877 }
1878 else
1879 if (tmpa->thr > tmpb->thr) {
1880 /* b has the lowest unconsidered Thr* */
1881 thr = tmpb->thr;
1882 tyma = 0;
1883 tymb = tmpb->tym;
1884 ib++;
1885 } else {
1886 /* they both next mention the same Thr* */
1887 tl_assert(tmpa->thr == tmpb->thr);
1888 thr = tmpa->thr; /* == tmpb->thr */
1889 tyma = tmpa->tym;
1890 tymb = tmpb->tym;
1891 ia++;
1892 ib++;
1893 }
1894 }
1895
1896 /* having laboriously determined (thr, tyma, tymb), do something
1897 useful with it. */
1898 if (tyma < tymb)
1899 all_geq = False;
1900 if (tyma > tymb)
1901 all_leq = False;
1902 }
1903
1904 if (all_leq && all_geq)
1905 return POrd_EQ;
1906 /* now we know they aren't equal, so either all_leq or all_geq or
1907 both are false. */
1908 if (all_leq)
1909 return POrd_LT;
1910 if (all_geq)
1911 return POrd_GT;
1912 /* hmm, neither all_geq or all_leq. This means unordered. */
1913 return POrd_UN;
1914}
1915
1916
1917/* Compute an arbitrary structural (total) ordering on the two args,
1918 based on their VCs, so they can be looked up in a table, tree, etc.
1919 Returns -1, 0 or 1. (really just 'deriving Ord' :-)
1920*/
1921Word VTS__cmp_structural ( VTS* a, VTS* b )
1922{
1923 /* We just need to generate an arbitrary total ordering based on
1924 a->ts and b->ts. Preferably do it in a way which comes across likely
1925 differences relatively quickly. */
1926 Word i, useda, usedb;
1927 ScalarTS *tmpa, *tmpb;
1928
1929 tl_assert(a && a->ts);
1930 tl_assert(b && b->ts);
1931 useda = VG_(sizeXA)( a->ts );
1932 usedb = VG_(sizeXA)( b->ts );
1933
1934 if (useda < usedb) return -1;
1935 if (useda > usedb) return 1;
1936
1937 /* Same length vectors, so let's step through them together. */
1938 tl_assert(useda == usedb);
1939 for (i = 0; i < useda; i++) {
1940 tmpa = VG_(indexXA)( a->ts, i );
1941 tmpb = VG_(indexXA)( b->ts, i );
1942 if (tmpa->tym < tmpb->tym) return -1;
1943 if (tmpa->tym > tmpb->tym) return 1;
1944 if (tmpa->thr < tmpb->thr) return -1;
1945 if (tmpa->thr > tmpb->thr) return 1;
1946 }
1947
1948 /* They're identical. */
1949 return 0;
1950}
1951
1952
1953/* Debugging only. Display the given VTS in the buffer.
1954*/
1955void VTS__show ( HChar* buf, Int nBuf, VTS* vts ) {
1956 ScalarTS* st;
1957 HChar unit[64];
1958 Word i, n;
1959 Int avail = nBuf;
1960 tl_assert(vts && vts->ts);
1961 tl_assert(nBuf > 16);
1962 buf[0] = '[';
1963 buf[1] = 0;
1964 n = VG_(sizeXA)( vts->ts );
1965 for (i = 0; i < n; i++) {
1966 tl_assert(avail >= 40);
1967 st = VG_(indexXA)( vts->ts, i );
1968 VG_(memset)(unit, 0, sizeof(unit));
1969 VG_(sprintf)(unit, i < n-1 ? "%p:%lld " : "%p:%lld",
1970 st->thr, st->tym);
1971 if (avail < VG_(strlen)(unit) + 40/*let's say*/) {
1972 VG_(strcat)(buf, " ...]");
1973 buf[nBuf-1] = 0;
1974 return;
1975 }
1976 VG_(strcat)(buf, unit);
1977 avail -= VG_(strlen)(unit);
1978 }
1979 VG_(strcat)(buf, "]");
1980 buf[nBuf-1] = 0;
1981}
1982
1983
1984/* Debugging only. Return vts[index], so to speak.
1985*/
1986ULong VTS__indexAt_SLOW ( VTS* vts, Thr* idx ) {
1987 UWord i, n;
1988 tl_assert(vts && vts->ts);
1989 n = VG_(sizeXA)( vts->ts );
1990 for (i = 0; i < n; i++) {
1991 ScalarTS* st = VG_(indexXA)( vts->ts, i );
1992 if (st->thr == idx)
1993 return st->tym;
1994 }
1995 return 0;
1996}
1997
1998
1999/////////////////////////////////////////////////////////////////
2000/////////////////////////////////////////////////////////////////
2001// //
2002// SECTION END vts primitives //
2003// //
2004/////////////////////////////////////////////////////////////////
2005/////////////////////////////////////////////////////////////////
2006
2007
2008
2009/////////////////////////////////////////////////////////////////
2010/////////////////////////////////////////////////////////////////
2011// //
2012// SECTION BEGIN main library //
2013// //
2014/////////////////////////////////////////////////////////////////
2015/////////////////////////////////////////////////////////////////
2016
2017
2018/////////////////////////////////////////////////////////
2019// //
2020// VTS set //
2021// //
2022/////////////////////////////////////////////////////////
2023
2024static WordFM* /* VTS* void void */ vts_set = NULL;
2025
2026static void vts_set_init ( void )
2027{
2028 tl_assert(!vts_set);
2029 vts_set = VG_(newFM)( HG_(zalloc), "libhb.vts_set_init.1",
2030 HG_(free),
2031 (Word(*)(UWord,UWord))VTS__cmp_structural );
2032 tl_assert(vts_set);
2033}
2034
2035/* Given a newly made VTS, look in vts_set to see if we already have
2036 an identical one. If yes, free up this one and return instead a
2037 pointer to the existing one. If no, add this one to the set and
2038 return the same pointer. Caller differentiates the two cases by
2039 comparing returned pointer with the supplied one (although that
2040 does require that the supplied VTS is not already in the set).
2041*/
2042static VTS* vts_set__find_and_dealloc__or_add ( VTS* cand )
2043{
2044 UWord keyW, valW;
2045 /* lookup cand (by value) */
2046 if (VG_(lookupFM)( vts_set, &keyW, &valW, (UWord)cand )) {
2047 /* found it */
2048 tl_assert(valW == 0);
2049 /* if this fails, cand (by ref) was already present (!) */
2050 tl_assert(keyW != (UWord)cand);
2051 VTS__delete(cand);
2052 return (VTS*)keyW;
2053 } else {
2054 /* not present. Add and return pointer to same. */
2055 VG_(addToFM)( vts_set, (UWord)cand, 0/*val is unused*/ );
2056 return cand;
2057 }
2058}
2059
2060
2061/////////////////////////////////////////////////////////
2062// //
2063// VTS table //
2064// //
2065/////////////////////////////////////////////////////////
2066
2067static void VtsID__invalidate_caches ( void ); /* fwds */
2068
2069/* A type to hold VTS table entries. Invariants:
2070 If .vts == NULL, then this entry is not in use, so:
2071 - .rc == 0
2072 - this entry is on the freelist (unfortunately, does not imply
2073 any constraints on value for .nextfree)
2074 If .vts != NULL, then this entry is in use:
2075 - .vts is findable in vts_set
2076 - .vts->id == this entry number
2077 - no specific value for .rc (even 0 is OK)
2078 - this entry is not on freelist, so .nextfree == VtsID_INVALID
2079*/
2080typedef
2081 struct {
2082 VTS* vts; /* vts, in vts_set */
2083 UWord rc; /* reference count - enough for entire aspace */
2084 VtsID freelink; /* chain for free entries, VtsID_INVALID at end */
2085 }
2086 VtsTE;
2087
2088/* The VTS table. */
2089static XArray* /* of VtsTE */ vts_tab = NULL;
2090
2091/* An index into the VTS table, indicating the start of the list of
2092 free (available for use) entries. If the list is empty, this is
2093 VtsID_INVALID. */
2094static VtsID vts_tab_freelist = VtsID_INVALID;
2095
2096/* Do a GC of vts_tab when the freelist becomes empty AND the size of
2097 vts_tab equals or exceeds this size. After GC, the value here is
2098 set appropriately so as to check for the next GC point. */
2099static Word vts_next_GC_at = 1000;
2100
2101static void vts_tab_init ( void )
2102{
2103 vts_tab
2104 = VG_(newXA)( HG_(zalloc), "libhb.vts_tab_init.1",
2105 HG_(free), sizeof(VtsTE) );
2106 vts_tab_freelist
2107 = VtsID_INVALID;
2108 tl_assert(vts_tab);
2109}
2110
2111/* Add ii to the free list, checking that it looks out-of-use. */
2112static void add_to_free_list ( VtsID ii )
2113{
2114 VtsTE* ie = VG_(indexXA)( vts_tab, ii );
2115 tl_assert(ie->vts == NULL);
2116 tl_assert(ie->rc == 0);
2117 tl_assert(ie->freelink == VtsID_INVALID);
2118 ie->freelink = vts_tab_freelist;
2119 vts_tab_freelist = ii;
2120}
2121
2122/* Get an entry from the free list. This will return VtsID_INVALID if
2123 the free list is empty. */
2124static VtsID get_from_free_list ( void )
2125{
2126 VtsID ii;
2127 VtsTE* ie;
2128 if (vts_tab_freelist == VtsID_INVALID)
2129 return VtsID_INVALID;
2130 ii = vts_tab_freelist;
2131 ie = VG_(indexXA)( vts_tab, ii );
2132 tl_assert(ie->vts == NULL);
2133 tl_assert(ie->rc == 0);
2134 vts_tab_freelist = ie->freelink;
2135 return ii;
2136}
2137
2138/* Produce a new VtsID that can be used, either by getting it from
2139 the freelist, or, if that is empty, by expanding vts_tab. */
2140static VtsID get_new_VtsID ( void )
2141{
2142 VtsID ii;
2143 VtsTE te;
2144 ii = get_from_free_list();
2145 if (ii != VtsID_INVALID)
2146 return ii;
2147 te.vts = NULL;
2148 te.rc = 0;
2149 te.freelink = VtsID_INVALID;
2150 ii = (VtsID)VG_(addToXA)( vts_tab, &te );
2151 return ii;
2152}
2153
2154
2155/* Indirect callback from lib_zsm. */
2156static void VtsID__rcinc ( VtsID ii )
2157{
2158 VtsTE* ie;
2159 /* VG_(indexXA) does a range check for us */
2160 ie = VG_(indexXA)( vts_tab, ii );
2161 tl_assert(ie->vts); /* else it's not in use */
2162 tl_assert(ie->rc < ~0UL); /* else we can't continue */
2163 tl_assert(ie->vts->id == ii);
2164 ie->rc++;
2165}
2166
2167/* Indirect callback from lib_zsm. */
2168static void VtsID__rcdec ( VtsID ii )
2169{
2170 VtsTE* ie;
2171 /* VG_(indexXA) does a range check for us */
2172 ie = VG_(indexXA)( vts_tab, ii );
2173 tl_assert(ie->vts); /* else it's not in use */
2174 tl_assert(ie->rc > 0); /* else RC snafu */
2175 tl_assert(ie->vts->id == ii);
2176 ie->rc--;
2177}
2178
2179
2180/* Look up 'cand' in our collection of VTSs. If present, deallocate
2181 it and return the VtsID for the pre-existing version. If not
2182 present, add it to both vts_tab and vts_set, allocate a fresh VtsID
2183 for it, and return that. */
2184static VtsID vts_tab__find_and_dealloc__or_add ( VTS* cand )
2185{
2186 VTS* auld;
2187 tl_assert(cand->id == VtsID_INVALID);
2188 auld = vts_set__find_and_dealloc__or_add(cand);
2189 if (auld != cand) {
2190 /* We already have an Aulde one. Use that. */
2191 VtsTE* ie;
2192 tl_assert(auld->id != VtsID_INVALID);
2193 ie = VG_(indexXA)( vts_tab, auld->id );
2194 tl_assert(ie->vts == auld);
2195 return auld->id;
2196 } else {
2197 VtsID ii = get_new_VtsID();
2198 VtsTE* ie = VG_(indexXA)( vts_tab, ii );
2199 ie->vts = cand;
2200 ie->rc = 0;
2201 ie->freelink = VtsID_INVALID;
2202 cand->id = ii;
2203 return ii;
2204 }
2205}
2206
2207
2208static void show_vts_stats ( HChar* caller )
2209{
2210 UWord nSet, nTab, nLive;
2211 ULong totrc;
2212 UWord n, i;
2213 nSet = VG_(sizeFM)( vts_set );
2214 nTab = VG_(sizeXA)( vts_tab );
2215 totrc = 0;
2216 nLive = 0;
2217 n = VG_(sizeXA)( vts_tab );
2218 for (i = 0; i < n; i++) {
2219 VtsTE* ie = VG_(indexXA)( vts_tab, i );
2220 if (ie->vts) {
2221 nLive++;
2222 totrc += (ULong)ie->rc;
2223 } else {
2224 tl_assert(ie->rc == 0);
2225 }
2226 }
2227 VG_(printf)(" show_vts_stats %s\n", caller);
2228 VG_(printf)(" vts_tab size %4lu\n", nTab);
2229 VG_(printf)(" vts_tab live %4lu\n", nLive);
2230 VG_(printf)(" vts_set size %4lu\n", nSet);
2231 VG_(printf)(" total rc %4llu\n", totrc);
2232}
2233
2234/* NOT TO BE CALLED FROM WITHIN libzsm. */
sewardj8fd92d32008-11-20 23:17:01 +00002235__attribute__((noinline))
sewardjf98e1c02008-10-25 16:22:41 +00002236static void vts_tab__do_GC ( Bool show_stats )
2237{
2238 UWord i, nTab, nLive, nFreed;
2239
2240 /* check this is actually necessary. */
2241 tl_assert(vts_tab_freelist == VtsID_INVALID);
2242
2243 /* empty the caches for partial order checks and binary joins. We
2244 could do better and prune out the entries to be deleted, but it
2245 ain't worth the hassle. */
2246 VtsID__invalidate_caches();
2247
2248 /* First, make the reference counts up to date. */
2249 zsm_flush_cache();
2250
2251 nTab = VG_(sizeXA)( vts_tab );
2252
2253 if (show_stats) {
2254 VG_(printf)("<<GC begins at vts_tab size %lu>>\n", nTab);
2255 show_vts_stats("before GC");
2256 }
2257
2258 /* Now we can inspect the entire vts_tab. Any entries
2259 with zero .rc fields are now no longer in use and can be
2260 free list, removed from vts_set, and deleted. */
2261 nFreed = 0;
2262 for (i = 0; i < nTab; i++) {
2263 Bool present;
2264 UWord oldK = 0, oldV = 0;
2265 VtsTE* te = VG_(indexXA)( vts_tab, i );
2266 if (te->vts == NULL) {
2267 tl_assert(te->rc == 0);
2268 continue; /* already on the free list (presumably) */
2269 }
2270 if (te->rc > 0)
2271 continue; /* in use */
2272 /* Ok, we got one we can free. */
2273 tl_assert(te->vts->id == i);
2274 /* first, remove it from vts_set. */
2275 present = VG_(delFromFM)( vts_set,
2276 &oldK, &oldV, (UWord)te->vts );
2277 tl_assert(present); /* else it isn't in vts_set ?! */
2278 tl_assert(oldV == 0); /* no info stored in vts_set val fields */
2279 tl_assert(oldK == (UWord)te->vts); /* else what did delFromFM find?! */
2280 /* now free the VTS itself */
2281 VTS__delete(te->vts);
2282 te->vts = NULL;
2283 /* and finally put this entry on the free list */
2284 tl_assert(te->freelink == VtsID_INVALID); /* can't already be on it */
2285 add_to_free_list( i );
2286 nFreed++;
2287 }
2288
2289 /* Now figure out when the next GC should be. We'll allow the
2290 number of VTSs to double before GCing again. Except of course
2291 that since we can't (or, at least, don't) shrink vts_tab, we
2292 can't set the threshhold value smaller than it. */
2293 tl_assert(nFreed <= nTab);
2294 nLive = nTab - nFreed;
2295 tl_assert(nLive >= 0 && nLive <= nTab);
2296 vts_next_GC_at = 2 * nLive;
2297 if (vts_next_GC_at < nTab)
2298 vts_next_GC_at = nTab;
2299
