| // | 
 | // Copyright 2010 The Android Open Source Project | 
 | // | 
 | // The input reader. | 
 | // | 
 | #define LOG_TAG "InputReader" | 
 |  | 
 | //#define LOG_NDEBUG 0 | 
 |  | 
 | // Log debug messages for each raw event received from the EventHub. | 
 | #define DEBUG_RAW_EVENTS 0 | 
 |  | 
 | // Log debug messages about touch screen filtering hacks. | 
 | #define DEBUG_HACKS 0 | 
 |  | 
 | // Log debug messages about virtual key processing. | 
 | #define DEBUG_VIRTUAL_KEYS 0 | 
 |  | 
 | // Log debug messages about pointers. | 
 | #define DEBUG_POINTERS 0 | 
 |  | 
 | // Log debug messages about pointer assignment calculations. | 
 | #define DEBUG_POINTER_ASSIGNMENT 0 | 
 |  | 
 | #include <cutils/log.h> | 
 | #include <ui/InputReader.h> | 
 |  | 
 | #include <stddef.h> | 
 | #include <stdlib.h> | 
 | #include <unistd.h> | 
 | #include <errno.h> | 
 | #include <limits.h> | 
 | #include <math.h> | 
 |  | 
 | #define INDENT "  " | 
 |  | 
 | namespace android { | 
 |  | 
 | // --- Static Functions --- | 
 |  | 
 | template<typename T> | 
 | inline static T abs(const T& value) { | 
 |     return value < 0 ? - value : value; | 
 | } | 
 |  | 
 | template<typename T> | 
 | inline static T min(const T& a, const T& b) { | 
 |     return a < b ? a : b; | 
 | } | 
 |  | 
 | template<typename T> | 
 | inline static void swap(T& a, T& b) { | 
 |     T temp = a; | 
 |     a = b; | 
 |     b = temp; | 
 | } | 
 |  | 
 | inline static float avg(float x, float y) { | 
 |     return (x + y) / 2; | 
 | } | 
 |  | 
 | inline static float pythag(float x, float y) { | 
 |     return sqrtf(x * x + y * y); | 
 | } | 
 |  | 
 |  | 
 | int32_t updateMetaState(int32_t keyCode, bool down, int32_t oldMetaState) { | 
 |     int32_t mask; | 
 |     switch (keyCode) { | 
 |     case AKEYCODE_ALT_LEFT: | 
 |         mask = AMETA_ALT_LEFT_ON; | 
 |         break; | 
 |     case AKEYCODE_ALT_RIGHT: | 
 |         mask = AMETA_ALT_RIGHT_ON; | 
 |         break; | 
 |     case AKEYCODE_SHIFT_LEFT: | 
 |         mask = AMETA_SHIFT_LEFT_ON; | 
 |         break; | 
 |     case AKEYCODE_SHIFT_RIGHT: | 
 |         mask = AMETA_SHIFT_RIGHT_ON; | 
 |         break; | 
 |     case AKEYCODE_SYM: | 
 |         mask = AMETA_SYM_ON; | 
 |         break; | 
 |     default: | 
 |         return oldMetaState; | 
 |     } | 
 |  | 
 |     int32_t newMetaState = down ? oldMetaState | mask : oldMetaState & ~ mask | 
 |             & ~ (AMETA_ALT_ON | AMETA_SHIFT_ON); | 
 |  | 
 |     if (newMetaState & (AMETA_ALT_LEFT_ON | AMETA_ALT_RIGHT_ON)) { | 
 |         newMetaState |= AMETA_ALT_ON; | 
 |     } | 
 |  | 
 |     if (newMetaState & (AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_RIGHT_ON)) { | 
 |         newMetaState |= AMETA_SHIFT_ON; | 
 |     } | 
 |  | 
 |     return newMetaState; | 
 | } | 
 |  | 
 | static const int32_t keyCodeRotationMap[][4] = { | 
 |         // key codes enumerated counter-clockwise with the original (unrotated) key first | 
 |         // no rotation,        90 degree rotation,  180 degree rotation, 270 degree rotation | 
 |         { AKEYCODE_DPAD_DOWN,   AKEYCODE_DPAD_RIGHT,  AKEYCODE_DPAD_UP,     AKEYCODE_DPAD_LEFT }, | 
 |         { AKEYCODE_DPAD_RIGHT,  AKEYCODE_DPAD_UP,     AKEYCODE_DPAD_LEFT,   AKEYCODE_DPAD_DOWN }, | 
 |         { AKEYCODE_DPAD_UP,     AKEYCODE_DPAD_LEFT,   AKEYCODE_DPAD_DOWN,   AKEYCODE_DPAD_RIGHT }, | 
 |         { AKEYCODE_DPAD_LEFT,   AKEYCODE_DPAD_DOWN,   AKEYCODE_DPAD_RIGHT,  AKEYCODE_DPAD_UP }, | 
 | }; | 
 | static const int keyCodeRotationMapSize = | 
 |         sizeof(keyCodeRotationMap) / sizeof(keyCodeRotationMap[0]); | 
 |  | 
 | int32_t rotateKeyCode(int32_t keyCode, int32_t orientation) { | 
 |     if (orientation != InputReaderPolicyInterface::ROTATION_0) { | 
 |         for (int i = 0; i < keyCodeRotationMapSize; i++) { | 
 |             if (keyCode == keyCodeRotationMap[i][0]) { | 
 |                 return keyCodeRotationMap[i][orientation]; | 
 |             } | 