2300 if (show_stats) {
2301 show_vts_stats("after GC");
2302 VG_(printf)("<<GC ends, next gc at %ld>>\n", vts_next_GC_at);
2303 }
2304
sewardjd024ae52008-11-09 20:47:57 +00002305 if (VG_(clo_verbosity) > 1) {
sewardjf98e1c02008-10-25 16:22:41 +00002306 static UInt ctr = 0;
2307 tl_assert(nTab > 0);
sewardjd024ae52008-11-09 20:47:57 +00002308 VG_(message)(Vg_DebugMsg,
2309 "libhb: VTS GC: #%u old size %lu live %lu (%2llu%%)",
sewardjf98e1c02008-10-25 16:22:41 +00002310 ctr++, nTab, nLive, (100ULL * nLive) / nTab);
2311 }
2312}
2313
2314
2315/////////////////////////////////////////////////////////
2316// //
2317// Vts IDs //
2318// //
2319/////////////////////////////////////////////////////////
2320
2321//////////////////////////
2322static ULong stats__getOrdering_queries = 0;
2323static ULong stats__getOrdering_misses = 0;
2324static ULong stats__join2_queries = 0;
2325static ULong stats__join2_misses = 0;
2326
2327static inline UInt ROL32 ( UInt w, Int n ) {
2328 w = (w << n) | (w >> (32-n));
2329 return w;
2330}
2331static inline UInt hash_VtsIDs ( VtsID vi1, VtsID vi2, UInt nTab ) {
2332 UInt hash = ROL32(vi1,19) ^ ROL32(vi2,13);
2333 return hash % nTab;
2334}
2335
2336#define N_GETORDERING_CACHE 1023
2337static
2338 struct { VtsID vi1; VtsID vi2; POrd ord; }
2339 getOrdering_cache[N_GETORDERING_CACHE];
2340
2341#define N_JOIN2_CACHE 1023
2342static
2343 struct { VtsID vi1; VtsID vi2; VtsID res; }
2344 join2_cache[N_JOIN2_CACHE];
2345
2346static void VtsID__invalidate_caches ( void ) {
2347 Int i;
2348 for (i = 0; i < N_GETORDERING_CACHE; i++) {
2349 getOrdering_cache[i].vi1 = VtsID_INVALID;
2350 getOrdering_cache[i].vi2 = VtsID_INVALID;
2351 getOrdering_cache[i].ord = 0; /* an invalid POrd value */
2352 }
2353 for (i = 0; i < N_JOIN2_CACHE; i++) {
2354 join2_cache[i].vi1 = VtsID_INVALID;
2355 join2_cache[i].vi2 = VtsID_INVALID;
2356 join2_cache[i].res = VtsID_INVALID;
2357 }
2358}
2359//////////////////////////
2360
sewardjd52392d2008-11-08 20:36:26 +00002361//static Bool VtsID__is_valid ( VtsID vi ) {
2362// VtsTE* ve;
2363// if (vi >= (VtsID)VG_(sizeXA)( vts_tab ))
2364// return False;
2365// ve = VG_(indexXA)( vts_tab, vi );
2366// if (!ve->vts)
2367// return False;
2368// tl_assert(ve->vts->id == vi);
2369// return True;
2370//}
sewardjf98e1c02008-10-25 16:22:41 +00002371
2372static VTS* VtsID__to_VTS ( VtsID vi ) {
2373 VtsTE* te = VG_(indexXA)( vts_tab, vi );
2374 tl_assert(te->vts);
2375 return te->vts;
2376}
2377
2378static void VtsID__pp ( VtsID vi ) {
2379 HChar buf[100];
2380 VTS* vts = VtsID__to_VTS(vi);
2381 VTS__show( buf, sizeof(buf)-1, vts );
2382 buf[sizeof(buf)-1] = 0;
2383 VG_(printf)("%s", buf);
2384}
2385
2386/* compute partial ordering relation of vi1 and vi2. */
2387__attribute__((noinline))
2388static POrd VtsID__getOrdering_WRK ( VtsID vi1, VtsID vi2 ) {
2389 UInt hash;
2390 POrd ord;
2391 VTS *v1, *v2;
2392 //if (vi1 == vi2) return POrd_EQ;
2393 tl_assert(vi1 != vi2);
2394 ////++
2395 stats__getOrdering_queries++;
2396 hash = hash_VtsIDs(vi1, vi2, N_GETORDERING_CACHE);
2397 if (getOrdering_cache[hash].vi1 == vi1
2398 && getOrdering_cache[hash].vi2 == vi2)
2399 return getOrdering_cache[hash].ord;
2400 stats__getOrdering_misses++;
2401 ////--
2402 v1 = VtsID__to_VTS(vi1);
2403 v2 = VtsID__to_VTS(vi2);
2404 ord = VTS__cmp( v1, v2 );
2405 ////++
2406 getOrdering_cache[hash].vi1 = vi1;
2407 getOrdering_cache[hash].vi2 = vi2;
2408 getOrdering_cache[hash].ord = ord;
2409 ////--
2410 return ord;
2411}
2412static inline POrd VtsID__getOrdering ( VtsID vi1, VtsID vi2 ) {
2413 return vi1 == vi2 ? POrd_EQ : VtsID__getOrdering_WRK(vi1, vi2);
2414}
2415
2416/* compute binary join */
2417__attribute__((noinline))
2418static VtsID VtsID__join2_WRK ( VtsID vi1, VtsID vi2 ) {
2419 UInt hash;
2420 VtsID res;
2421 VTS *vts1, *vts2, *nyu;
2422 //if (vi1 == vi2) return vi1;
2423 tl_assert(vi1 != vi2);
2424 ////++
2425 stats__join2_queries++;
2426 hash = hash_VtsIDs(vi1, vi2, N_JOIN2_CACHE);
2427 if (join2_cache[hash].vi1 == vi1
2428 && join2_cache[hash].vi2 == vi2)
2429 return join2_cache[hash].res;
2430 stats__join2_misses++;
2431 ////--
2432 vts1 = VtsID__to_VTS(vi1);
2433 vts2 = VtsID__to_VTS(vi2);
2434 nyu = VTS__join(vts1,vts2);
2435 res = vts_tab__find_and_dealloc__or_add(nyu);
2436 ////++
2437 join2_cache[hash].vi1 = vi1;
2438 join2_cache[hash].vi2 = vi2;
2439 join2_cache[hash].res = res;
2440 ////--
2441 return res;
2442}
2443static inline VtsID VtsID__join2 ( VtsID vi1, VtsID vi2 ) {
2444 return vi1 == vi2 ? vi1 : VtsID__join2_WRK(vi1, vi2);
2445}
2446
2447/* create a singleton VTS, namely [thr:1] */
2448static VtsID VtsID__mk_Singleton ( Thr* thr, ULong tym ) {
2449 VTS* nyu = VTS__singleton(thr,tym);
2450 return vts_tab__find_and_dealloc__or_add(nyu);
2451}
2452
2453/* tick operation, creates value 1 if specified index is absent */
2454static VtsID VtsID__tick ( VtsID vi, Thr* idx ) {
2455 VTS* vts = VtsID__to_VTS(vi);
2456 VTS* nyu = VTS__tick(idx,vts);
2457 return vts_tab__find_and_dealloc__or_add(nyu);
2458}
2459
2460/* index into a VTS (only for assertions) */
2461static ULong VtsID__indexAt ( VtsID vi, Thr* idx ) {
2462 VTS* vts = VtsID__to_VTS(vi);
2463 return VTS__indexAt_SLOW( vts, idx );
2464}
2465
2466
2467/////////////////////////////////////////////////////////
2468// //
2469// Threads //
2470// //
2471/////////////////////////////////////////////////////////
2472
2473struct _Thr {
2474 /* Current VTSs for this thread. They change as we go along. viR
2475 is the VTS to be used for reads, viW for writes. Usually they
2476 are the same, but can differ when we deal with reader-writer
2477 locks. It is always the case that VtsID__getOrdering(viW,viR)
2478 == POrd_LT or POrdEQ -- that is, viW must be the same, or
2479 lagging behind, viR. */
2480 VtsID viR;
2481 VtsID viW;
2482 /* opaque (to us) data we hold on behalf of the library's user. */
2483 void* opaque;
2484};
2485
2486static Thr* Thr__new ( void ) {
2487 Thr* thr = HG_(zalloc)( "libhb.Thr__new.1", sizeof(Thr) );
2488 thr->viR = VtsID_INVALID;
2489 thr->viW = VtsID_INVALID;
2490 return thr;
2491}
2492
2493
2494/////////////////////////////////////////////////////////
2495// //
2496// Shadow Values //
2497// //
2498/////////////////////////////////////////////////////////
2499
2500// type SVal, SVal_INVALID and SVal_NOACCESS are defined by
2501// hb_zsm.h. We have to do everything else here.
2502
2503/* SVal is 64 bit unsigned int.
2504
2505 <---------30---------> <---------30--------->
2506 00 X-----Rmin-VtsID-----X 00 X-----Wmin-VtsID-----X C(Rmin,Wmin)
2507 01 X--------------------X XX X--------------------X E(rror)
2508 10 X--------------------X XX X--------------------X A: SVal_NOACCESS
2509 11 X--------------------X XX X--------------------X I: SVal_INVALID
2510*/
2511#define SVAL_TAGMASK (3ULL << 62)
2512
2513static inline Bool SVal__isC ( SVal s ) {
2514 return (0ULL << 62) == (s & SVAL_TAGMASK);
2515}
2516static inline SVal SVal__mkC ( VtsID rmini, VtsID wmini ) {
2517 //tl_assert(VtsID__is_valid(rmini));
2518 //tl_assert(VtsID__is_valid(wmini));
2519 return (((ULong)rmini) << 32) | ((ULong)wmini);
2520}
2521static inline VtsID SVal__unC_Rmin ( SVal s ) {
2522 tl_assert(SVal__isC(s));
2523 return (VtsID)(s >> 32);
2524}
2525static inline VtsID SVal__unC_Wmin ( SVal s ) {
2526 tl_assert(SVal__isC(s));
2527 return (VtsID)(s & 0xFFFFFFFFULL);
2528}
2529
2530static Bool SVal__isE ( SVal s ) {
2531 return (1ULL << 62) == (s & SVAL_TAGMASK);
2532}
2533static SVal SVal__mkE ( void ) {
2534 return 1ULL << 62;
2535}
2536
2537static Bool SVal__isA ( SVal s ) {
2538 return (2ULL << 62) == (s & SVAL_TAGMASK);
2539}
2540static SVal SVal__mkA ( void ) {
2541 return 2ULL << 62;
2542}
2543
2544/* Direct callback from lib_zsm. */
2545static void SVal__rcinc ( SVal s ) {
2546 if (SVal__isC(s)) {
2547 VtsID__rcinc( SVal__unC_Rmin(s) );
2548 VtsID__rcinc( SVal__unC_Wmin(s) );
2549 }
2550}
2551
2552/* Direct callback from lib_zsm. */
2553static void SVal__rcdec ( SVal s ) {
2554 if (SVal__isC(s)) {
2555 VtsID__rcdec( SVal__unC_Rmin(s) );
2556 VtsID__rcdec( SVal__unC_Wmin(s) );
2557 }
2558}
2559
2560
2561/////////////////////////////////////////////////////////
2562// //
sewardjd86e3a22008-12-03 11:39:37 +00002563// A simple group (memory) allocator //
2564// //
2565/////////////////////////////////////////////////////////
2566
2567//////////////// BEGIN general group allocator
2568typedef
2569 struct {
2570 UWord elemSzB; /* element size */
2571 UWord nPerGroup; /* # elems per group */
2572 void* (*alloc)(HChar*, SizeT); /* group allocator */
2573 HChar* cc; /* group allocator's cc */
2574 void (*free)(void*); /* group allocator's free-er (unused) */
2575 /* XArray of void* (pointers to groups). The groups themselves.
2576 Each element is a pointer to a block of size (elemSzB *
2577 nPerGroup) bytes. */
2578 XArray* groups;
2579 /* next free element. Is a pointer to an element in one of the
2580 groups pointed to by .groups. */
2581 void* nextFree;
2582 }
2583 GroupAlloc;
2584
2585static void init_GroupAlloc ( /*MOD*/GroupAlloc* ga,
2586 UWord elemSzB,
2587 UWord nPerGroup,
2588 void* (*alloc)(HChar*, SizeT),
2589 HChar* cc,
2590 void (*free)(void*) )
2591{
2592 tl_assert(0 == (elemSzB % sizeof(UWord)));
2593 tl_assert(elemSzB >= sizeof(UWord));
2594 tl_assert(nPerGroup >= 100); /* let's say */
2595 tl_assert(alloc);
2596 tl_assert(cc);
2597 tl_assert(free);
2598 tl_assert(ga);
2599 VG_(memset)(ga, 0, sizeof(*ga));
2600 ga->elemSzB = elemSzB;
2601 ga->nPerGroup = nPerGroup;
2602 ga->groups = NULL;
2603 ga->alloc = alloc;
2604 ga->cc = cc;
2605 ga->free = free;
2606 ga->groups = VG_(newXA)( alloc, cc, free, sizeof(void*) );
2607 ga->nextFree = NULL;
2608 tl_assert(ga->groups);
2609}
2610
2611/* The freelist is empty. Allocate a new group and put all the new
2612 elements in it onto the freelist. */
2613__attribute__((noinline))
2614static void gal_add_new_group ( GroupAlloc* ga )
2615{
2616 Word i;
2617 UWord* group;
2618 tl_assert(ga);
2619 tl_assert(ga->nextFree == NULL);
2620 group = ga->alloc( ga->cc, ga->elemSzB * ga->nPerGroup );
2621 tl_assert(group);
2622 /* extend the freelist through the new group. Place the freelist
2623 pointer in the first word of each element. That's why the
2624 element size must be at least one word. */
2625 for (i = ga->nPerGroup-1; i >= 0; i--) {
2626 UChar* elemC = ((UChar*)group) + i * ga->elemSzB;
2627 UWord* elem = (UWord*)elemC;
2628 tl_assert(0 == (((UWord)elem) % sizeof(UWord)));
2629 *elem = (UWord)ga->nextFree;
2630 ga->nextFree = elem;
2631 }
2632 /* and add to our collection of groups */
2633 VG_(addToXA)( ga->groups, &group );
2634}
2635
2636inline static void* gal_Alloc ( GroupAlloc* ga )
2637{
2638 UWord* elem;
2639 if (UNLIKELY(ga->nextFree == NULL)) {
2640 gal_add_new_group(ga);
2641 }
2642 elem = ga->nextFree;
2643 ga->nextFree = (void*)*elem;
2644 *elem = 0; /* unnecessary, but just to be on the safe side */
2645 return elem;
2646}
2647
2648inline static void* gal_Alloc_w_size_check ( GroupAlloc* ga, SizeT n )
2649{
2650 tl_assert(n == ga->elemSzB);
2651 return gal_Alloc( ga );
2652}
2653
2654inline static void gal_Free ( GroupAlloc* ga, void* p )
2655{
2656 UWord* elem = (UWord*)p;
2657 *elem = (UWord)ga->nextFree;
2658 ga->nextFree = elem;
2659}
2660//////////////// END general group allocator
2661
2662
2663/////////////////////////////////////////////////////////
2664// //
sewardjf98e1c02008-10-25 16:22:41 +00002665// Change-event map2 //
2666// //
2667/////////////////////////////////////////////////////////
2668
2669#define EVENT_MAP_GC_AT (1 * 1000 * 1000)
2670#define EVENT_MAP_GC_DISCARD_FRACTION 0.5
2671
2672/* This is in two parts:
2673
2674 1. An OSet of RCECs. This is a set of reference-counted stack
2675 traces. When the reference count of a stack trace becomes zero,
2676 it is removed from the set and freed up. The intent is to have
2677 a set of stack traces which can be referred to from (2), but to
2678 only represent each one once. The set is indexed/searched by
2679 ordering on the stack trace vectors.
2680
2681 2. An OSet of OldRefs. These store information about each old ref
2682 that we need to record. It is indexed by address of the
2683 location for which the information is recorded. For LRU
2684 purposes, each OldRef also contains a generation number,
2685 indicating when it was most recently accessed.
2686
2687 The important part of an OldRef is, however, its accs[] array.
2688 This is an array of N_OLDREF_ACCS pairs of Thr and a RCEC. This
2689 allows us to collect the last access-traceback by up to
2690 N_OLDREF_ACCS different threads for this location. The accs[]
2691 array is a MTF-array. If a pair falls off the end, that's too
2692 bad -- we will lose info about that thread's access to this
2693 location.
2694
2695 When this OSet becomes too big, we can throw away the entries
2696 whose generation numbers are below some threshold; hence doing
2697 approximate LRU discarding. For each discarded OldRef we must
2698 of course decrement the reference count on the all RCECs it
2699 refers to, in order that entries from (1) eventually get
2700 discarded too.