 |         } | 
 |     } | 
 |     return keyCode; | 
 | } | 
 |  | 
 | static inline bool sourcesMatchMask(uint32_t sources, uint32_t sourceMask) { | 
 |     return (sources & sourceMask & ~ AINPUT_SOURCE_CLASS_MASK) != 0; | 
 | } | 
 |  | 
 |  | 
 | // --- InputDeviceCalibration --- | 
 |  | 
 | InputDeviceCalibration::InputDeviceCalibration() { | 
 | } | 
 |  | 
 | void InputDeviceCalibration::clear() { | 
 |     mProperties.clear(); | 
 | } | 
 |  | 
 | void InputDeviceCalibration::addProperty(const String8& key, const String8& value) { | 
 |     mProperties.add(key, value); | 
 | } | 
 |  | 
 | bool InputDeviceCalibration::tryGetProperty(const String8& key, String8& outValue) const { | 
 |     ssize_t index = mProperties.indexOfKey(key); | 
 |     if (index < 0) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     outValue = mProperties.valueAt(index); | 
 |     return true; | 
 | } | 
 |  | 
 | bool InputDeviceCalibration::tryGetProperty(const String8& key, int32_t& outValue) const { | 
 |     String8 stringValue; | 
 |     if (! tryGetProperty(key, stringValue) || stringValue.length() == 0) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     char* end; | 
 |     int value = strtol(stringValue.string(), & end, 10); | 
 |     if (*end != '\0') { | 
 |         LOGW("Input device calibration key '%s' has invalid value '%s'.  Expected an integer.", | 
 |                 key.string(), stringValue.string()); | 
 |         return false; | 
 |     } | 
 |     outValue = value; | 
 |     return true; | 
 | } | 
 |  | 
 | bool InputDeviceCalibration::tryGetProperty(const String8& key, float& outValue) const { | 
 |     String8 stringValue; | 
 |     if (! tryGetProperty(key, stringValue) || stringValue.length() == 0) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     char* end; | 
 |     float value = strtof(stringValue.string(), & end); | 
 |     if (*end != '\0') { | 
 |         LOGW("Input device calibration key '%s' has invalid value '%s'.  Expected a float.", | 
 |                 key.string(), stringValue.string()); | 
 |         return false; | 
 |     } | 
 |     outValue = value; | 
 |     return true; | 
 | } | 
 |  | 
 |  | 
 | // --- InputReader --- | 
 |  | 
 | InputReader::InputReader(const sp<EventHubInterface>& eventHub, | 
 |         const sp<InputReaderPolicyInterface>& policy, | 
 |         const sp<InputDispatcherInterface>& dispatcher) : | 
 |         mEventHub(eventHub), mPolicy(policy), mDispatcher(dispatcher), | 
 |         mGlobalMetaState(0) { | 
 |     configureExcludedDevices(); | 
 |     updateGlobalMetaState(); | 
 |     updateInputConfiguration(); | 
 | } | 
 |  | 
 | InputReader::~InputReader() { | 
 |     for (size_t i = 0; i < mDevices.size(); i++) { | 
 |         delete mDevices.valueAt(i); | 
 |     } | 
 | } | 
 |  | 
 | void InputReader::loopOnce() { | 
 |     RawEvent rawEvent; | 
 |     mEventHub->getEvent(& rawEvent); | 
 |  | 
 | #if DEBUG_RAW_EVENTS | 
 |     LOGD("Input event: device=0x%x type=0x%x scancode=%d keycode=%d value=%d", | 
 |             rawEvent.deviceId, rawEvent.type, rawEvent.scanCode, rawEvent.keyCode, | 
 |             rawEvent.value); | 
 | #endif | 
 |  | 
 |     process(& rawEvent); | 
 | } | 
 |  | 
 | void InputReader::process(const RawEvent* rawEvent) { | 
 |     switch (rawEvent->type) { | 
 |     case EventHubInterface::DEVICE_ADDED: | 
 |         addDevice(rawEvent->when, rawEvent->deviceId); | 
 |         break; | 
 |  | 
 |     case EventHubInterface::DEVICE_REMOVED: | 
 |         removeDevice(rawEvent->when, rawEvent->deviceId); | 
 |         break; | 
 |  | 
 |     default: | 
 |         consumeEvent(rawEvent); | 
 |         break; | 
 |     } | 
 | } | 
 |  | 
 | void InputReader::addDevice(nsecs_t when, int32_t deviceId) { | 
 |     String8 name = mEventHub->getDeviceName(deviceId); | 
 |     uint32_t classes = mEventHub->getDeviceClasses(deviceId); | 
 |  | 
 |     // Write a log message about the added device as a heading for subsequent log messages. | 
 |     LOGI("Device added: id=0x%x, name=%s", deviceId, name.string()); | 
 |  | 
 |     InputDevice* device = createDevice(deviceId, name, classes); | 
 |     device->configure(); | 
 |  | 
 |     if (device->isIgnored()) { | 
 |         LOGI(INDENT "Sources: none (device is ignored)"); | 
 |     } else { | 
 |         LOGI(INDENT "Sources: 0x%08x", device->getSources()); | 
 |     } | 
 |  | 
 |     bool added = false; | 
 |     { // acquire device registry writer lock | 
 |         RWLock::AutoWLock _wl(mDeviceRegistryLock); | 
 |  | 
 |         ssize_t deviceIndex = mDevices.indexOfKey(deviceId); | 
 |         if (deviceIndex < 0) { | 
 |             mDevices.add(deviceId, device); | 
 |             added = true; | 
 |         } | 
 |     } // release device registry writer lock | 
 |  | 
 |     if (! added) { | 
 |         LOGW("Ignoring spurious device added event for deviceId %d.", deviceId); | 
 |         delete device; | 
 |         return; | 
 |     } | 
 |  | 
 |     handleConfigurationChanged(when); | 
 | } | 
 |  | 
 | void InputReader::removeDevice(nsecs_t when, int32_t deviceId) { | 
 |     bool removed = false; | 
 |     InputDevice* device = NULL; | 
 |     { // acquire device registry writer lock | 
 |         RWLock::AutoWLock _wl(mDeviceRegistryLock); | 
 |  | 
 |         ssize_t deviceIndex = mDevices.indexOfKey(deviceId); | 
 |         if (deviceIndex >= 0) { | 
 |             device = mDevices.valueAt(deviceIndex); | 
 |             mDevices.removeItemsAt(deviceIndex, 1); | 
 |             removed = true; | 
 |         } | 
 |     } // release device registry writer lock | 
 |  | 
 |     if (! removed) { | 
 |         LOGW("Ignoring spurious device removed event for deviceId %d.", deviceId); | 
 |         return; | 
 |     } | 
 |  | 
 |     // Write a log message about the removed device as a heading for subsequent log messages. | 
 |     if (device->isIgnored()) { | 
 |         LOGI("Device removed: id=0x%x, name=%s (ignored non-input device)", | 
 |                 device->getId(), device->getName().string()); | 
 |     } else { | 
 |         LOGI("Device removed: id=0x%x, name=%s, sources=%08x", | 
 |                 device->getId(), device->getName().string(), device->getSources()); | 
 |     } | 
 |  | 
 |     device->reset(); | 
 |  | 
 |     delete device; | 
 |  | 
 |     handleConfigurationChanged(when); | 
 | } | 
 |  | 
 | InputDevice* InputReader::createDevice(int32_t deviceId, const String8& name, uint32_t classes) { | 
 |     InputDevice* device = new InputDevice(this, deviceId, name); | 
 |  | 
 |     const int32_t associatedDisplayId = 0; // FIXME: hardcoded for current single-display devices | 
 |  | 
 |     // Switch-like devices. | 
 |     if (classes & INPUT_DEVICE_CLASS_SWITCH) { | 
 |         device->addMapper(new SwitchInputMapper(device)); | 
 |     } | 
 |  | 
 |     // Keyboard-like devices. | 
 |     uint32_t keyboardSources = 0; | 
 |     int32_t keyboardType = AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC; | 
 |     if (classes & INPUT_DEVICE_CLASS_KEYBOARD) { | 
 |         keyboardSources |= AINPUT_SOURCE_KEYBOARD; | 
 |     } | 
 |     if (classes & INPUT_DEVICE_CLASS_ALPHAKEY) { | 
 |         keyboardType = AINPUT_KEYBOARD_TYPE_ALPHABETIC; | 
 |     } | 
 |     if (classes & INPUT_DEVICE_CLASS_DPAD) { | 
 |         keyboardSources |= AINPUT_SOURCE_DPAD; | 
 |     } | 
 |     if (classes & INPUT_DEVICE_CLASS_GAMEPAD) { | 
 |         keyboardSources |= AINPUT_SOURCE_GAMEPAD; | 
 |     } | 
 |  | 
 |     if (keyboardSources != 0) { | 
 |         device->addMapper(new KeyboardInputMapper(device, | 
 |                 associatedDisplayId, keyboardSources, keyboardType)); | 
 |     } | 
 |  | 
 |     // Trackball-like devices. | 
 |     if (classes & INPUT_DEVICE_CLASS_TRACKBALL) { | 
 |         device->addMapper(new TrackballInputMapper(device, associatedDisplayId)); | 
 |     } | 
 |  | 