2701*/
2702
2703
2704static UWord stats__ctxt_rcdec1 = 0;
2705static UWord stats__ctxt_rcdec2 = 0;
2706static UWord stats__ctxt_rcdec3 = 0;
2707static UWord stats__ctxt_rcdec_calls = 0;
2708static UWord stats__ctxt_rcdec_discards = 0;
2709static UWord stats__ctxt_rcdec1_eq = 0;
2710
2711static UWord stats__ctxt_tab_curr = 0;
2712static UWord stats__ctxt_tab_max = 0;
2713
2714static UWord stats__ctxt_tab_qs = 0;
2715static UWord stats__ctxt_tab_cmps = 0;
2716
2717
2718///////////////////////////////////////////////////////
2719//// Part (1): An OSet of RCECs
2720///
2721
2722#define N_FRAMES 8
2723
2724// (UInt) `echo "Reference Counted Execution Context" | md5sum`
2725#define RCEC_MAGIC 0xab88abb2UL
2726
2727//#define N_RCEC_TAB 98317 /* prime */
2728#define N_RCEC_TAB 196613 /* prime */
2729
2730typedef
2731 struct _RCEC {
sewardjd86e3a22008-12-03 11:39:37 +00002732 UWord magic; /* sanity check only */
sewardjf98e1c02008-10-25 16:22:41 +00002733 struct _RCEC* next;
sewardjf98e1c02008-10-25 16:22:41 +00002734 UWord rc;
2735 UWord rcX; /* used for crosschecking */
2736 UWord frames[1 + N_FRAMES]; /* first word is hash of all the rest */
2737 }
2738 RCEC;
2739
2740static RCEC** contextTab = NULL; /* hash table of RCEC*s */
2741
2742
2743/* Gives an arbitrary total order on RCEC .frames fields */
2744static Word RCEC__cmp_by_frames ( RCEC* ec1, RCEC* ec2 ) {
2745 Word i;
2746 tl_assert(ec1 && ec1->magic == RCEC_MAGIC);
2747 tl_assert(ec2 && ec2->magic == RCEC_MAGIC);
2748 if (ec1->frames[0] < ec2->frames[0]) return -1;
2749 if (ec1->frames[0] > ec2->frames[0]) return 1;
2750 for (i = 1; i < 1 + N_FRAMES; i++) {
2751 if (ec1->frames[i] < ec2->frames[i]) return -1;
2752 if (ec1->frames[i] > ec2->frames[i]) return 1;
2753 }
2754 return 0;
2755}
2756
2757
2758/* Dec the ref of this RCEC. */
2759static void ctxt__rcdec ( RCEC* ec )
2760{
2761 stats__ctxt_rcdec_calls++;
2762 tl_assert(ec && ec->magic == RCEC_MAGIC);
2763 tl_assert(ec->rc > 0);
2764 ec->rc--;
2765}
2766
2767static void ctxt__rcinc ( RCEC* ec )
2768{
2769 tl_assert(ec && ec->magic == RCEC_MAGIC);
2770 ec->rc++;
2771}
2772
2773
sewardjd86e3a22008-12-03 11:39:37 +00002774//////////// BEGIN RCEC group allocator
2775static GroupAlloc rcec_group_allocator;
2776
2777static RCEC* alloc_RCEC ( void ) {
2778 return gal_Alloc ( &rcec_group_allocator );
2779}
2780
2781static void free_RCEC ( RCEC* rcec ) {
2782 tl_assert(rcec->magic == RCEC_MAGIC);
2783 gal_Free( &rcec_group_allocator, rcec );
2784}
2785//////////// END OldRef group allocator
2786
2787
sewardjf98e1c02008-10-25 16:22:41 +00002788/* Find 'ec' in the RCEC list whose head pointer lives at 'headp' and
2789 move it one step closer the the front of the list, so as to make
2790 subsequent searches for it cheaper. */
2791static void move_RCEC_one_step_forward ( RCEC** headp, RCEC* ec )
2792{
2793 RCEC *ec0, *ec1, *ec2;
2794 if (ec == *headp)
2795 tl_assert(0); /* already at head of list */
2796 tl_assert(ec != NULL);
2797 ec0 = *headp;
2798 ec1 = NULL;
2799 ec2 = NULL;
2800 while (True) {
2801 if (ec0 == NULL || ec0 == ec) break;
2802 ec2 = ec1;
2803 ec1 = ec0;
2804 ec0 = ec0->next;
2805 }
2806 tl_assert(ec0 == ec);
2807 if (ec0 != NULL && ec1 != NULL && ec2 != NULL) {
2808 RCEC* tmp;
2809 /* ec0 points to ec, ec1 to its predecessor, and ec2 to ec1's
2810 predecessor. Swap ec0 and ec1, that is, move ec0 one step
2811 closer to the start of the list. */
2812 tl_assert(ec2->next == ec1);
2813 tl_assert(ec1->next == ec0);
2814 tmp = ec0->next;
2815 ec2->next = ec0;
2816 ec0->next = ec1;
2817 ec1->next = tmp;
2818 }
2819 else
2820 if (ec0 != NULL && ec1 != NULL && ec2 == NULL) {
2821 /* it's second in the list. */
2822 tl_assert(*headp == ec1);
2823 tl_assert(ec1->next == ec0);
2824 ec1->next = ec0->next;
2825 ec0->next = ec1;
2826 *headp = ec0;
2827 }
2828}
2829
2830
2831/* Find the given RCEC in the tree, and return a pointer to it. Or,
2832 if not present, add the given one to the tree (by making a copy of
2833 it, so the caller can immediately deallocate the original) and
2834 return a pointer to the copy. The caller can safely have 'example'
2835 on its stack, since we will always return a pointer to a copy of
2836 it, not to the original. Note that the inserted node will have .rc
2837 of zero and so the caller must immediatly increment it. */
2838__attribute__((noinline))
2839static RCEC* ctxt__find_or_add ( RCEC* example )
2840{
2841 UWord hent;
2842 RCEC* copy;
2843 tl_assert(example && example->magic == RCEC_MAGIC);
2844 tl_assert(example->rc == 0);
2845
2846 /* Search the hash table to see if we already have it. */
2847 stats__ctxt_tab_qs++;
2848 hent = example->frames[0] % N_RCEC_TAB;
2849 copy = contextTab[hent];
2850 while (1) {
2851 if (!copy) break;
2852 tl_assert(copy->magic == RCEC_MAGIC);
2853 stats__ctxt_tab_cmps++;
2854 if (0 == RCEC__cmp_by_frames(copy, example)) break;
2855 copy = copy->next;
2856 }
2857
2858 if (copy) {
2859 tl_assert(copy != example);
2860 /* optimisation: if it's not at the head of its list, move 1
2861 step fwds, to make future searches cheaper */
2862 if (copy != contextTab[hent]) {
2863 move_RCEC_one_step_forward( &contextTab[hent], copy );
2864 }
2865 } else {
sewardjd86e3a22008-12-03 11:39:37 +00002866 copy = alloc_RCEC();
sewardjf98e1c02008-10-25 16:22:41 +00002867 tl_assert(copy != example);
2868 *copy = *example;
2869 copy->next = contextTab[hent];
2870 contextTab[hent] = copy;
2871 stats__ctxt_tab_curr++;
2872 if (stats__ctxt_tab_curr > stats__ctxt_tab_max)
2873 stats__ctxt_tab_max = stats__ctxt_tab_curr;
2874 }
2875 return copy;
2876}
2877
2878static inline UWord ROLW ( UWord w, Int n )
2879{
2880 Int bpw = 8 * sizeof(UWord);
2881 w = (w << n) | (w >> (bpw-n));
2882 return w;
2883}
2884
2885__attribute__((noinline))
2886static RCEC* get_RCEC ( Thr* thr )
2887{
2888 UWord hash, i;
2889 RCEC example;
2890 example.magic = RCEC_MAGIC;
2891 example.rc = 0;
2892 example.rcX = 0;
2893 main_get_stacktrace( thr, &example.frames[1], N_FRAMES );
2894 hash = 0;
2895 for (i = 1; i < 1 + N_FRAMES; i++) {
2896 hash ^= example.frames[i];
2897 hash = ROLW(hash, 19);
2898 }
2899 example.frames[0] = hash;
2900 return ctxt__find_or_add( &example );
2901}
2902
2903///////////////////////////////////////////////////////
sewardjbc307e52008-12-06 22:10:54 +00002904//// Part (2):
2905/// A SparseWA guest-addr -> OldRef, that refers to (1)
sewardjf98e1c02008-10-25 16:22:41 +00002906///
2907
2908// (UInt) `echo "Old Reference Information" | md5sum`
2909#define OldRef_MAGIC 0x30b1f075UL
2910
sewardjc5ea9962008-12-07 01:41:46 +00002911/* Records an access: a thread and a context. The size
2912 (1,2,4,8) and read-or-writeness are also encoded as
2913 follows: bottom bit of .thr is 1 if write, 0 if read
2914 bottom 2 bits of .rcec are encode size:
2915 00 = 1, 01 = 2, 10 = 4, 11 = 8
2916*/
sewardjf98e1c02008-10-25 16:22:41 +00002917typedef struct { Thr* thr; RCEC* rcec; } Thr_n_RCEC;
2918
2919#define N_OLDREF_ACCS 3
2920
2921typedef
2922 struct {
sewardjd86e3a22008-12-03 11:39:37 +00002923 UWord magic; /* sanity check only */
sewardjf98e1c02008-10-25 16:22:41 +00002924 UWord gen; /* when most recently accessed */
sewardjd86e3a22008-12-03 11:39:37 +00002925 /* or free list when not in use */
sewardjf98e1c02008-10-25 16:22:41 +00002926 /* unused slots in this array have .thr == NULL */
2927 Thr_n_RCEC accs[N_OLDREF_ACCS];
2928 }
2929 OldRef;
2930
sewardjd86e3a22008-12-03 11:39:37 +00002931
2932//////////// BEGIN OldRef group allocator
2933static GroupAlloc oldref_group_allocator;
2934
2935static OldRef* alloc_OldRef ( void ) {
2936 return gal_Alloc ( &oldref_group_allocator );
2937}
2938
2939static void free_OldRef ( OldRef* r ) {
2940 tl_assert(r->magic == OldRef_MAGIC);
2941 gal_Free( &oldref_group_allocator, r );
2942}
2943//////////// END OldRef group allocator
2944
sewardjd86e3a22008-12-03 11:39:37 +00002945
sewardjbc307e52008-12-06 22:10:54 +00002946static SparseWA* oldrefTree = NULL; /* SparseWA* OldRef* */
2947static UWord oldrefGen = 0; /* current LRU generation # */
2948static UWord oldrefTreeN = 0; /* # elems in oldrefTree */
2949static UWord oldrefGenIncAt = 0; /* inc gen # when size hits this */
sewardjf98e1c02008-10-25 16:22:41 +00002950
sewardjc5ea9962008-12-07 01:41:46 +00002951inline static void* ptr_or_UWord ( void* p, UWord w ) {
2952 return (void*)( ((UWord)p) | ((UWord)w) );
2953}
2954inline static void* ptr_and_UWord ( void* p, UWord w ) {
2955 return (void*)( ((UWord)p) & ((UWord)w) );
2956}
2957
2958static void event_map_bind ( Addr a, SizeT szB, Bool isW, Thr* thr )
sewardjf98e1c02008-10-25 16:22:41 +00002959{
sewardjd86e3a22008-12-03 11:39:37 +00002960 OldRef* ref;
sewardjc5ea9962008-12-07 01:41:46 +00002961 RCEC* rcec;
sewardjd86e3a22008-12-03 11:39:37 +00002962 Word i, j;
2963 UWord keyW, valW;
2964 Bool b;
sewardjf98e1c02008-10-25 16:22:41 +00002965
sewardjc5ea9962008-12-07 01:41:46 +00002966 rcec = get_RCEC( thr );
2967 ctxt__rcinc(rcec);
2968
2969 /* encode the size and writeness of the transaction in the bottom
2970 two bits of thr and rcec. */
2971 thr = ptr_or_UWord(thr, isW ? 1 : 0);
2972 switch (szB) {
2973 /* This doesn't look particularly branch-predictor friendly. */
2974 case 1: rcec = ptr_or_UWord(rcec, 0); break;
2975 case 2: rcec = ptr_or_UWord(rcec, 1); break;
2976 case 4: rcec = ptr_or_UWord(rcec, 2); break;
2977 case 8: rcec = ptr_or_UWord(rcec, 3); break;
2978 default: tl_assert(0);
2979 }
2980
2981 /* Look in the map to see if we already have this. */
sewardjbc307e52008-12-06 22:10:54 +00002982 b = VG_(lookupSWA)( oldrefTree, &keyW, &valW, a );
sewardjf98e1c02008-10-25 16:22:41 +00002983
sewardjd86e3a22008-12-03 11:39:37 +00002984 if (b) {
sewardjf98e1c02008-10-25 16:22:41 +00002985
2986 /* We already have a record for this address. We now need to
2987 see if we have a stack trace pertaining to this thread's
2988 access. */
sewardjd86e3a22008-12-03 11:39:37 +00002989 tl_assert(keyW == a);
2990 ref = (OldRef*)valW;
sewardjf98e1c02008-10-25 16:22:41 +00002991 tl_assert(ref->magic == OldRef_MAGIC);
2992
2993 tl_assert(thr);
2994 for (i = 0; i < N_OLDREF_ACCS; i++) {
2995 if (ref->accs[i].thr == thr)
2996 break;
2997 }
2998
2999 if (i < N_OLDREF_ACCS) {
3000 /* thread 'thr' has an entry at index 'i'. Update it. */
3001 if (i > 0) {
3002 Thr_n_RCEC tmp = ref->accs[i-1];
3003 ref->accs[i-1] = ref->accs[i];
3004 ref->accs[i] = tmp;
3005 i--;
3006 }
sewardjc5ea9962008-12-07 01:41:46 +00003007 if (rcec == ref->accs[i].rcec) stats__ctxt_rcdec1_eq++;
sewardjf98e1c02008-10-25 16:22:41 +00003008 stats__ctxt_rcdec1++;
sewardjc5ea9962008-12-07 01:41:46 +00003009 ctxt__rcdec( ptr_and_UWord(ref->accs[i].rcec, ~3) );
3010 ref->accs[i].rcec = rcec;
sewardjf98e1c02008-10-25 16:22:41 +00003011 tl_assert(ref->accs[i].thr == thr);
3012 } else {
sewardjf98e1c02008-10-25 16:22:41 +00003013 /* No entry for this thread. Shuffle all of them down one
3014 slot, and put the new entry at the start of the array. */
3015 if (ref->accs[N_OLDREF_ACCS-1].thr) {
3016 /* the last slot is in use. We must dec the rc on the
3017 associated rcec. */
3018 tl_assert(ref->accs[N_OLDREF_ACCS-1].rcec);
3019 stats__ctxt_rcdec2++;
sewardjc5ea9962008-12-07 01:41:46 +00003020 ctxt__rcdec( ptr_and_UWord(ref->accs[N_OLDREF_ACCS-1].rcec, ~3) );