 |     // Touchscreen-like devices. | 
 |     if (classes & INPUT_DEVICE_CLASS_TOUCHSCREEN_MT) { | 
 |         device->addMapper(new MultiTouchInputMapper(device, associatedDisplayId)); | 
 |     } else if (classes & INPUT_DEVICE_CLASS_TOUCHSCREEN) { | 
 |         device->addMapper(new SingleTouchInputMapper(device, associatedDisplayId)); | 
 |     } | 
 |  | 
 |     return device; | 
 | } | 
 |  | 
 | void InputReader::consumeEvent(const RawEvent* rawEvent) { | 
 |     int32_t deviceId = rawEvent->deviceId; | 
 |  | 
 |     { // acquire device registry reader lock | 
 |         RWLock::AutoRLock _rl(mDeviceRegistryLock); | 
 |  | 
 |         ssize_t deviceIndex = mDevices.indexOfKey(deviceId); | 
 |         if (deviceIndex < 0) { | 
 |             LOGW("Discarding event for unknown deviceId %d.", deviceId); | 
 |             return; | 
 |         } | 
 |  | 
 |         InputDevice* device = mDevices.valueAt(deviceIndex); | 
 |         if (device->isIgnored()) { | 
 |             //LOGD("Discarding event for ignored deviceId %d.", deviceId); | 
 |             return; | 
 |         } | 
 |  | 
 |         device->process(rawEvent); | 
 |     } // release device registry reader lock | 
 | } | 
 |  | 
 | void InputReader::handleConfigurationChanged(nsecs_t when) { | 
 |     // Reset global meta state because it depends on the list of all configured devices. | 
 |     updateGlobalMetaState(); | 
 |  | 
 |     // Update input configuration. | 
 |     updateInputConfiguration(); | 
 |  | 
 |     // Enqueue configuration changed. | 
 |     mDispatcher->notifyConfigurationChanged(when); | 
 | } | 
 |  | 
 | void InputReader::configureExcludedDevices() { | 
 |     Vector<String8> excludedDeviceNames; | 
 |     mPolicy->getExcludedDeviceNames(excludedDeviceNames); | 
 |  | 
 |     for (size_t i = 0; i < excludedDeviceNames.size(); i++) { | 
 |         mEventHub->addExcludedDevice(excludedDeviceNames[i]); | 
 |     } | 
 | } | 
 |  | 
 | void InputReader::updateGlobalMetaState() { | 
 |     { // acquire state lock | 
 |         AutoMutex _l(mStateLock); | 
 |  | 
 |         mGlobalMetaState = 0; | 
 |  | 
 |         { // acquire device registry reader lock | 
 |             RWLock::AutoRLock _rl(mDeviceRegistryLock); | 
 |  | 
 |             for (size_t i = 0; i < mDevices.size(); i++) { | 
 |                 InputDevice* device = mDevices.valueAt(i); | 
 |                 mGlobalMetaState |= device->getMetaState(); | 
 |             } | 
 |         } // release device registry reader lock | 
 |     } // release state lock | 
 | } | 
 |  | 
 | int32_t InputReader::getGlobalMetaState() { | 
 |     { // acquire state lock | 
 |         AutoMutex _l(mStateLock); | 
 |  | 
 |         return mGlobalMetaState; | 
 |     } // release state lock | 
 | } | 
 |  | 
 | void InputReader::updateInputConfiguration() { | 
 |     { // acquire state lock | 
 |         AutoMutex _l(mStateLock); | 
 |  | 
 |         int32_t touchScreenConfig = InputConfiguration::TOUCHSCREEN_NOTOUCH; | 
 |         int32_t keyboardConfig = InputConfiguration::KEYBOARD_NOKEYS; | 
 |         int32_t navigationConfig = InputConfiguration::NAVIGATION_NONAV; | 
 |         { // acquire device registry reader lock | 
 |             RWLock::AutoRLock _rl(mDeviceRegistryLock); | 
 |  | 
 |             InputDeviceInfo deviceInfo; | 
 |             for (size_t i = 0; i < mDevices.size(); i++) { | 
 |                 InputDevice* device = mDevices.valueAt(i); | 
 |                 device->getDeviceInfo(& deviceInfo); | 
 |                 uint32_t sources = deviceInfo.getSources(); | 
 |  | 
 |                 if ((sources & AINPUT_SOURCE_TOUCHSCREEN) == AINPUT_SOURCE_TOUCHSCREEN) { | 
 |                     touchScreenConfig = InputConfiguration::TOUCHSCREEN_FINGER; | 
 |                 } | 
 |                 if ((sources & AINPUT_SOURCE_TRACKBALL) == AINPUT_SOURCE_TRACKBALL) { | 
 |                     navigationConfig = InputConfiguration::NAVIGATION_TRACKBALL; | 