sewardjf98e1c02008-10-25 16:22:41 +00003021 } else {
3022 tl_assert(!ref->accs[N_OLDREF_ACCS-1].rcec);
3023 }
3024 for (j = N_OLDREF_ACCS-1; j >= 1; j--)
3025 ref->accs[j] = ref->accs[j-1];
3026 ref->accs[0].thr = thr;
sewardjc5ea9962008-12-07 01:41:46 +00003027 ref->accs[0].rcec = rcec;
3028 /* thr==NULL is used to signify an empty slot, so we can't
3029 add a NULL thr. */
3030 tl_assert(ptr_and_UWord(thr, ~3) != 0);
sewardjf98e1c02008-10-25 16:22:41 +00003031 }
3032
3033 ref->gen = oldrefGen;
sewardjf98e1c02008-10-25 16:22:41 +00003034
3035 } else {
3036
3037 /* We don't have a record for this address. Create a new one. */
3038 if (oldrefTreeN >= oldrefGenIncAt) {
3039 oldrefGen++;
3040 oldrefGenIncAt = oldrefTreeN + 50000;
3041 if (0) VG_(printf)("oldrefTree: new gen %lu at size %lu\n",
3042 oldrefGen, oldrefTreeN );
3043 }
sewardjd86e3a22008-12-03 11:39:37 +00003044
3045 ref = alloc_OldRef();
sewardjf98e1c02008-10-25 16:22:41 +00003046 ref->magic = OldRef_MAGIC;
3047 ref->gen = oldrefGen;
sewardjc5ea9962008-12-07 01:41:46 +00003048 ref->accs[0].rcec = rcec;
sewardjf98e1c02008-10-25 16:22:41 +00003049 ref->accs[0].thr = thr;
sewardjc5ea9962008-12-07 01:41:46 +00003050 /* thr==NULL is used to signify an empty slot, so we can't
3051 add a NULL thr. */
3052 tl_assert(ptr_and_UWord(thr, ~3) != 0);
sewardjf98e1c02008-10-25 16:22:41 +00003053 for (j = 1; j < N_OLDREF_ACCS; j++) {
3054 ref->accs[j].thr = NULL;
3055 ref->accs[j].rcec = NULL;
3056 }
sewardjbc307e52008-12-06 22:10:54 +00003057 VG_(addToSWA)( oldrefTree, a, (UWord)ref );
sewardjf98e1c02008-10-25 16:22:41 +00003058 oldrefTreeN++;
3059
3060 }
3061}
3062
3063
sewardjc5ea9962008-12-07 01:41:46 +00003064Bool libhb_event_map_lookup ( /*OUT*/ExeContext** resEC,
3065 /*OUT*/Thr** resThr,
3066 /*OUT*/SizeT* resSzB,
3067 /*OUT*/Bool* resIsW,
3068 Thr* thr, Addr a, SizeT szB, Bool isW )
sewardjf98e1c02008-10-25 16:22:41 +00003069{
sewardjd86e3a22008-12-03 11:39:37 +00003070 Word i;
3071 OldRef* ref;
3072 UWord keyW, valW;
3073 Bool b;
sewardjf98e1c02008-10-25 16:22:41 +00003074
sewardjc5ea9962008-12-07 01:41:46 +00003075 Thr* cand_thr;
3076 RCEC* cand_rcec;
3077 Bool cand_isW;
3078 SizeT cand_szB;
3079
3080 tl_assert(thr);
3081 tl_assert(szB == 8 || szB == 4 || szB == 2 || szB == 1);
sewardjf98e1c02008-10-25 16:22:41 +00003082
sewardjbc307e52008-12-06 22:10:54 +00003083 b = VG_(lookupSWA)( oldrefTree, &keyW, &valW, a );
sewardjd86e3a22008-12-03 11:39:37 +00003084 if (b) {
3085 ref = (OldRef*)valW;
3086 tl_assert(keyW == a);
sewardjf98e1c02008-10-25 16:22:41 +00003087 tl_assert(ref->magic == OldRef_MAGIC);
3088 tl_assert(ref->accs[0].thr); /* first slot must always be used */
3089
sewardjc5ea9962008-12-07 01:41:46 +00003090 cand_thr = NULL;
3091 cand_rcec = NULL;
3092 cand_isW = False;
3093 cand_szB = 0;
sewardjf98e1c02008-10-25 16:22:41 +00003094
sewardjc5ea9962008-12-07 01:41:46 +00003095 for (i = 0; i < N_OLDREF_ACCS; i++) {
3096 Thr_n_RCEC* cand = &ref->accs[i];
3097 cand_thr = ptr_and_UWord(cand->thr, ~3);
3098 cand_rcec = ptr_and_UWord(cand->rcec, ~3);
3099 /* Decode the writeness from the bottom bit of .thr. */
3100 cand_isW = 1 == (UWord)ptr_and_UWord(cand->thr, 1);
3101 /* Decode the size from the bottom two bits of .rcec. */
3102 switch ((UWord)ptr_and_UWord(cand->rcec, 3)) {
3103 case 0: cand_szB = 1; break;
3104 case 1: cand_szB = 2; break;
3105 case 2: cand_szB = 4; break;
3106 case 3: cand_szB = 8; break;
3107 default: tl_assert(0);
3108 }
3109
3110 if (cand_thr == NULL)
3111 /* This slot isn't in use. Ignore it. */
3112 continue;
3113
3114 if (cand_thr == thr)
3115 /* This is an access by the same thread, but we're only
3116 interested in accesses from other threads. Ignore. */
3117 continue;
3118
3119 if ((!cand_isW) && (!isW))
3120 /* We don't want to report a read racing against another
3121 read; that's stupid. So in this case move on. */
3122 continue;
3123
3124 /* We have a match. Stop searching. */
3125 break;
3126 }
3127
3128 tl_assert(i >= 0 && i <= N_OLDREF_ACCS);
3129
3130 if (i == N_OLDREF_ACCS)
3131 return False;
3132
3133 tl_assert(cand_thr);
3134 tl_assert(cand_rcec);
3135 tl_assert(cand_rcec->magic == RCEC_MAGIC);
3136 tl_assert(cand_szB >= 1);
sewardjf98e1c02008-10-25 16:22:41 +00003137
sewardjd52392d2008-11-08 20:36:26 +00003138 *resEC = VG_(make_ExeContext_from_StackTrace)(
sewardjc5ea9962008-12-07 01:41:46 +00003139 &cand_rcec->frames[1], N_FRAMES
sewardjd52392d2008-11-08 20:36:26 +00003140 );
sewardjc5ea9962008-12-07 01:41:46 +00003141 *resThr = cand_thr;
3142 *resSzB = cand_szB;
3143 *resIsW = cand_isW;
sewardjf98e1c02008-10-25 16:22:41 +00003144 return True;
3145 } else {
3146 return False;
3147 }
3148}
3149
3150static void event_map_init ( void )
3151{
3152 Word i;
sewardjd86e3a22008-12-03 11:39:37 +00003153
3154 /* Context (RCEC) group allocator */
3155 init_GroupAlloc ( &rcec_group_allocator,
3156 sizeof(RCEC),
3157 1000 /* RCECs per group */,
3158 HG_(zalloc),
3159 "libhb.event_map_init.1 (RCEC groups)",
3160 HG_(free) );
3161
3162 /* Context table */
sewardjf98e1c02008-10-25 16:22:41 +00003163 tl_assert(!contextTab);
sewardjd86e3a22008-12-03 11:39:37 +00003164 contextTab = HG_(zalloc)( "libhb.event_map_init.2 (context table)",
sewardjf98e1c02008-10-25 16:22:41 +00003165 N_RCEC_TAB * sizeof(RCEC*) );
3166 tl_assert(contextTab);
3167 for (i = 0; i < N_RCEC_TAB; i++)
3168 contextTab[i] = NULL;
3169
sewardjd86e3a22008-12-03 11:39:37 +00003170 /* Oldref group allocator */
3171 init_GroupAlloc ( &oldref_group_allocator,
3172 sizeof(OldRef),
3173 1000 /* OldRefs per group */,
3174 HG_(zalloc),
3175 "libhb.event_map_init.3 (OldRef groups)",
3176 HG_(free) );
3177
sewardjd86e3a22008-12-03 11:39:37 +00003178 /* Oldref tree */
sewardjf98e1c02008-10-25 16:22:41 +00003179 tl_assert(!oldrefTree);
sewardjbc307e52008-12-06 22:10:54 +00003180 oldrefTree = VG_(newSWA)(
3181 HG_(zalloc),
sewardjd86e3a22008-12-03 11:39:37 +00003182 "libhb.event_map_init.4 (oldref tree)",
sewardjbc307e52008-12-06 22:10:54 +00003183 HG_(free)
sewardjf98e1c02008-10-25 16:22:41 +00003184 );
3185 tl_assert(oldrefTree);
3186
3187 oldrefGen = 0;
3188 oldrefGenIncAt = 0;
3189 oldrefTreeN = 0;
3190}
3191
3192static void event_map__check_reference_counts ( Bool before )
3193{
3194 RCEC* rcec;
3195 OldRef* oldref;
3196 Word i;
3197 UWord nEnts = 0;
sewardjd86e3a22008-12-03 11:39:37 +00003198 UWord keyW, valW;
sewardjf98e1c02008-10-25 16:22:41 +00003199
3200 /* Set the 'check' reference counts to zero. Also, optionally
3201 check that the real reference counts are non-zero. We allow
3202 these to fall to zero before a GC, but the GC must get rid of
3203 all those that are zero, hence none should be zero after a
3204 GC. */
3205 for (i = 0; i < N_RCEC_TAB; i++) {
3206 for (rcec = contextTab[i]; rcec; rcec = rcec->next) {
3207 nEnts++;
3208 tl_assert(rcec);
3209 tl_assert(rcec->magic == RCEC_MAGIC);
3210 if (!before)
3211 tl_assert(rcec->rc > 0);
3212 rcec->rcX = 0;
3213 }
3214 }
3215
3216 /* check that the stats are sane */
3217 tl_assert(nEnts == stats__ctxt_tab_curr);
3218 tl_assert(stats__ctxt_tab_curr <= stats__ctxt_tab_max);
3219
3220 /* visit all the referencing points, inc check ref counts */
sewardjbc307e52008-12-06 22:10:54 +00003221 VG_(initIterSWA)( oldrefTree );
3222 while (VG_(nextIterSWA)( oldrefTree, &keyW, &valW )) {
sewardjd86e3a22008-12-03 11:39:37 +00003223 oldref = (OldRef*)valW;
sewardjf98e1c02008-10-25 16:22:41 +00003224 tl_assert(oldref->magic == OldRef_MAGIC);
3225 for (i = 0; i < N_OLDREF_ACCS; i++) {
sewardjc5ea9962008-12-07 01:41:46 +00003226 Thr* aThr = ptr_and_UWord(oldref->accs[i].thr, ~3);
3227 RCEC* aRef = ptr_and_UWord(oldref->accs[i].rcec, ~3);
3228 if (aThr) {
3229 tl_assert(aRef);
3230 tl_assert(aRef->magic == RCEC_MAGIC);
3231 aRef->rcX++;
sewardjf98e1c02008-10-25 16:22:41 +00003232 } else {
sewardjc5ea9962008-12-07 01:41:46 +00003233 tl_assert(!aRef);
sewardjf98e1c02008-10-25 16:22:41 +00003234 }
3235 }
3236 }
3237
3238 /* compare check ref counts with actual */
3239 for (i = 0; i < N_RCEC_TAB; i++) {
3240 for (rcec = contextTab[i]; rcec; rcec = rcec->next) {
3241 tl_assert(rcec->rc == rcec->rcX);
3242 }
3243 }
3244}
3245
sewardj8fd92d32008-11-20 23:17:01 +00003246__attribute__((noinline))
sewardjf98e1c02008-10-25 16:22:41 +00003247static void event_map_maybe_GC ( void )
3248{
3249 OldRef* oldref;
3250 UWord keyW, valW, retained, maxGen;
sewardjf98e1c02008-10-25 16:22:41 +00003251 XArray* refs2del;
3252 Word i, j, n2del;
3253
sewardj8fd92d32008-11-20 23:17:01 +00003254 UWord* genMap = NULL;
3255 UWord genMap_min = 0;
3256 UWord genMap_size = 0;
3257
sewardjf98e1c02008-10-25 16:22:41 +00003258 if (LIKELY(oldrefTreeN < EVENT_MAP_GC_AT))
3259 return;
3260
3261 if (0)
3262 VG_(printf)("libhb: event_map GC at size %lu\n", oldrefTreeN);
3263
sewardj8f5374e2008-12-07 11:40:17 +00003264 /* Check our counting is sane (expensive) */
3265 if (CHECK_CEM)
3266 tl_assert(oldrefTreeN == VG_(sizeSWA)( oldrefTree ));
sewardjf98e1c02008-10-25 16:22:41 +00003267
sewardj8f5374e2008-12-07 11:40:17 +00003268 /* Check the reference counts (expensive) */
3269 if (CHECK_CEM)
3270 event_map__check_reference_counts( True/*before*/ );
sewardjf98e1c02008-10-25 16:22:41 +00003271
sewardj8fd92d32008-11-20 23:17:01 +00003272 /* Compute the distribution of generation values in the ref tree.
3273 There are likely only to be a few different generation numbers
3274 in the whole tree, but we don't know what they are. Hence use a
3275 dynamically resized array of counters. The array is genMap[0
3276 .. genMap_size-1], where genMap[0] is the count for the
3277 generation number genMap_min, genMap[1] is the count for
3278 genMap_min+1, etc. If a new number is seen outside the range
3279 [genMap_min .. genMap_min + genMap_size - 1] then the array is
3280 copied into a larger array, and genMap_min and genMap_size are
3281 adjusted accordingly. */
3282
sewardjf98e1c02008-10-25 16:22:41 +00003283 /* genMap :: generation-number -> count-of-nodes-with-that-number */
sewardjf98e1c02008-10-25 16:22:41 +00003284
sewardjbc307e52008-12-06 22:10:54 +00003285 VG_(initIterSWA)( oldrefTree );
3286 while ( VG_(nextIterSWA)( oldrefTree, &keyW, &valW )) {
sewardj8fd92d32008-11-20 23:17:01 +00003287
sewardjd86e3a22008-12-03 11:39:37 +00003288 UWord ea, key;
3289 oldref = (OldRef*)valW;
3290 key = oldref->gen;
sewardj8fd92d32008-11-20 23:17:01 +00003291
3292 /* BEGIN find 'ea', which is the index in genMap holding the
3293 count for generation number 'key'. */
3294 if (UNLIKELY(genMap == NULL)) {
3295 /* deal with the first key to be seen, so that the following
3296 cases don't need to handle the complexity of a NULL count
3297 array. */
3298 genMap_min = key;
3299 genMap_size = 1;
3300 genMap = HG_(zalloc)( "libhb.emmG.1a",
3301 genMap_size * sizeof(UWord) );
3302 ea = 0;
3303 if (0) VG_(printf)("(%lu) case 1 [%lu .. %lu]\n",
3304 key, genMap_min, genMap_min+genMap_size- 1 );
sewardjf98e1c02008-10-25 16:22:41 +00003305 }
sewardj8fd92d32008-11-20 23:17:01 +00003306 else
3307 if (LIKELY(key >= genMap_min && key < genMap_min + genMap_size)) {
3308 /* this is the expected (almost-always-happens) case: 'key'
3309 is already mapped in the array. */
3310 ea = key - genMap_min;
3311 }
3312 else
3313 if (key < genMap_min) {
3314 /* 'key' appears before the start of the current array.
3315 Extend the current array by allocating a larger one and
3316 copying the current one to the upper end of it. */
3317 Word more;
3318 UWord* map2;
3319 more = genMap_min - key;
3320 tl_assert(more > 0);
3321 map2 = HG_(zalloc)( "libhb.emmG.1b",
3322 (genMap_size + more) * sizeof(UWord) );
3323 VG_(memcpy)( &map2[more], genMap, genMap_size * sizeof(UWord) );
3324 HG_(free)( genMap );
3325 genMap = map2;
3326 genMap_size += more;
3327 genMap_min -= more;
3328 ea = 0;
3329 tl_assert(genMap_min == key);
3330 if (0) VG_(printf)("(%lu) case 2 [%lu .. %lu]\n",
3331 key, genMap_min, genMap_min+genMap_size- 1 );
3332 }
3333 else {
3334 /* 'key' appears after the end of the current array. Extend
3335 the current array by allocating a larger one and copying
3336 the current one to the lower end of it. */
3337 Word more;
3338 UWord* map2;
3339 tl_assert(key >= genMap_min + genMap_size);
3340 more = key - (genMap_min + genMap_size) + 1;
3341 tl_assert(more > 0);
3342 map2 = HG_(zalloc)( "libhb.emmG.1c",
3343 (genMap_size + more) * sizeof(UWord) );
3344 VG_(memcpy)( &map2[0], genMap, genMap_size * sizeof(UWord) );
3345 HG_(free)( genMap );
3346 genMap = map2;
3347 genMap_size += more;
3348 ea = genMap_size - 1;;
3349 tl_assert(genMap_min + genMap_size - 1 == key);
3350 if (0) VG_(printf)("(%lu) case 3 [%lu .. %lu]\n",
3351 key, genMap_min, genMap_min+genMap_size- 1 );
3352 }
3353 /* END find 'ea' from 'key' */
3354
3355 tl_assert(ea >= 0 && ea < genMap_size);
sewardjd86e3a22008-12-03 11:39:37 +00003356 /* and the whole point of this elaborate computation of 'ea' is .. */
sewardj8fd92d32008-11-20 23:17:01 +00003357 genMap[ea]++;
sewardjf98e1c02008-10-25 16:22:41 +00003358 }
3359
sewardj8fd92d32008-11-20 23:17:01 +00003360 tl_assert(genMap);
3361 tl_assert(genMap_size > 0);
sewardjf98e1c02008-10-25 16:22:41 +00003362
sewardj8fd92d32008-11-20 23:17:01 +00003363 /* Sanity check what we just computed */
3364 { UWord sum = 0;
3365 for (i = 0; i < genMap_size; i++) {
3366 if (0) VG_(printf)(" xxx: gen %ld has %lu\n",
3367 i + genMap_min, genMap[i] );
3368 sum += genMap[i];
3369 }
3370 tl_assert(sum == oldrefTreeN);
3371 }
3372
3373 /* Figure out how many generations to throw away */
sewardjf98e1c02008-10-25 16:22:41 +00003374 retained = oldrefTreeN;
3375 maxGen = 0;
sewardj8fd92d32008-11-20 23:17:01 +00003376
3377 for (i = 0; i < genMap_size; i++) {
3378 keyW = i + genMap_min;
3379 valW = genMap[i];
sewardjf98e1c02008-10-25 16:22:41 +00003380 tl_assert(keyW > 0); /* can't allow a generation # 0 */
3381 if (0) VG_(printf)(" XXX: gen %lu has %lu\n", keyW, valW );
3382 tl_assert(keyW >= maxGen);
3383 tl_assert(retained >= valW);
3384 if (retained - valW
3385 > (UWord)(EVENT_MAP_GC_AT * EVENT_MAP_GC_DISCARD_FRACTION)) {
3386 retained -= valW;
3387 maxGen = keyW;
3388 } else {
3389 break;
3390 }
3391 }
sewardjf98e1c02008-10-25 16:22:41 +00003392
sewardj8fd92d32008-11-20 23:17:01 +00003393 HG_(free)(genMap);
sewardjf98e1c02008-10-25 16:22:41 +00003394
sewardj9b1f0fd2008-11-18 23:40:00 +00003395 tl_assert(retained >= 0 && retained <= oldrefTreeN);
sewardjf98e1c02008-10-25 16:22:41 +00003396
3397 /* Now make up a big list of the oldrefTree entries we want to
3398 delete. We can't simultaneously traverse the tree and delete
3399 stuff from it, so first we need to copy them off somewhere
3400 else. (sigh) */
sewardj8fd92d32008-11-20 23:17:01 +00003401 refs2del = VG_(newXA)( HG_(zalloc), "libhb.emmG.2",
sewardjd86e3a22008-12-03 11:39:37 +00003402 HG_(free), sizeof(Addr) );
sewardjf98e1c02008-10-25 16:22:41 +00003403
sewardj9b1f0fd2008-11-18 23:40:00 +00003404 if (retained < oldrefTreeN) {
3405
3406 /* This is the normal (expected) case. We discard any ref whose
3407 generation number <= maxGen. */
sewardjbc307e52008-12-06 22:10:54 +00003408 VG_(initIterSWA)( oldrefTree );
3409 while (VG_(nextIterSWA)( oldrefTree, &keyW, &valW )) {
sewardjd86e3a22008-12-03 11:39:37 +00003410 oldref = (OldRef*)valW;
sewardj9b1f0fd2008-11-18 23:40:00 +00003411 tl_assert(oldref->magic == OldRef_MAGIC);
3412 if (oldref->gen <= maxGen) {
sewardjd86e3a22008-12-03 11:39:37 +00003413 VG_(addToXA)( refs2del, &keyW );
sewardj9b1f0fd2008-11-18 23:40:00 +00003414 }
sewardjf98e1c02008-10-25 16:22:41 +00003415 }
sewardj9b1f0fd2008-11-18 23:40:00 +00003416 if (VG_(clo_verbosity) > 1) {
3417 VG_(message)(Vg_DebugMsg,
3418 "libhb: EvM GC: delete generations %lu and below, "
3419 "retaining %lu entries",
3420 maxGen, retained );
3421 }
3422
3423 } else {
3424
3425 static UInt rand_seed = 0; /* leave as static */
3426
3427 /* Degenerate case: there's only one generation in the entire
3428 tree, so we need to have some other way of deciding which
3429 refs to throw away. Just throw out half of them randomly. */
3430 tl_assert(retained == oldrefTreeN);
sewardjbc307e52008-12-06 22:10:54 +00003431 VG_(initIterSWA)( oldrefTree );
3432 while (VG_(nextIterSWA)( oldrefTree, &keyW, &valW )) {
sewardj9b1f0fd2008-11-18 23:40:00 +00003433 UInt n;
sewardjd86e3a22008-12-03 11:39:37 +00003434 oldref = (OldRef*)valW;
sewardj9b1f0fd2008-11-18 23:40:00 +00003435 tl_assert(oldref->magic == OldRef_MAGIC);
3436 n = VG_(random)( &rand_seed );
3437 if ((n & 0xFFF) < 0x800) {
sewardjd86e3a22008-12-03 11:39:37 +00003438 VG_(addToXA)( refs2del, &keyW );
sewardj9b1f0fd2008-11-18 23:40:00 +00003439 retained--;
3440 }
3441 }
3442 if (VG_(clo_verbosity) > 1) {
3443 VG_(message)(Vg_DebugMsg,
3444 "libhb: EvM GC: randomly delete half the entries, "
3445 "retaining %lu entries",
3446 retained );
3447 }
3448
sewardjf98e1c02008-10-25 16:22:41 +00003449 }
3450
3451 n2del = VG_(sizeXA)( refs2del );
3452 tl_assert(n2del == (Word)(oldrefTreeN - retained));
3453
3454 if (0) VG_(printf)("%s","deleting entries\n");
3455 for (i = 0; i < n2del; i++) {
sewardjd86e3a22008-12-03 11:39:37 +00003456 Bool b;
3457 Addr ga2del = *(Addr*)VG_(indexXA)( refs2del, i );
sewardjbc307e52008-12-06 22:10:54 +00003458 b = VG_(delFromSWA)( oldrefTree, &keyW, &valW, ga2del );
sewardjd86e3a22008-12-03 11:39:37 +00003459 tl_assert(b);
3460 tl_assert(keyW == ga2del);
3461 oldref = (OldRef*)valW;
sewardjf98e1c02008-10-25 16:22:41 +00003462 for (j = 0; j < N_OLDREF_ACCS; j++) {
sewardjc5ea9962008-12-07 01:41:46 +00003463 Thr* aThr = ptr_and_UWord(oldref->accs[j].thr, ~3);
3464 RCEC* aRef = ptr_and_UWord(oldref->accs[j].rcec, ~3);
3465 if (aRef) {
3466 tl_assert(aThr);
sewardjf98e1c02008-10-25 16:22:41 +00003467 stats__ctxt_rcdec3++;
sewardjc5ea9962008-12-07 01:41:46 +00003468 ctxt__rcdec( aRef );
sewardjf98e1c02008-10-25 16:22:41 +00003469 } else {
sewardjc5ea9962008-12-07 01:41:46 +00003470 tl_assert(!aThr);
sewardjf98e1c02008-10-25 16:22:41 +00003471 }
3472 }
sewardjd86e3a22008-12-03 11:39:37 +00003473
3474 free_OldRef( oldref );
sewardjf98e1c02008-10-25 16:22:41 +00003475 }
3476
3477 VG_(deleteXA)( refs2del );
3478
sewardjc5ea9962008-12-07 01:41:46 +00003479 tl_assert( VG_(sizeSWA)( oldrefTree ) == retained );
sewardjf98e1c02008-10-25 16:22:41 +00003480
3481 oldrefTreeN = retained;
3482 oldrefGenIncAt = oldrefTreeN; /* start new gen right away */
3483
3484 /* Throw away all RCECs with zero reference counts */
3485 for (i = 0; i < N_RCEC_TAB; i++) {
3486 RCEC** pp = &contextTab[i];
3487 RCEC* p = *pp;
3488 while (p) {
3489 if (p->rc == 0) {
3490 *pp = p->next;
sewardjd86e3a22008-12-03 11:39:37 +00003491 free_RCEC(p);
sewardjf98e1c02008-10-25 16:22:41 +00003492 p = *pp;
3493 tl_assert(stats__ctxt_tab_curr > 0);
3494 stats__ctxt_tab_curr--;
3495 } else {
3496 pp = &p->next;
3497 p = p->next;
3498 }
3499 }
3500 }
3501
sewardj8f5374e2008-12-07 11:40:17 +00003502 /* Check the reference counts (expensive) */
3503 if (CHECK_CEM)
3504 event_map__check_reference_counts( False/*after*/ );
sewardjf98e1c02008-10-25 16:22:41 +00003505
3506 //if (0)
3507 //VG_(printf)("XXXX final sizes: oldrefTree %ld, contextTree %ld\n\n",
3508 // VG_(OSetGen_Size)(oldrefTree), VG_(OSetGen_Size)(contextTree));
3509
3510}
3511
3512
3513/////////////////////////////////////////////////////////
3514// //
3515// Core MSM //
3516// //
3517/////////////////////////////////////////////////////////
3518
sewardjb0e009d2008-11-19 16:35:15 +00003519/* Logic in msm_read/msm_write updated/verified after re-analysis,
3520 19 Nov 08. */
3521
sewardjb0e009d2008-11-19 16:35:15 +00003522/* 19 Nov 08: it seems that MSM_RACE2ERR == 1 is a bad idea. When
3523 nonzero, the effect is that when a race is detected for a location,
3524 that location is put into a special 'error' state and no further
3525 checking of it is done until it returns to a 'normal' state, which
3526 requires it to be deallocated and reallocated.
3527
3528 This is a bad idea, because of the interaction with suppressions.
3529 Suppose there is a race on the location, but the error is
3530 suppressed. The location now is marked as in-error. Now any
3531 subsequent race -- including ones we want to see -- will never be
3532 detected until the location is deallocated and reallocated.
3533
sewardj8f5374e2008-12-07 11:40:17 +00003534 Hence set MSM_RACE2ERR to zero. This causes raced-on locations to
sewardjb0e009d2008-11-19 16:35:15 +00003535 remain in the normal 'C' (constrained) state, but places on them
3536 the constraint that the next accesses happen-after both the
3537 existing constraint and the relevant vector clock of the thread
sewardj8f5374e2008-12-07 11:40:17 +00003538 doing the racing access.
sewardjb0e009d2008-11-19 16:35:15 +00003539*/
3540#define MSM_RACE2ERR 0
3541
sewardjf98e1c02008-10-25 16:22:41 +00003542static ULong stats__msm_read = 0;
3543static ULong stats__msm_read_change = 0;
3544static ULong stats__msm_write = 0;
3545static ULong stats__msm_write_change = 0;
3546
3547__attribute__((noinline))
3548static void record_race_info ( Thr* acc_thr,
3549 Addr acc_addr, SizeT szB, Bool isWrite,
3550 SVal svOld, SVal svNew )
3551{
sewardjc5ea9962008-12-07 01:41:46 +00003552 /* Call here to report a race. We just hand it onwards to
3553 HG_(record_error_Race). If that in turn discovers that the
3554 error is going to be collected, then that queries the
3555 conflicting-event map. The alternative would be to query it
3556 right here. But that causes a lot of pointless queries for
3557 errors which will shortly be discarded as duplicates, and can
3558 become a performance overhead; so we defer the query until we
3559 know the error is not a duplicate. */
3560 tl_assert(acc_thr->opaque);
3561 HG_(record_error_Race)( acc_thr->opaque, acc_addr,
3562 isWrite, szB, NULL/*mb_lastlock*/ );
sewardjf98e1c02008-10-25 16:22:41 +00003563}
3564
3565static Bool is_sane_SVal_C ( SVal sv ) {
3566 POrd ord;
3567 if (!SVal__isC(sv)) return True;
3568 ord = VtsID__getOrdering( SVal__unC_Rmin(sv), SVal__unC_Wmin(sv) );
3569 if (ord == POrd_EQ || ord == POrd_LT) return True;
3570 return False;
3571}
3572
3573
3574/* Compute new state following a read */
3575static inline SVal msm_read ( SVal svOld,
3576 /* The following are only needed for
3577 creating error reports. */
3578 Thr* acc_thr,
3579 Addr acc_addr, SizeT szB )
3580{
3581 SVal svNew = SVal_INVALID;
3582 stats__msm_read++;
3583
3584 /* Redundant sanity check on the constraints */
sewardj8f5374e2008-12-07 11:40:17 +00003585 if (CHECK_MSM) {
sewardjf98e1c02008-10-25 16:22:41 +00003586 tl_assert(is_sane_SVal_C(svOld));
3587 }
3588
3589 if (SVal__isC(svOld)) {
3590 POrd ord;
3591 VtsID tviR = acc_thr->viR;
3592 VtsID tviW = acc_thr->viW;
3593 VtsID rmini = SVal__unC_Rmin(svOld);
3594 VtsID wmini = SVal__unC_Wmin(svOld);
3595
3596 ord = VtsID__getOrdering(rmini,tviR);
3597 if (ord == POrd_EQ || ord == POrd_LT) {
3598 /* no race */
3599 /* Note: RWLOCK subtlety: use tviW, not tviR */
3600 svNew = SVal__mkC( rmini, VtsID__join2(wmini, tviW) );
3601 goto out;
3602 } else {
sewardjb0e009d2008-11-19 16:35:15 +00003603 /* assert on sanity of constraints. */
3604 POrd ordxx = VtsID__getOrdering(rmini,wmini);
3605 tl_assert(ordxx == POrd_EQ || ordxx == POrd_LT);
sewardjf98e1c02008-10-25 16:22:41 +00003606 svNew = MSM_RACE2ERR
3607 ? SVal__mkE()
sewardj8f5374e2008-12-07 11:40:17 +00003608 /* see comments on corresponding fragment in
3609 msm_write for explanation. */
3610 /* aggressive setting: */
3611 /*
sewardjb0e009d2008-11-19 16:35:15 +00003612 : SVal__mkC( VtsID__join2(wmini,tviR),
3613 VtsID__join2(wmini,tviW) );
sewardj8f5374e2008-12-07 11:40:17 +00003614 */
3615 /* "consistent" setting: */
sewardj3b0c4d72008-11-20 11:20:50 +00003616 : SVal__mkC( VtsID__join2(rmini,tviR),
3617 VtsID__join2(wmini,tviW) );
sewardjf98e1c02008-10-25 16:22:41 +00003618 record_race_info( acc_thr, acc_addr, szB, False/*!isWrite*/,
3619 svOld, svNew );
3620 goto out;
3621 }
3622 }
3623 if (SVal__isA(svOld)) {
3624 /* reading no-access memory (sigh); leave unchanged */
3625 /* check for no pollution */
3626 tl_assert(svOld == SVal_NOACCESS);
3627 svNew = SVal_NOACCESS;
3628 goto out;
3629 }
3630 if (SVal__isE(svOld)) {
3631 /* no race, location is already "in error" */
3632 svNew = SVal__mkE();
3633 goto out;
3634 }
3635 VG_(printf)("msm_read: bad svOld: 0x%016llx\n", svOld);
3636 tl_assert(0);
3637
3638 out:
sewardj8f5374e2008-12-07 11:40:17 +00003639 if (CHECK_MSM) {
sewardjf98e1c02008-10-25 16:22:41 +00003640 tl_assert(is_sane_SVal_C(svNew));
3641 }
3642 tl_assert(svNew != SVal_INVALID);
3643 if (svNew != svOld) {
sewardj8f5374e2008-12-07 11:40:17 +00003644 if (SVal__isC(svOld) && SVal__isC(svNew)) {
sewardjc5ea9962008-12-07 01:41:46 +00003645 event_map_bind( acc_addr, szB, False/*!isWrite*/, acc_thr );
sewardjf98e1c02008-10-25 16:22:41 +00003646 stats__msm_read_change++;
3647 }
3648 }
3649 return svNew;
3650}
3651
3652
3653/* Compute new state following a write */
3654static inline SVal msm_write ( SVal svOld,
3655 /* The following are only needed for
3656 creating error reports. */
3657 Thr* acc_thr,
3658 Addr acc_addr, SizeT szB )
3659{
3660 SVal svNew = SVal_INVALID;
3661 stats__msm_write++;
3662
3663 /* Redundant sanity check on the constraints */
sewardj8f5374e2008-12-07 11:40:17 +00003664 if (CHECK_MSM) {
sewardjf98e1c02008-10-25 16:22:41 +00003665 tl_assert(is_sane_SVal_C(svOld));
3666 }
3667
3668 if (SVal__isC(svOld)) {
3669 POrd ord;