 |                 } else if ((sources & AINPUT_SOURCE_DPAD) == AINPUT_SOURCE_DPAD) { | 
 |                     navigationConfig = InputConfiguration::NAVIGATION_DPAD; | 
 |                 } | 
 |                 if (deviceInfo.getKeyboardType() == AINPUT_KEYBOARD_TYPE_ALPHABETIC) { | 
 |                     keyboardConfig = InputConfiguration::KEYBOARD_QWERTY; | 
 |                 } | 
 |             } | 
 |         } // release device registry reader lock | 
 |  | 
 |         mInputConfiguration.touchScreen = touchScreenConfig; | 
 |         mInputConfiguration.keyboard = keyboardConfig; | 
 |         mInputConfiguration.navigation = navigationConfig; | 
 |     } // release state lock | 
 | } | 
 |  | 
 | void InputReader::getInputConfiguration(InputConfiguration* outConfiguration) { | 
 |     { // acquire state lock | 
 |         AutoMutex _l(mStateLock); | 
 |  | 
 |         *outConfiguration = mInputConfiguration; | 
 |     } // release state lock | 
 | } | 
 |  | 
 | status_t InputReader::getInputDeviceInfo(int32_t deviceId, InputDeviceInfo* outDeviceInfo) { | 
 |     { // acquire device registry reader lock | 
 |         RWLock::AutoRLock _rl(mDeviceRegistryLock); | 
 |  | 
 |         ssize_t deviceIndex = mDevices.indexOfKey(deviceId); | 
 |         if (deviceIndex < 0) { | 
 |             return NAME_NOT_FOUND; | 
 |         } | 
 |  | 
 |         InputDevice* device = mDevices.valueAt(deviceIndex); | 
 |         if (device->isIgnored()) { | 
 |             return NAME_NOT_FOUND; | 
 |         } | 
 |  | 
 |         device->getDeviceInfo(outDeviceInfo); | 
 |         return OK; | 
 |     } // release device registy reader lock | 
 | } | 
 |  | 
 | void InputReader::getInputDeviceIds(Vector<int32_t>& outDeviceIds) { | 
 |     outDeviceIds.clear(); | 
 |  | 
 |     { // acquire device registry reader lock | 
 |         RWLock::AutoRLock _rl(mDeviceRegistryLock); | 
 |  | 
 |         size_t numDevices = mDevices.size(); | 
 |         for (size_t i = 0; i < numDevices; i++) { | 
 |             InputDevice* device = mDevices.valueAt(i); | 
 |             if (! device->isIgnored()) { | 
 |                 outDeviceIds.add(device->getId()); | 
 |             } | 
 |         } | 
 |     } // release device registy reader lock | 
 | } | 
 |  | 
 | int32_t InputReader::getKeyCodeState(int32_t deviceId, uint32_t sourceMask, | 
 |         int32_t keyCode) { | 
 |     return getState(deviceId, sourceMask, keyCode, & InputDevice::getKeyCodeState); | 
 | } | 
 |  | 
 | int32_t InputReader::getScanCodeState(int32_t deviceId, uint32_t sourceMask, | 
 |         int32_t scanCode) { | 
 |     return getState(deviceId, sourceMask, scanCode, & InputDevice::getScanCodeState); | 
 | } | 
 |  | 
 | int32_t InputReader::getSwitchState(int32_t deviceId, uint32_t sourceMask, int32_t switchCode) { | 
 |     return getState(deviceId, sourceMask, switchCode, & InputDevice::getSwitchState); | 
 | } | 
 |  | 
 | int32_t InputReader::getState(int32_t deviceId, uint32_t sourceMask, int32_t code, | 
 |         GetStateFunc getStateFunc) { | 
 |     { // acquire device registry reader lock | 
 |         RWLock::AutoRLock _rl(mDeviceRegistryLock); | 
 |  | 
 |         int32_t result = AKEY_STATE_UNKNOWN; | 
 |         if (deviceId >= 0) { | 
 |             ssize_t deviceIndex = mDevices.indexOfKey(deviceId); | 
 |             if (deviceIndex >= 0) { | 
 |                 InputDevice* device = mDevices.valueAt(deviceIndex); | 
 |                 if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { | 
 |                     result = (device->*getStateFunc)(sourceMask, code); | 
 |                 } | 
 |             } | 
 |         } else { | 
 |             size_t numDevices = mDevices.size(); | 
 |             for (size_t i = 0; i < numDevices; i++) { | 
 |                 InputDevice* device = mDevices.valueAt(i); | 
 |                 if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { | 