3670 VtsID tviW = acc_thr->viW;
3671 VtsID wmini = SVal__unC_Wmin(svOld);
3672
3673 ord = VtsID__getOrdering(wmini,tviW);
3674 if (ord == POrd_EQ || ord == POrd_LT) {
3675 /* no race */
3676 svNew = SVal__mkC( tviW, tviW );
3677 goto out;
3678 } else {
sewardjb0e009d2008-11-19 16:35:15 +00003679 VtsID tviR = acc_thr->viR;
sewardjf98e1c02008-10-25 16:22:41 +00003680 VtsID rmini = SVal__unC_Rmin(svOld);
sewardjb0e009d2008-11-19 16:35:15 +00003681 /* assert on sanity of constraints. */
3682 POrd ordxx = VtsID__getOrdering(rmini,wmini);
3683 tl_assert(ordxx == POrd_EQ || ordxx == POrd_LT);
sewardjf98e1c02008-10-25 16:22:41 +00003684 svNew = MSM_RACE2ERR
3685 ? SVal__mkE()
sewardj8f5374e2008-12-07 11:40:17 +00003686 /* One possibility is, after a race is seen, to
3687 set the location's constraints as aggressively
3688 (as far ahead) as possible. However, that just
3689 causes lots more races to be reported, which is
3690 very confusing. Hence don't do this. */
3691 /*
sewardjb0e009d2008-11-19 16:35:15 +00003692 : SVal__mkC( VtsID__join2(wmini,tviR),
sewardjf98e1c02008-10-25 16:22:41 +00003693 VtsID__join2(wmini,tviW) );
sewardj8f5374e2008-12-07 11:40:17 +00003694 */
3695 /* instead, re-set the constraints in a way which
3696 is consistent with (ie, as they would have been
3697 computed anyway) had no race been detected. */
sewardj3b0c4d72008-11-20 11:20:50 +00003698 : SVal__mkC( VtsID__join2(rmini,tviR),
3699 VtsID__join2(wmini,tviW) );
sewardjf98e1c02008-10-25 16:22:41 +00003700 record_race_info( acc_thr, acc_addr, szB, True/*isWrite*/,
3701 svOld, svNew );
3702 goto out;
3703 }
3704 }
3705 if (SVal__isA(svOld)) {
3706 /* writing no-access memory (sigh); leave unchanged */
3707 /* check for no pollution */
3708 tl_assert(svOld == SVal_NOACCESS);
3709 svNew = SVal_NOACCESS;
3710 goto out;
3711 }
3712 if (SVal__isE(svOld)) {
3713 /* no race, location is already "in error" */
3714 svNew = SVal__mkE();
3715 goto out;
3716 }
3717 VG_(printf)("msm_write: bad svOld: 0x%016llx\n", svOld);
3718 tl_assert(0);
3719
3720 out:
sewardj8f5374e2008-12-07 11:40:17 +00003721 if (CHECK_MSM) {
sewardjf98e1c02008-10-25 16:22:41 +00003722 tl_assert(is_sane_SVal_C(svNew));
3723 }
3724 tl_assert(svNew != SVal_INVALID);
3725 if (svNew != svOld) {
sewardj8f5374e2008-12-07 11:40:17 +00003726 if (SVal__isC(svOld) && SVal__isC(svNew)) {
sewardjc5ea9962008-12-07 01:41:46 +00003727 event_map_bind( acc_addr, szB, True/*isWrite*/, acc_thr );
sewardjf98e1c02008-10-25 16:22:41 +00003728 stats__msm_write_change++;
3729 }
3730 }
3731 return svNew;
3732}
3733
3734
3735/////////////////////////////////////////////////////////
3736// //
3737// Apply core MSM to specific memory locations //
3738// //
3739/////////////////////////////////////////////////////////
3740
3741/*------------- ZSM accesses: 8 bit apply ------------- */
3742
3743void zsm_apply8___msm_read ( Thr* thr, Addr a ) {
3744 CacheLine* cl;
3745 UWord cloff, tno, toff;
3746 SVal svOld, svNew;
3747 UShort descr;
3748 stats__cline_read8s++;
3749 cl = get_cacheline(a);
3750 cloff = get_cacheline_offset(a);
3751 tno = get_treeno(a);
3752 toff = get_tree_offset(a); /* == 0 .. 7 */
3753 descr = cl->descrs[tno];
3754 if (UNLIKELY( !(descr & (TREE_DESCR_8_0 << toff)) )) {
3755 SVal* tree = &cl->svals[tno << 3];
3756 cl->descrs[tno] = pulldown_to_8(tree, toff, descr);
sewardj8f5374e2008-12-07 11:40:17 +00003757 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00003758 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
3759 }
3760 svOld = cl->svals[cloff];
3761 svNew = msm_read( svOld, thr,a,1 );
3762 tl_assert(svNew != SVal_INVALID);
3763 cl->svals[cloff] = svNew;
3764}
3765
3766void zsm_apply8___msm_write ( Thr* thr, Addr a ) {
3767 CacheLine* cl;
3768 UWord cloff, tno, toff;
3769 SVal svOld, svNew;
3770 UShort descr;
3771 stats__cline_read8s++;
3772 cl = get_cacheline(a);
3773 cloff = get_cacheline_offset(a);
3774 tno = get_treeno(a);
3775 toff = get_tree_offset(a); /* == 0 .. 7 */
3776 descr = cl->descrs[tno];
3777 if (UNLIKELY( !(descr & (TREE_DESCR_8_0 << toff)) )) {
3778 SVal* tree = &cl->svals[tno << 3];
3779 cl->descrs[tno] = pulldown_to_8(tree, toff, descr);
sewardj8f5374e2008-12-07 11:40:17 +00003780 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00003781 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
3782 }
3783 svOld = cl->svals[cloff];
3784 svNew = msm_write( svOld, thr,a,1 );
3785 tl_assert(svNew != SVal_INVALID);
3786 cl->svals[cloff] = svNew;
3787}
3788
3789/*------------- ZSM accesses: 16 bit apply ------------- */
3790
3791void zsm_apply16___msm_read ( Thr* thr, Addr a ) {
3792 CacheLine* cl;
3793 UWord cloff, tno, toff;
3794 SVal svOld, svNew;
3795 UShort descr;
3796 stats__cline_read16s++;
3797 if (UNLIKELY(!aligned16(a))) goto slowcase;
3798 cl = get_cacheline(a);
3799 cloff = get_cacheline_offset(a);
3800 tno = get_treeno(a);
3801 toff = get_tree_offset(a); /* == 0, 2, 4 or 6 */
3802 descr = cl->descrs[tno];
3803 if (UNLIKELY( !(descr & (TREE_DESCR_16_0 << toff)) )) {
3804 if (valid_value_is_below_me_16(descr, toff)) {
3805 goto slowcase;
3806 } else {
3807 SVal* tree = &cl->svals[tno << 3];
3808 cl->descrs[tno] = pulldown_to_16(tree, toff, descr);
3809 }
sewardj8f5374e2008-12-07 11:40:17 +00003810 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00003811 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
3812 }
3813 svOld = cl->svals[cloff];
3814 svNew = msm_read( svOld, thr,a,2 );
3815 tl_assert(svNew != SVal_INVALID);
3816 cl->svals[cloff] = svNew;
3817 return;
3818 slowcase: /* misaligned, or must go further down the tree */
3819 stats__cline_16to8splits++;
3820 zsm_apply8___msm_read( thr, a + 0 );
3821 zsm_apply8___msm_read( thr, a + 1 );
3822}
3823
3824void zsm_apply16___msm_write ( Thr* thr, Addr a ) {
3825 CacheLine* cl;
3826 UWord cloff, tno, toff;
3827 SVal svOld, svNew;
3828 UShort descr;
3829 stats__cline_read16s++;
3830 if (UNLIKELY(!aligned16(a))) goto slowcase;
3831 cl = get_cacheline(a);
3832 cloff = get_cacheline_offset(a);
3833 tno = get_treeno(a);
3834 toff = get_tree_offset(a); /* == 0, 2, 4 or 6 */
3835 descr = cl->descrs[tno];
3836 if (UNLIKELY( !(descr & (TREE_DESCR_16_0 << toff)) )) {
3837 if (valid_value_is_below_me_16(descr, toff)) {
3838 goto slowcase;
3839 } else {
3840 SVal* tree = &cl->svals[tno << 3];
3841 cl->descrs[tno] = pulldown_to_16(tree, toff, descr);
3842 }
sewardj8f5374e2008-12-07 11:40:17 +00003843 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00003844 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
3845 }
3846 svOld = cl->svals[cloff];
3847 svNew = msm_write( svOld, thr,a,2 );
3848 tl_assert(svNew != SVal_INVALID);
3849 cl->svals[cloff] = svNew;
3850 return;
3851 slowcase: /* misaligned, or must go further down the tree */
3852 stats__cline_16to8splits++;
3853 zsm_apply8___msm_write( thr, a + 0 );
3854 zsm_apply8___msm_write( thr, a + 1 );
3855}
3856
3857/*------------- ZSM accesses: 32 bit apply ------------- */
3858
3859void zsm_apply32___msm_read ( Thr* thr, Addr a ) {
3860 CacheLine* cl;
3861 UWord cloff, tno, toff;
3862 SVal svOld, svNew;
3863 UShort descr;
3864 if (UNLIKELY(!aligned32(a))) goto slowcase;
3865 cl = get_cacheline(a);
3866 cloff = get_cacheline_offset(a);
3867 tno = get_treeno(a);
3868 toff = get_tree_offset(a); /* == 0 or 4 */
3869 descr = cl->descrs[tno];
3870 if (UNLIKELY( !(descr & (TREE_DESCR_32_0 << toff)) )) {
3871 if (valid_value_is_above_me_32(descr, toff)) {
3872 SVal* tree = &cl->svals[tno << 3];
3873 cl->descrs[tno] = pulldown_to_32(tree, toff, descr);
3874 } else {
3875 goto slowcase;
3876 }
sewardj8f5374e2008-12-07 11:40:17 +00003877 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00003878 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
3879 }
3880 svOld = cl->svals[cloff];
3881 svNew = msm_read( svOld, thr,a,4 );
3882 tl_assert(svNew != SVal_INVALID);
3883 cl->svals[cloff] = svNew;
3884 return;
3885 slowcase: /* misaligned, or must go further down the tree */
3886 stats__cline_32to16splits++;
3887 zsm_apply16___msm_read( thr, a + 0 );
3888 zsm_apply16___msm_read( thr, a + 2 );
3889}
3890
3891void zsm_apply32___msm_write ( Thr* thr, Addr a ) {
3892 CacheLine* cl;
3893 UWord cloff, tno, toff;
3894 SVal svOld, svNew;
3895 UShort descr;
3896 if (UNLIKELY(!aligned32(a))) goto slowcase;
3897 cl = get_cacheline(a);
3898 cloff = get_cacheline_offset(a);
3899 tno = get_treeno(a);
3900 toff = get_tree_offset(a); /* == 0 or 4 */
3901 descr = cl->descrs[tno];
3902 if (UNLIKELY( !(descr & (TREE_DESCR_32_0 << toff)) )) {
3903 if (valid_value_is_above_me_32(descr, toff)) {
3904 SVal* tree = &cl->svals[tno << 3];
3905 cl->descrs[tno] = pulldown_to_32(tree, toff, descr);
3906 } else {
3907 goto slowcase;
3908 }
sewardj8f5374e2008-12-07 11:40:17 +00003909 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00003910 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
3911 }
3912 svOld = cl->svals[cloff];
3913 svNew = msm_write( svOld, thr,a,4 );
3914 tl_assert(svNew != SVal_INVALID);
3915 cl->svals[cloff] = svNew;
3916 return;
3917 slowcase: /* misaligned, or must go further down the tree */
3918 stats__cline_32to16splits++;
3919 zsm_apply16___msm_write( thr, a + 0 );
3920 zsm_apply16___msm_write( thr, a + 2 );
3921}
3922
3923/*------------- ZSM accesses: 64 bit apply ------------- */
3924
3925void zsm_apply64___msm_read ( Thr* thr, Addr a ) {
3926 CacheLine* cl;
3927 UWord cloff, tno, toff;
3928 SVal svOld, svNew;
3929 UShort descr;
3930 stats__cline_read64s++;
3931 if (UNLIKELY(!aligned64(a))) goto slowcase;
3932 cl = get_cacheline(a);
3933 cloff = get_cacheline_offset(a);
3934 tno = get_treeno(a);
3935 toff = get_tree_offset(a); /* == 0, unused */
3936 descr = cl->descrs[tno];
3937 if (UNLIKELY( !(descr & TREE_DESCR_64) )) {
3938 goto slowcase;
3939 }
3940 svOld = cl->svals[cloff];
3941 svNew = msm_read( svOld, thr,a,8 );
3942 tl_assert(svNew != SVal_INVALID);
3943 cl->svals[cloff] = svNew;
3944 return;
3945 slowcase: /* misaligned, or must go further down the tree */
3946 stats__cline_64to32splits++;
3947 zsm_apply32___msm_read( thr, a + 0 );
3948 zsm_apply32___msm_read( thr, a + 4 );
3949}
3950
3951void zsm_apply64___msm_write ( Thr* thr, Addr a ) {
3952 CacheLine* cl;
3953 UWord cloff, tno, toff;
3954 SVal svOld, svNew;
3955 UShort descr;
3956 stats__cline_read64s++;
3957 if (UNLIKELY(!aligned64(a))) goto slowcase;
3958 cl = get_cacheline(a);
3959 cloff = get_cacheline_offset(a);
3960 tno = get_treeno(a);
3961 toff = get_tree_offset(a); /* == 0, unused */
3962 descr = cl->descrs[tno];
3963 if (UNLIKELY( !(descr & TREE_DESCR_64) )) {
3964 goto slowcase;
3965 }
3966 svOld = cl->svals[cloff];
3967 svNew = msm_write( svOld, thr,a,8 );
3968 tl_assert(svNew != SVal_INVALID);
3969 cl->svals[cloff] = svNew;
3970 return;
3971 slowcase: /* misaligned, or must go further down the tree */
3972 stats__cline_64to32splits++;
3973 zsm_apply32___msm_write( thr, a + 0 );
3974 zsm_apply32___msm_write( thr, a + 4 );
3975}
3976
3977/*--------------- ZSM accesses: 8 bit write --------------- */
3978
3979static
3980void zsm_write8 ( Addr a, SVal svNew ) {
3981 CacheLine* cl;
3982 UWord cloff, tno, toff;
3983 UShort descr;
3984 stats__cline_set8s++;
3985 cl = get_cacheline(a);
3986 cloff = get_cacheline_offset(a);
3987 tno = get_treeno(a);
3988 toff = get_tree_offset(a); /* == 0 .. 7 */
3989 descr = cl->descrs[tno];
3990 if (UNLIKELY( !(descr & (TREE_DESCR_8_0 << toff)) )) {
3991 SVal* tree = &cl->svals[tno << 3];
3992 cl->descrs[tno] = pulldown_to_8(tree, toff, descr);
sewardj8f5374e2008-12-07 11:40:17 +00003993 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00003994 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
3995 }
3996 tl_assert(svNew != SVal_INVALID);
3997 cl->svals[cloff] = svNew;
3998}
3999
4000/*--------------- ZSM accesses: 16 bit write --------------- */
4001
4002static
4003void zsm_write16 ( Addr a, SVal svNew ) {
4004 CacheLine* cl;
4005 UWord cloff, tno, toff;
4006 UShort descr;
4007 stats__cline_set16s++;
4008 if (UNLIKELY(!aligned16(a))) goto slowcase;
4009 cl = get_cacheline(a);
4010 cloff = get_cacheline_offset(a);
4011 tno = get_treeno(a);
4012 toff = get_tree_offset(a); /* == 0, 2, 4 or 6 */
4013 descr = cl->descrs[tno];
4014 if (UNLIKELY( !(descr & (TREE_DESCR_16_0 << toff)) )) {
4015 if (valid_value_is_below_me_16(descr, toff)) {
4016 /* Writing at this level. Need to fix up 'descr'. */
4017 cl->descrs[tno] = pullup_descr_to_16(descr, toff);
4018 /* At this point, the tree does not match cl->descr[tno] any
4019 more. The assignments below will fix it up. */
4020 } else {
4021 /* We can't indiscriminately write on the w16 node as in the
4022 w64 case, as that might make the node inconsistent with
4023 its parent. So first, pull down to this level. */
4024 SVal* tree = &cl->svals[tno << 3];
4025 cl->descrs[tno] = pulldown_to_16(tree, toff, descr);
sewardj8f5374e2008-12-07 11:40:17 +00004026 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00004027 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
4028 }
4029 }
4030 tl_assert(svNew != SVal_INVALID);
4031 cl->svals[cloff + 0] = svNew;
4032 cl->svals[cloff + 1] = SVal_INVALID;
4033 return;
4034 slowcase: /* misaligned */
4035 stats__cline_16to8splits++;
4036 zsm_write8( a + 0, svNew );
4037 zsm_write8( a + 1, svNew );
4038}
4039
4040/*--------------- ZSM accesses: 32 bit write --------------- */
4041
4042static
4043void zsm_write32 ( Addr a, SVal svNew ) {
4044 CacheLine* cl;
4045 UWord cloff, tno, toff;
4046 UShort descr;
4047 stats__cline_set32s++;
4048 if (UNLIKELY(!aligned32(a))) goto slowcase;
4049 cl = get_cacheline(a);
4050 cloff = get_cacheline_offset(a);
4051 tno = get_treeno(a);
4052 toff = get_tree_offset(a); /* == 0 or 4 */
4053 descr = cl->descrs[tno];
4054 if (UNLIKELY( !(descr & (TREE_DESCR_32_0 << toff)) )) {
4055 if (valid_value_is_above_me_32(descr, toff)) {
4056 /* We can't indiscriminately write on the w32 node as in the
4057 w64 case, as that might make the node inconsistent with
4058 its parent. So first, pull down to this level. */
4059 SVal* tree = &cl->svals[tno << 3];
4060 cl->descrs[tno] = pulldown_to_32(tree, toff, descr);