 |                     result = (device->*getStateFunc)(sourceMask, code); | 
 |                     if (result >= AKEY_STATE_DOWN) { | 
 |                         return result; | 
 |                     } | 
 |                 } | 
 |             } | 
 |         } | 
 |         return result; | 
 |     } // release device registy reader lock | 
 | } | 
 |  | 
 | bool InputReader::hasKeys(int32_t deviceId, uint32_t sourceMask, | 
 |         size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) { | 
 |     memset(outFlags, 0, numCodes); | 
 |     return markSupportedKeyCodes(deviceId, sourceMask, numCodes, keyCodes, outFlags); | 
 | } | 
 |  | 
 | bool InputReader::markSupportedKeyCodes(int32_t deviceId, uint32_t sourceMask, size_t numCodes, | 
 |         const int32_t* keyCodes, uint8_t* outFlags) { | 
 |     { // acquire device registry reader lock | 
 |         RWLock::AutoRLock _rl(mDeviceRegistryLock); | 
 |         bool result = false; | 
 |         if (deviceId >= 0) { | 
 |             ssize_t deviceIndex = mDevices.indexOfKey(deviceId); | 
 |             if (deviceIndex >= 0) { | 
 |                 InputDevice* device = mDevices.valueAt(deviceIndex); | 
 |                 if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { | 
 |                     result = device->markSupportedKeyCodes(sourceMask, | 
 |                             numCodes, keyCodes, outFlags); | 
 |                 } | 
 |             } | 
 |         } else { | 
 |             size_t numDevices = mDevices.size(); | 
 |             for (size_t i = 0; i < numDevices; i++) { | 
 |                 InputDevice* device = mDevices.valueAt(i); | 
 |                 if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { | 
 |                     result |= device->markSupportedKeyCodes(sourceMask, | 
 |                             numCodes, keyCodes, outFlags); | 
 |                 } | 
 |             } | 
 |         } | 
 |         return result; | 
 |     } // release device registy reader lock | 
 | } | 
 |  | 
 |  | 
 | // --- InputReaderThread --- | 
 |  | 
 | InputReaderThread::InputReaderThread(const sp<InputReaderInterface>& reader) : | 
 |         Thread(/*canCallJava*/ true), mReader(reader) { | 
 | } | 
 |  | 
 | InputReaderThread::~InputReaderThread() { | 
 | } | 
 |  | 
 | bool InputReaderThread::threadLoop() { | 
 |     mReader->loopOnce(); | 
 |     return true; | 
 | } | 
 |  | 
 |  | 
 | // --- InputDevice --- | 
 |  | 
 | InputDevice::InputDevice(InputReaderContext* context, int32_t id, const String8& name) : | 
 |         mContext(context), mId(id), mName(name), mSources(0) { | 
 | } | 
 |  | 
 | InputDevice::~InputDevice() { | 
 |     size_t numMappers = mMappers.size(); | 
 |     for (size_t i = 0; i < numMappers; i++) { | 
 |         delete mMappers[i]; | 
 |     } | 
 |     mMappers.clear(); | 
 | } | 
 |  | 
 | void InputDevice::addMapper(InputMapper* mapper) { | 
 |     mMappers.add(mapper); | 
 | } | 
 |  | 
 | void InputDevice::configure() { | 
 |     if (! isIgnored()) { | 
 |         mContext->getPolicy()->getInputDeviceCalibration(mName, mCalibration); | 
 |     } | 
 |  | 
 |     mSources = 0; | 
 |  | 
 |     size_t numMappers = mMappers.size(); | 
 |     for (size_t i = 0; i < numMappers; i++) { | 
 |         InputMapper* mapper = mMappers[i]; | 
 |         mapper->configure(); | 
 |         mSources |= mapper->getSources(); | 
 |     } | 
 | } | 
 |  | 
 | void InputDevice::reset() { | 
 |     size_t numMappers = mMappers.size(); | 
 |     for (size_t i = 0; i < numMappers; i++) { | 
 |         InputMapper* mapper = mMappers[i]; | 
 |         mapper->reset(); | 
 |     } | 
 | } | 
 |  | 
 | void InputDevice::process(const RawEvent* rawEvent) { | 
 |     size_t numMappers = mMappers.size(); | 
 |     for (size_t i = 0; i < numMappers; i++) { | 
 |         InputMapper* mapper = mMappers[i]; | 
 |         mapper->process(rawEvent); | 
 |     } | 
 | } | 
 |  | 
 | void InputDevice::getDeviceInfo(InputDeviceInfo* outDeviceInfo) { | 
 |     outDeviceInfo->initialize(mId, mName); | 
 |  | 
 |     size_t numMappers = mMappers.size(); | 
 |     for (size_t i = 0; i < numMappers; i++) { | 
 |         InputMapper* mapper = mMappers[i]; | 
 |         mapper->populateDeviceInfo(outDeviceInfo); | 
 |     } | 
 | } | 
 |  | 
 | int32_t InputDevice::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { | 
 |     return getState(sourceMask, keyCode, & InputMapper::getKeyCodeState); | 
 | } | 
 |  | 
 | int32_t InputDevice::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { | 
 |     return getState(sourceMask, scanCode, & InputMapper::getScanCodeState); | 
 | } | 
 |  | 
 | int32_t InputDevice::getSwitchState(uint32_t sourceMask, int32_t switchCode) { | 
 |     return getState(sourceMask, switchCode, & InputMapper::getSwitchState); | 
 | } | 
 |  | 
 | int32_t InputDevice::getState(uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc) { | 
 |     int32_t result = AKEY_STATE_UNKNOWN; | 
 |     size_t numMappers = mMappers.size(); | 
 |     for (size_t i = 0; i < numMappers; i++) { | 
 |         InputMapper* mapper = mMappers[i]; | 
 |         if (sourcesMatchMask(mapper->getSources(), sourceMask)) { | 
 |             result = (mapper->*getStateFunc)(sourceMask, code); | 
 |             if (result >= AKEY_STATE_DOWN) { | 
 |                 return result; | 
 |             } | 
 |         } | 
 |     } | 
 |     return result; | 
 | } | 
 |  | 
 | bool InputDevice::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, | 
 |         const int32_t* keyCodes, uint8_t* outFlags) { | 
 |     bool result = false; | 
 |     size_t numMappers = mMappers.size(); | 
 |     for (size_t i = 0; i < numMappers; i++) { | 
 |         InputMapper* mapper = mMappers[i]; | 
 |         if (sourcesMatchMask(mapper->getSources(), sourceMask)) { | 
 |             result |= mapper->markSupportedKeyCodes(sourceMask, numCodes, keyCodes, outFlags); | 
 |         } | 
 |     } | 
 |     return result; | 
 | } | 
 |  | 
 | int32_t InputDevice::getMetaState() { | 
 |     int32_t result = 0; | 
 |     size_t numMappers = mMappers.size(); | 
 |     for (size_t i = 0; i < numMappers; i++) { | 
 |         InputMapper* mapper = mMappers[i]; | 
 |         result |= mapper->getMetaState(); | 
 |     } | 
 |     return result; | 
 | } | 
 |  | 
 |  | 
 | // --- InputMapper --- | 
 |  | 
 | InputMapper::InputMapper(InputDevice* device) : | 
 |         mDevice(device), mContext(device->getContext()) { | 
 | } | 
 |  | 
 | InputMapper::~InputMapper() { | 
 | } | 
 |  | 
 | void InputMapper::populateDeviceInfo(InputDeviceInfo* info) { | 
 |     info->addSource(getSources()); | 
 | } | 
 |  | 
 | void InputMapper::configure() { | 
 | } | 
 |  | 
 | void InputMapper::reset() { | 
 | } | 
 |  | 
 | int32_t InputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { | 
 |     return AKEY_STATE_UNKNOWN; | 
 | } | 
 |  | 
 | int32_t InputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { | 
 |     return AKEY_STATE_UNKNOWN; | 
 | } | 
 |  | 
 | int32_t InputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) { | 
 |     return AKEY_STATE_UNKNOWN; | 
 | } | 
 |  | 
 | bool InputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, | 
 |         const int32_t* keyCodes, uint8_t* outFlags) { | 
 |     return false; | 
 | } | 
 |  | 
 | int32_t InputMapper::getMetaState() { | 
 |     return 0; | 
 | } | 
 |  | 
 | bool InputMapper::applyStandardPolicyActions(nsecs_t when, int32_t policyActions) { | 
 |     if (policyActions & InputReaderPolicyInterface::ACTION_APP_SWITCH_COMING) { | 
 |         getDispatcher()->notifyAppSwitchComing(when); | 
 |     } | 
 |  | 
 |     return policyActions & InputReaderPolicyInterface::ACTION_DISPATCH; | 
 | } | 
 |  | 
 |  | 
 | // --- SwitchInputMapper --- | 
 |  | 
 | SwitchInputMapper::SwitchInputMapper(InputDevice* device) : | 
 |         InputMapper(device) { | 
 | } | 
 |  | 
 | SwitchInputMapper::~SwitchInputMapper() { | 
 | } | 
 |  | 