sewardj8f5374e2008-12-07 11:40:17 +00004061 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00004062 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
4063 } else {
4064 /* Writing at this level. Need to fix up 'descr'. */
4065 cl->descrs[tno] = pullup_descr_to_32(descr, toff);
4066 /* At this point, the tree does not match cl->descr[tno] any
4067 more. The assignments below will fix it up. */
4068 }
4069 }
4070 tl_assert(svNew != SVal_INVALID);
4071 cl->svals[cloff + 0] = svNew;
4072 cl->svals[cloff + 1] = SVal_INVALID;
4073 cl->svals[cloff + 2] = SVal_INVALID;
4074 cl->svals[cloff + 3] = SVal_INVALID;
4075 return;
4076 slowcase: /* misaligned */
4077 stats__cline_32to16splits++;
4078 zsm_write16( a + 0, svNew );
4079 zsm_write16( a + 2, svNew );
4080}
4081
4082/*--------------- ZSM accesses: 64 bit write --------------- */
4083
4084static
4085void zsm_write64 ( Addr a, SVal svNew ) {
4086 CacheLine* cl;
4087 UWord cloff, tno, toff;
4088 stats__cline_set64s++;
4089 if (UNLIKELY(!aligned64(a))) goto slowcase;
4090 cl = get_cacheline(a);
4091 cloff = get_cacheline_offset(a);
4092 tno = get_treeno(a);
4093 toff = get_tree_offset(a); /* == 0 */
4094 cl->descrs[tno] = TREE_DESCR_64;
4095 tl_assert(svNew != SVal_INVALID);
4096 cl->svals[cloff + 0] = svNew;
4097 cl->svals[cloff + 1] = SVal_INVALID;
4098 cl->svals[cloff + 2] = SVal_INVALID;
4099 cl->svals[cloff + 3] = SVal_INVALID;
4100 cl->svals[cloff + 4] = SVal_INVALID;
4101 cl->svals[cloff + 5] = SVal_INVALID;
4102 cl->svals[cloff + 6] = SVal_INVALID;
4103 cl->svals[cloff + 7] = SVal_INVALID;
4104 return;
4105 slowcase: /* misaligned */
4106 stats__cline_64to32splits++;
4107 zsm_write32( a + 0, svNew );
4108 zsm_write32( a + 4, svNew );
4109}
4110
4111/*------------- ZSM accesses: 8 bit read/copy ------------- */
4112
4113static
4114SVal zsm_read8 ( Addr a ) {
4115 CacheLine* cl;
4116 UWord cloff, tno, toff;
4117 UShort descr;
4118 stats__cline_get8s++;
4119 cl = get_cacheline(a);
4120 cloff = get_cacheline_offset(a);
4121 tno = get_treeno(a);
4122 toff = get_tree_offset(a); /* == 0 .. 7 */
4123 descr = cl->descrs[tno];
4124 if (UNLIKELY( !(descr & (TREE_DESCR_8_0 << toff)) )) {
4125 SVal* tree = &cl->svals[tno << 3];
4126 cl->descrs[tno] = pulldown_to_8(tree, toff, descr);
4127 }
4128 return cl->svals[cloff];
4129}
4130
4131static void zsm_copy8 ( Addr src, Addr dst, Bool uu_normalise ) {
4132 SVal sv;
4133 stats__cline_copy8s++;
4134 sv = zsm_read8( src );
4135 zsm_write8( dst, sv );
4136}
4137
4138/* ------------ Shadow memory range setting ops ------------ */
4139
4140void zsm_apply_range___msm_read ( Thr* thr,
4141 Addr a, SizeT len )
4142{
4143 /* fast track a couple of common cases */
4144 if (len == 4 && aligned32(a)) {
4145 zsm_apply32___msm_read( thr, a );
4146 return;
4147 }
4148 if (len == 8 && aligned64(a)) {
4149 zsm_apply64___msm_read( thr, a );
4150 return;
4151 }
4152
4153 /* be completely general (but as efficient as possible) */
4154 if (len == 0) return;
4155
4156 if (!aligned16(a) && len >= 1) {
4157 zsm_apply8___msm_read( thr, a );
4158 a += 1;
4159 len -= 1;
4160 tl_assert(aligned16(a));
4161 }
4162 if (len == 0) return;
4163
4164 if (!aligned32(a) && len >= 2) {
4165 zsm_apply16___msm_read( thr, a );
4166 a += 2;
4167 len -= 2;
4168 tl_assert(aligned32(a));
4169 }
4170 if (len == 0) return;
4171
4172 if (!aligned64(a) && len >= 4) {
4173 zsm_apply32___msm_read( thr, a );
4174 a += 4;
4175 len -= 4;
4176 tl_assert(aligned64(a));
4177 }
4178 if (len == 0) return;
4179
4180 if (len >= 8) {
4181 tl_assert(aligned64(a));
4182 while (len >= 8) {
4183 zsm_apply64___msm_read( thr, a );
4184 a += 8;
4185 len -= 8;
4186 }
4187 tl_assert(aligned64(a));
4188 }
4189 if (len == 0) return;
4190
4191 if (len >= 4)
4192 tl_assert(aligned32(a));
4193 if (len >= 4) {
4194 zsm_apply32___msm_read( thr, a );
4195 a += 4;
4196 len -= 4;
4197 }
4198 if (len == 0) return;
4199
4200 if (len >= 2)
4201 tl_assert(aligned16(a));
4202 if (len >= 2) {
4203 zsm_apply16___msm_read( thr, a );
4204 a += 2;
4205 len -= 2;
4206 }
4207 if (len == 0) return;
4208
4209 if (len >= 1) {
4210 zsm_apply8___msm_read( thr, a );
4211 a += 1;
4212 len -= 1;
4213 }
4214 tl_assert(len == 0);
4215}
4216
4217
4218
4219void zsm_apply_range___msm_write ( Thr* thr,
4220 Addr a, SizeT len )
4221{
4222 /* fast track a couple of common cases */
4223 if (len == 4 && aligned32(a)) {
4224 zsm_apply32___msm_write( thr, a );
4225 return;
4226 }
4227 if (len == 8 && aligned64(a)) {
4228 zsm_apply64___msm_write( thr, a );
4229 return;
4230 }
4231
4232 /* be completely general (but as efficient as possible) */
4233 if (len == 0) return;
4234
4235 if (!aligned16(a) && len >= 1) {
4236 zsm_apply8___msm_write( thr, a );
4237 a += 1;
4238 len -= 1;
4239 tl_assert(aligned16(a));
4240 }
4241 if (len == 0) return;
4242
4243 if (!aligned32(a) && len >= 2) {
4244 zsm_apply16___msm_write( thr, a );
4245 a += 2;
4246 len -= 2;
4247 tl_assert(aligned32(a));
4248 }
4249 if (len == 0) return;
4250
4251 if (!aligned64(a) && len >= 4) {
4252 zsm_apply32___msm_write( thr, a );
4253 a += 4;
4254 len -= 4;
4255 tl_assert(aligned64(a));
4256 }
4257 if (len == 0) return;
4258
4259 if (len >= 8) {
4260 tl_assert(aligned64(a));
4261 while (len >= 8) {
4262 zsm_apply64___msm_write( thr, a );
4263 a += 8;
4264 len -= 8;
4265 }
4266 tl_assert(aligned64(a));
4267 }
4268 if (len == 0) return;
4269
4270 if (len >= 4)
4271 tl_assert(aligned32(a));
4272 if (len >= 4) {
4273 zsm_apply32___msm_write( thr, a );
4274 a += 4;
4275 len -= 4;
4276 }
4277 if (len == 0) return;
4278
4279 if (len >= 2)
4280 tl_assert(aligned16(a));
4281 if (len >= 2) {
4282 zsm_apply16___msm_write( thr, a );
4283 a += 2;
4284 len -= 2;
4285 }
4286 if (len == 0) return;
4287
4288 if (len >= 1) {
4289 zsm_apply8___msm_write( thr, a );
4290 a += 1;
4291 len -= 1;
4292 }
4293 tl_assert(len == 0);
4294}
4295
4296
4297
4298
4299/* Block-copy states (needed for implementing realloc()). */
4300
4301static void zsm_copy_range ( Addr src, Addr dst, SizeT len )
4302{
4303 SizeT i;
4304 if (len == 0)
4305 return;
4306
4307 /* assert for non-overlappingness */
4308 tl_assert(src+len <= dst || dst+len <= src);
4309
4310 /* To be simple, just copy byte by byte. But so as not to wreck
4311 performance for later accesses to dst[0 .. len-1], normalise
4312 destination lines as we finish with them, and also normalise the
4313 line containing the first and last address. */
4314 for (i = 0; i < len; i++) {
4315 Bool normalise
4316 = get_cacheline_offset( dst+i+1 ) == 0 /* last in line */
4317 || i == 0 /* first in range */
4318 || i == len-1; /* last in range */
4319 zsm_copy8( src+i, dst+i, normalise );
4320 }
4321}
4322
4323
4324/* For setting address ranges to a given value. Has considerable
4325 sophistication so as to avoid generating large numbers of pointless
4326 cache loads/writebacks for large ranges. */
4327
4328/* Do small ranges in-cache, in the obvious way. */
4329static
4330void zsm_set_range_SMALL ( Addr a, SizeT len, SVal svNew )
4331{
4332 /* fast track a couple of common cases */
4333 if (len == 4 && aligned32(a)) {
4334 zsm_write32( a, svNew );
4335 return;
4336 }
4337 if (len == 8 && aligned64(a)) {
4338 zsm_write64( a, svNew );
4339 return;
4340 }
4341
4342 /* be completely general (but as efficient as possible) */
4343 if (len == 0) return;
4344
4345 if (!aligned16(a) && len >= 1) {
4346 zsm_write8( a, svNew );
4347 a += 1;
4348 len -= 1;
4349 tl_assert(aligned16(a));
4350 }
4351 if (len == 0) return;
4352
4353 if (!aligned32(a) && len >= 2) {
4354 zsm_write16( a, svNew );
4355 a += 2;
4356 len -= 2;
4357 tl_assert(aligned32(a));
4358 }
4359 if (len == 0) return;
4360
4361 if (!aligned64(a) && len >= 4) {
4362 zsm_write32( a, svNew );
4363 a += 4;
4364 len -= 4;
4365 tl_assert(aligned64(a));
4366 }
4367 if (len == 0) return;
4368
4369 if (len >= 8) {
4370 tl_assert(aligned64(a));
4371 while (len >= 8) {
4372 zsm_write64( a, svNew );
4373 a += 8;
4374 len -= 8;
4375 }
4376 tl_assert(aligned64(a));
4377 }
4378 if (len == 0) return;
4379
4380 if (len >= 4)
4381 tl_assert(aligned32(a));
4382 if (len >= 4) {
4383 zsm_write32( a, svNew );
4384 a += 4;
4385 len -= 4;
4386 }
4387 if (len == 0) return;
4388
4389 if (len >= 2)
4390 tl_assert(aligned16(a));
4391 if (len >= 2) {
4392 zsm_write16( a, svNew );
4393 a += 2;
4394 len -= 2;
4395 }
4396 if (len == 0) return;
4397
4398 if (len >= 1) {
4399 zsm_write8( a, svNew );
4400 a += 1;
4401 len -= 1;
4402 }
4403 tl_assert(len == 0);
4404}
4405
4406
4407/* If we're doing a small range, hand off to zsm_set_range_SMALL. But
4408 for larger ranges, try to operate directly on the out-of-cache
4409 representation, rather than dragging lines into the cache,
4410 overwriting them, and forcing them out. This turns out to be an
4411 important performance optimisation. */
4412
4413static void zsm_set_range ( Addr a, SizeT len, SVal svNew )
4414{
4415 tl_assert(svNew != SVal_INVALID);
4416 stats__cache_make_New_arange += (ULong)len;
4417
4418 if (0 && len > 500)
4419 VG_(printf)("make New ( %#lx, %ld )\n", a, len );
4420
4421 if (0) {
4422 static UWord n_New_in_cache = 0;
4423 static UWord n_New_not_in_cache = 0;
4424 /* tag is 'a' with the in-line offset masked out,
4425 eg a[31]..a[4] 0000 */
4426 Addr tag = a & ~(N_LINE_ARANGE - 1);
4427 UWord wix = (a >> N_LINE_BITS) & (N_WAY_NENT - 1);
4428 if (LIKELY(tag == cache_shmem.tags0[wix])) {
4429 n_New_in_cache++;
4430 } else {
4431 n_New_not_in_cache++;
4432 }
4433 if (0 == ((n_New_in_cache + n_New_not_in_cache) % 100000))
4434 VG_(printf)("shadow_mem_make_New: IN %lu OUT %lu\n",
4435 n_New_in_cache, n_New_not_in_cache );
4436 }
4437
4438 if (LIKELY(len < 2 * N_LINE_ARANGE)) {
4439 zsm_set_range_SMALL( a, len, svNew );
4440 } else {
4441 Addr before_start = a;
4442 Addr aligned_start = cacheline_ROUNDUP(a);
4443 Addr after_start = cacheline_ROUNDDN(a + len);
4444 UWord before_len = aligned_start - before_start;
4445 UWord aligned_len = after_start - aligned_start;
4446 UWord after_len = a + len - after_start;
4447 tl_assert(before_start <= aligned_start);
4448 tl_assert(aligned_start <= after_start);
4449 tl_assert(before_len < N_LINE_ARANGE);
4450 tl_assert(after_len < N_LINE_ARANGE);
4451 tl_assert(get_cacheline_offset(aligned_start) == 0);
4452 if (get_cacheline_offset(a) == 0) {
4453 tl_assert(before_len == 0);
4454 tl_assert(a == aligned_start);
4455 }
4456 if (get_cacheline_offset(a+len) == 0) {
4457 tl_assert(after_len == 0);
4458 tl_assert(after_start == a+len);
4459 }
4460 if (before_len > 0) {
4461 zsm_set_range_SMALL( before_start, before_len, svNew );
4462 }
4463 if (after_len > 0) {
4464 zsm_set_range_SMALL( after_start, after_len, svNew );
4465 }
4466 stats__cache_make_New_inZrep += (ULong)aligned_len;
4467
4468 while (1) {
4469 Addr tag;
4470 UWord wix;
4471 if (aligned_start >= after_start)
4472 break;
4473 tl_assert(get_cacheline_offset(aligned_start) == 0);
4474 tag = aligned_start & ~(N_LINE_ARANGE - 1);
4475 wix = (aligned_start >> N_LINE_BITS) & (N_WAY_NENT - 1);
4476 if (tag == cache_shmem.tags0[wix]) {
4477 UWord i;
4478 for (i = 0; i < N_LINE_ARANGE / 8; i++)
4479 zsm_write64( aligned_start + i * 8, svNew );
4480 } else {
4481 UWord i;
4482 Word zix;
4483 SecMap* sm;
4484 LineZ* lineZ;
4485 /* This line is not in the cache. Do not force it in; instead
4486 modify it in-place. */
4487 /* find the Z line to write in and rcdec it or the
4488 associated F line. */
4489 find_Z_for_writing( &sm, &zix, tag );
4490 tl_assert(sm);
4491 tl_assert(zix >= 0 && zix < N_SECMAP_ZLINES);
4492 lineZ = &sm->linesZ[zix];
4493 lineZ->dict[0] = svNew;
4494 lineZ->dict[1] = lineZ->dict[2] = lineZ->dict[3] = SVal_INVALID;
4495 for (i = 0; i < N_LINE_ARANGE/4; i++)
4496 lineZ->ix2s[i] = 0; /* all refer to dict[0] */
4497 rcinc_LineZ(lineZ);
4498 }
4499 aligned_start += N_LINE_ARANGE;
4500 aligned_len -= N_LINE_ARANGE;
4501 }
4502 tl_assert(aligned_start == after_start);
4503 tl_assert(aligned_len == 0);
4504 }
4505}
4506
4507
4508/////////////////////////////////////////////////////////
4509// //
4510// Synchronisation objects //
4511// //
4512/////////////////////////////////////////////////////////
4513
4514// (UInt) `echo "Synchronisation object" | md5sum`
4515#define SO_MAGIC 0x56b3c5b0U
4516
4517struct _SO {
4518 VtsID viR; /* r-clock of sender */
4519 VtsID viW; /* w-clock of sender */
4520 UInt magic;
4521};
4522
4523static SO* SO__Alloc ( void ) {
4524 SO* so = HG_(zalloc)( "libhb.SO__Alloc.1", sizeof(SO) );
4525 so->viR = VtsID_INVALID;
4526 so->viW = VtsID_INVALID;
4527 so->magic = SO_MAGIC;
4528 return so;
4529}
4530static void SO__Dealloc ( SO* so ) {
4531 tl_assert(so);
4532 tl_assert(so->magic == SO_MAGIC);
4533 if (so->viR == VtsID_INVALID) {
4534 tl_assert(so->viW == VtsID_INVALID);
4535 } else {
4536 tl_assert(so->viW != VtsID_INVALID);
4537 VtsID__rcdec(so->viR);
4538 VtsID__rcdec(so->viW);
4539 }
4540 so->magic = 0;
4541 HG_(free)( so );
4542}
4543
4544
4545/////////////////////////////////////////////////////////
4546// //
4547// Top Level API //
4548// //
4549/////////////////////////////////////////////////////////
4550
4551static void show_thread_state ( HChar* str, Thr* t )
4552{
4553 if (1) return;
4554 if (t->viR == t->viW) {
4555 VG_(printf)("thr \"%s\" %p has vi* %u==", str, t, t->viR );
4556 VtsID__pp( t->viR );
4557 VG_(printf)("%s","\n");
4558 } else {
4559 VG_(printf)("thr \"%s\" %p has viR %u==", str, t, t->viR );
4560 VtsID__pp( t->viR );
4561 VG_(printf)(" viW %u==", t->viW);
4562 VtsID__pp( t->viW );
4563 VG_(printf)("%s","\n");
4564 }
4565}
4566
4567
4568Thr* libhb_init (
4569 void (*get_stacktrace)( Thr*, Addr*, UWord ),
sewardjd52392d2008-11-08 20:36:26 +00004570 ExeContext* (*get_EC)( Thr* )
sewardjf98e1c02008-10-25 16:22:41 +00004571 )
4572{
4573 Thr* thr;
4574 VtsID vi;
4575 tl_assert(get_stacktrace);
sewardjf98e1c02008-10-25 16:22:41 +00004576 tl_assert(get_EC);
4577 main_get_stacktrace = get_stacktrace;
sewardjf98e1c02008-10-25 16:22:41 +00004578 main_get_EC = get_EC;
4579
4580 // No need to initialise hg_wordfm.
4581 // No need to initialise hg_wordset.
4582
4583 vts_set_init();
4584 vts_tab_init();
4585 event_map_init();
4586 VtsID__invalidate_caches();
4587
4588 // initialise shadow memory
4589 zsm_init( SVal__rcinc, SVal__rcdec );
4590
4591 thr = Thr__new();
4592 vi = VtsID__mk_Singleton( thr, 1 );
4593 thr->viR = vi;
4594 thr->viW = vi;
4595 VtsID__rcinc(thr->viR);
4596 VtsID__rcinc(thr->viW);
4597
4598 show_thread_state(" root", thr);
4599 return thr;
4600}
4601
4602Thr* libhb_create ( Thr* parent )
4603{
4604 /* The child's VTSs are copies of the parent's VTSs, but ticked at
4605 the child's index. Since the child's index is guaranteed
4606 unique, it has never been seen before, so the implicit value
4607 before the tick is zero and after that is one. */
4608 Thr* child = Thr__new();
4609
4610 child->viR = VtsID__tick( parent->viR, child );
4611 child->viW = VtsID__tick( parent->viW, child );
4612 VtsID__rcinc(child->viR);
4613 VtsID__rcinc(child->viW);
4614
4615 tl_assert(VtsID__indexAt( child->viR, child ) == 1);
4616 tl_assert(VtsID__indexAt( child->viW, child ) == 1);
4617
4618 /* and the parent has to move along too */
4619 VtsID__rcdec(parent->viR);
4620 VtsID__rcdec(parent->viW);
4621 parent->viR = VtsID__tick( parent->viR, parent );
4622 parent->viW = VtsID__tick( parent->viW, parent );
4623 VtsID__rcinc(parent->viR);
4624 VtsID__rcinc(parent->viW);
4625
4626 show_thread_state(" child", child);
4627 show_thread_state("parent", parent);
4628
4629 return child;
4630}
4631
4632/* Shut down the library, and print stats (in fact that's _all_
4633 this is for. */
4634void libhb_shutdown ( Bool show_stats )
4635{
4636 if (show_stats) {
4637 VG_(printf)("%s","<<< BEGIN libhb stats >>>\n");
4638 VG_(printf)(" secmaps: %'10lu allocd (%'12lu g-a-range)\n",
4639 stats__secmaps_allocd,
4640 stats__secmap_ga_space_covered);
4641 VG_(printf)(" linesZ: %'10lu allocd (%'12lu bytes occupied)\n",
4642 stats__secmap_linesZ_allocd,
4643 stats__secmap_linesZ_bytes);
4644 VG_(printf)(" linesF: %'10lu allocd (%'12lu bytes occupied)\n",
4645 stats__secmap_linesF_allocd,
4646 stats__secmap_linesF_bytes);
4647 VG_(printf)(" secmaps: %'10lu iterator steppings\n",
4648 stats__secmap_iterator_steppings);
4649 VG_(printf)(" secmaps: %'10lu searches (%'12lu slow)\n",
4650 stats__secmaps_search, stats__secmaps_search_slow);
4651
4652 VG_(printf)("%s","\n");
4653 VG_(printf)(" cache: %'lu totrefs (%'lu misses)\n",
4654 stats__cache_totrefs, stats__cache_totmisses );
4655 VG_(printf)(" cache: %'14lu Z-fetch, %'14lu F-fetch\n",
4656 stats__cache_Z_fetches, stats__cache_F_fetches );
4657 VG_(printf)(" cache: %'14lu Z-wback, %'14lu F-wback\n",
4658 stats__cache_Z_wbacks, stats__cache_F_wbacks );
4659 VG_(printf)(" cache: %'14lu invals, %'14lu flushes\n",
4660 stats__cache_invals, stats__cache_flushes );
4661 VG_(printf)(" cache: %'14llu arange_New %'14llu direct-to-Zreps\n",
4662 stats__cache_make_New_arange,
4663 stats__cache_make_New_inZrep);
4664
4665 VG_(printf)("%s","\n");
4666 VG_(printf)(" cline: %'10lu normalises\n",
4667 stats__cline_normalises );
4668 VG_(printf)(" cline: rds 8/4/2/1: %'13lu %'13lu %'13lu %'13lu\n",
4669 stats__cline_read64s,
4670 stats__cline_read32s,
4671 stats__cline_read16s,
4672 stats__cline_read8s );
4673 VG_(printf)(" cline: wrs 8/4/2/1: %'13lu %'13lu %'13lu %'13lu\n",
4674 stats__cline_write64s,
4675 stats__cline_write32s,
4676 stats__cline_write16s,
4677 stats__cline_write8s );
4678 VG_(printf)(" cline: sets 8/4/2/1: %'13lu %'13lu %'13lu %'13lu\n",
4679 stats__cline_set64s,
4680 stats__cline_set32s,
4681 stats__cline_set16s,
4682 stats__cline_set8s );
4683 VG_(printf)(" cline: get1s %'lu, copy1s %'lu\n",
4684 stats__cline_get8s, stats__cline_copy8s );
4685 VG_(printf)(" cline: splits: 8to4 %'12lu 4to2 %'12lu 2to1 %'12lu\n",
4686 stats__cline_64to32splits,
4687 stats__cline_32to16splits,
4688 stats__cline_16to8splits );
4689 VG_(printf)(" cline: pulldowns: 8to4 %'12lu 4to2 %'12lu 2to1 %'12lu\n",
4690 stats__cline_64to32pulldown,
4691 stats__cline_32to16pulldown,
4692 stats__cline_16to8pulldown );
4693 if (0)
4694 VG_(printf)(" cline: sizeof(CacheLineZ) %ld, covers %ld bytes of arange\n",
4695 (Word)sizeof(LineZ), (Word)N_LINE_ARANGE);
4696
4697 VG_(printf)("%s","\n");
4698
4699 VG_(printf)(" libhb: %'13llu msm_read (%'llu changed)\n",
4700 stats__msm_read, stats__msm_read_change);
4701 VG_(printf)(" libhb: %'13llu msm_write (%'llu changed)\n",
4702 stats__msm_write, stats__msm_write_change);
4703 VG_(printf)(" libhb: %'13llu getOrd queries (%'llu misses)\n",
4704 stats__getOrdering_queries, stats__getOrdering_misses);
4705 VG_(printf)(" libhb: %'13llu join2 queries (%'llu misses)\n",
4706 stats__join2_queries, stats__join2_misses);
4707
4708 VG_(printf)("%s","\n");
4709 VG_(printf)(
4710 " libhb: %ld entries in vts_table (approximately %lu bytes)\n",
4711 VG_(sizeXA)( vts_tab ), VG_(sizeXA)( vts_tab ) * sizeof(VtsTE)
4712 );
4713 VG_(printf)( " libhb: %lu entries in vts_set\n",
4714 VG_(sizeFM)( vts_set ) );
4715
4716 VG_(printf)("%s","\n");
4717 VG_(printf)( " libhb: ctxt__rcdec: 1=%lu(%lu eq), 2=%lu, 3=%lu\n",
4718 stats__ctxt_rcdec1, stats__ctxt_rcdec1_eq,
4719 stats__ctxt_rcdec2,
4720 stats__ctxt_rcdec3 );
4721 VG_(printf)( " libhb: ctxt__rcdec: calls %lu, discards %lu\n",
4722 stats__ctxt_rcdec_calls, stats__ctxt_rcdec_discards);
4723 VG_(printf)( " libhb: contextTab: %lu slots, %lu max ents\n",
4724 (UWord)N_RCEC_TAB,
4725 stats__ctxt_tab_curr );
4726 VG_(printf)( " libhb: contextTab: %lu queries, %lu cmps\n",
4727 stats__ctxt_tab_qs,
4728 stats__ctxt_tab_cmps );
4729#if 0
4730 VG_(printf)("sizeof(AvlNode) = %lu\n", sizeof(AvlNode));
4731 VG_(printf)("sizeof(WordBag) = %lu\n", sizeof(WordBag));
4732 VG_(printf)("sizeof(MaybeWord) = %lu\n", sizeof(MaybeWord));
4733 VG_(printf)("sizeof(CacheLine) = %lu\n", sizeof(CacheLine));
4734 VG_(printf)("sizeof(LineZ) = %lu\n", sizeof(LineZ));
4735 VG_(printf)("sizeof(LineF) = %lu\n", sizeof(LineF));
4736 VG_(printf)("sizeof(SecMap) = %lu\n", sizeof(SecMap));
4737 VG_(printf)("sizeof(Cache) = %lu\n", sizeof(Cache));
4738 VG_(printf)("sizeof(SMCacheEnt) = %lu\n", sizeof(SMCacheEnt));
4739 VG_(printf)("sizeof(CountedSVal) = %lu\n", sizeof(CountedSVal));
4740 VG_(printf)("sizeof(VTS) = %lu\n", sizeof(VTS));
4741 VG_(printf)("sizeof(ScalarTS) = %lu\n", sizeof(ScalarTS));
4742 VG_(printf)("sizeof(VtsTE) = %lu\n", sizeof(VtsTE));
4743 VG_(printf)("sizeof(MSMInfo) = %lu\n", sizeof(MSMInfo));
4744
4745 VG_(printf)("sizeof(struct _XArray) = %lu\n", sizeof(struct _XArray));
4746 VG_(printf)("sizeof(struct _WordFM) = %lu\n", sizeof(struct _WordFM));
4747 VG_(printf)("sizeof(struct _Thr) = %lu\n", sizeof(struct _Thr));
4748 VG_(printf)("sizeof(struct _SO) = %lu\n", sizeof(struct _SO));
4749#endif
4750
4751 VG_(printf)("%s","<<< END libhb stats >>>\n");
4752 VG_(printf)("%s","\n");
4753
4754 }
4755}
4756
4757void libhb_async_exit ( Thr* thr )
4758{
4759 /* is there anything we need to do? */
4760}
4761
4762/* Both Segs and SOs point to VTSs. However, there is no sharing, so
4763 a Seg that points at a VTS is its one-and-only owner, and ditto for
4764 a SO that points at a VTS. */
4765
4766SO* libhb_so_alloc ( void )
4767{
4768 return SO__Alloc();
4769}
4770
4771void libhb_so_dealloc ( SO* so )
4772{
4773 tl_assert(so);
4774 tl_assert(so->magic == SO_MAGIC);
4775 SO__Dealloc(so);
4776}
4777
4778/* See comments in libhb.h for details on the meaning of
4779 strong vs weak sends and strong vs weak receives. */
4780void libhb_so_send ( Thr* thr, SO* so, Bool strong_send )
4781{
4782 /* Copy the VTSs from 'thr' into the sync object, and then move
4783 the thread along one step. */
4784
4785 tl_assert(so);
4786 tl_assert(so->magic == SO_MAGIC);
4787
4788 /* stay sane .. a thread's read-clock must always lead or be the
4789 same as its write-clock */
4790 { POrd ord = VtsID__getOrdering(thr->viW, thr->viR);
4791 tl_assert(ord == POrd_EQ || ord == POrd_LT);
4792 }
4793
4794 /* since we're overwriting the VtsIDs in the SO, we need to drop
4795 any references made by the previous contents thereof */
4796 if (so->viR == VtsID_INVALID) {
4797 tl_assert(so->viW == VtsID_INVALID);
4798 so->viR = thr->viR;
4799 so->viW = thr->viW;
4800 VtsID__rcinc(so->viR);
4801 VtsID__rcinc(so->viW);
4802 } else {
4803 /* In a strong send, we dump any previous VC in the SO and
4804 install the sending thread's VC instead. For a weak send we
4805 must join2 with what's already there. */
4806 tl_assert(so->viW != VtsID_INVALID);
4807 VtsID__rcdec(so->viR);
4808 VtsID__rcdec(so->viW);
4809 so->viR = strong_send ? thr->viR : VtsID__join2( so->viR, thr->viR );
4810 so->viW = strong_send ? thr->viW : VtsID__join2( so->viW, thr->viW );
4811 VtsID__rcinc(so->viR);
4812 VtsID__rcinc(so->viW);
4813 }
4814
4815 /* move both parent clocks along */
4816 VtsID__rcdec(thr->viR);
4817 VtsID__rcdec(thr->viW);
4818 thr->viR = VtsID__tick( thr->viR, thr );
4819 thr->viW = VtsID__tick( thr->viW, thr );
4820 VtsID__rcinc(thr->viR);
4821 VtsID__rcinc(thr->viW);
4822 if (strong_send)
4823 show_thread_state("s-send", thr);
4824 else
4825 show_thread_state("w-send", thr);
4826}
4827
4828void libhb_so_recv ( Thr* thr, SO* so, Bool strong_recv )
4829{
4830 tl_assert(so);
4831 tl_assert(so->magic == SO_MAGIC);
4832
4833 if (so->viR != VtsID_INVALID) {
4834 tl_assert(so->viW != VtsID_INVALID);
4835
4836 /* Weak receive (basically, an R-acquisition of a R-W lock).
4837 This advances the read-clock of the receiver, but not the
4838 write-clock. */
4839 VtsID__rcdec(thr->viR);
4840 thr->viR = VtsID__join2( thr->viR, so->viR );
4841 VtsID__rcinc(thr->viR);
4842
4843 /* For a strong receive, we also advance the receiver's write
4844 clock, which means the receive as a whole is essentially
4845 equivalent to a W-acquisition of a R-W lock. */
4846 if (strong_recv) {
4847 VtsID__rcdec(thr->viW);
4848 thr->viW = VtsID__join2( thr->viW, so->viW );
4849 VtsID__rcinc(thr->viW);
4850 }
4851
4852 if (strong_recv)
4853 show_thread_state("s-recv", thr);
4854 else
4855 show_thread_state("w-recv", thr);
4856
4857 } else {
4858 tl_assert(so->viW == VtsID_INVALID);
4859 /* Deal with degenerate case: 'so' has no vts, so there has been
4860 no message posted to it. Just ignore this case. */
4861 show_thread_state("d-recv", thr);
4862 }
4863}
4864
4865Bool libhb_so_everSent ( SO* so )
4866{
4867 if (so->viR == VtsID_INVALID) {
4868 tl_assert(so->viW == VtsID_INVALID);
4869 return False;
4870 } else {
4871 tl_assert(so->viW != VtsID_INVALID);
4872 return True;
4873 }
4874}
4875
4876#define XXX1 0 // 0x67a106c
4877#define XXX2 0
4878
4879static Bool TRACEME(Addr a, SizeT szB) {
4880 if (XXX1 && a <= XXX1 && XXX1 <= a+szB) return True;
4881 if (XXX2 && a <= XXX2 && XXX2 <= a+szB) return True;
4882 return False;
4883}
4884static void trace ( Thr* thr, Addr a, SizeT szB, HChar* s ) {
4885 SVal sv = zsm_read8(a);
4886 VG_(printf)("thr %p (%#lx,%lu) %s: 0x%016llx ", thr,a,szB,s,sv);
4887 show_thread_state("", thr);
4888 VG_(printf)("%s","\n");
4889}
4890
4891void libhb_range_new ( Thr* thr, Addr a, SizeT szB )
4892{
4893 SVal sv = SVal__mkC(thr->viW, thr->viW);
4894 tl_assert(is_sane_SVal_C(sv));
4895 if(TRACEME(a,szB))trace(thr,a,szB,"nw-before");
4896 zsm_set_range( a, szB, sv );
4897 if(TRACEME(a,szB))trace(thr,a,szB,"nw-after ");
4898}
4899
4900void libhb_range_noaccess ( Thr* thr, Addr a, SizeT szB )
4901{
4902 if(TRACEME(a,szB))trace(thr,a,szB,"NA-before");
4903 zsm_set_range( a, szB, SVal__mkA() );
4904 if(TRACEME(a,szB))trace(thr,a,szB,"NA-after ");
4905}
4906
4907void* libhb_get_Thr_opaque ( Thr* thr ) {
4908 tl_assert(thr);
4909 return thr->opaque;
4910}
4911
4912void libhb_set_Thr_opaque ( Thr* thr, void* v ) {
4913 tl_assert(thr);
4914 thr->opaque = v;
4915}
4916
4917void libhb_copy_shadow_state ( Addr dst, Addr src, SizeT len )
4918{
4919 zsm_copy_range(dst, src, len);
4920}
4921
4922void libhb_maybe_GC ( void )
4923{
4924 event_map_maybe_GC();
4925 /* If there are still freelist entries available, no need for a
4926 GC. */
4927 if (vts_tab_freelist != VtsID_INVALID)
4928 return;
4929 /* So all the table entries are full, and we're having to expand
4930 the table. But did we hit the threshhold point yet? */
4931 if (VG_(sizeXA)( vts_tab ) < vts_next_GC_at)
4932 return;
4933 vts_tab__do_GC( False/*don't show stats*/ );
4934}
4935
4936
4937/////////////////////////////////////////////////////////////////
4938/////////////////////////////////////////////////////////////////
4939// //
4940// SECTION END main library //
4941// //
4942/////////////////////////////////////////////////////////////////
4943/////////////////////////////////////////////////////////////////
4944
4945/*--------------------------------------------------------------------*/
4946/*--- end libhb_main.c ---*/
4947/*--------------------------------------------------------------------*/