 | uint32_t SwitchInputMapper::getSources() { | 
 |     return 0; | 
 | } | 
 |  | 
 | void SwitchInputMapper::process(const RawEvent* rawEvent) { | 
 |     switch (rawEvent->type) { | 
 |     case EV_SW: | 
 |         processSwitch(rawEvent->when, rawEvent->scanCode, rawEvent->value); | 
 |         break; | 
 |     } | 
 | } | 
 |  | 
 | void SwitchInputMapper::processSwitch(nsecs_t when, int32_t switchCode, int32_t switchValue) { | 
 |     uint32_t policyFlags = 0; | 
 |     int32_t policyActions = getPolicy()->interceptSwitch( | 
 |             when, switchCode, switchValue, policyFlags); | 
 |  | 
 |     applyStandardPolicyActions(when, policyActions); | 
 | } | 
 |  | 
 | int32_t SwitchInputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) { | 
 |     return getEventHub()->getSwitchState(getDeviceId(), switchCode); | 
 | } | 
 |  | 
 |  | 
 | // --- KeyboardInputMapper --- | 
 |  | 
 | KeyboardInputMapper::KeyboardInputMapper(InputDevice* device, int32_t associatedDisplayId, | 
 |         uint32_t sources, int32_t keyboardType) : | 
 |         InputMapper(device), mAssociatedDisplayId(associatedDisplayId), mSources(sources), | 
 |         mKeyboardType(keyboardType) { | 
 |     initializeLocked(); | 
 | } | 
 |  | 
 | KeyboardInputMapper::~KeyboardInputMapper() { | 
 | } | 
 |  | 
 | void KeyboardInputMapper::initializeLocked() { | 
 |     mLocked.metaState = AMETA_NONE; | 
 |     mLocked.downTime = 0; | 
 | } | 
 |  | 
 | uint32_t KeyboardInputMapper::getSources() { | 
 |     return mSources; | 
 | } | 
 |  | 
 | void KeyboardInputMapper::populateDeviceInfo(InputDeviceInfo* info) { | 
 |     InputMapper::populateDeviceInfo(info); | 
 |  | 
 |     info->setKeyboardType(mKeyboardType); | 
 | } | 
 |  | 
 | void KeyboardInputMapper::reset() { | 
 |     for (;;) { | 
 |         int32_t keyCode, scanCode; | 
 |         { // acquire lock | 
 |             AutoMutex _l(mLock); | 
 |  | 
 |             // Synthesize key up event on reset if keys are currently down. | 
 |             if (mLocked.keyDowns.isEmpty()) { | 
 |                 initializeLocked(); | 
 |                 break; // done | 
 |             } | 
 |  | 
 |             const KeyDown& keyDown = mLocked.keyDowns.top(); | 
 |             keyCode = keyDown.keyCode; | 
 |             scanCode = keyDown.scanCode; | 
 |         } // release lock | 
 |  | 
 |         nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC); | 
 |         processKey(when, false, keyCode, scanCode, 0); | 
 |     } | 
 |  | 
 |     InputMapper::reset(); | 
 |     getContext()->updateGlobalMetaState(); | 
 | } | 
 |  | 
 | void KeyboardInputMapper::process(const RawEvent* rawEvent) { | 
 |     switch (rawEvent->type) { | 
 |     case EV_KEY: { | 
 |         int32_t scanCode = rawEvent->scanCode; | 
 |         if (isKeyboardOrGamepadKey(scanCode)) { | 
 |             processKey(rawEvent->when, rawEvent->value != 0, rawEvent->keyCode, scanCode, | 
 |                     rawEvent->flags); | 
 |         } | 
 |         break; | 
 |     } | 
 |     } | 
 | } | 
 |  | 
 | bool KeyboardInputMapper::isKeyboardOrGamepadKey(int32_t scanCode) { | 
 |     return scanCode < BTN_MOUSE | 
 |         || scanCode >= KEY_OK | 
 |         || (scanCode >= BTN_GAMEPAD && scanCode < BTN_DIGI); | 
 | } | 
 |  | 
 | void KeyboardInputMapper::processKey(nsecs_t when, bool down, int32_t keyCode, | 
 |         int32_t scanCode, uint32_t policyFlags) { | 
 |     int32_t newMetaState; | 
 |     nsecs_t downTime; | 
 |     bool metaStateChanged = false; | 
 |  | 
 |     { // acquire lock | 
 |         AutoMutex _l(mLock); | 
 |  | 
 |         if (down) { | 
 |             // Rotate key codes according to orientation if needed. | 
 |             // Note: getDisplayInfo is non-reentrant so we can continue holding the lock. | 
 |             if (mAssociatedDisplayId >= 0) { | 
 |                 int32_t orientation; | 
 |                 if (! getPolicy()->getDisplayInfo(mAssociatedDisplayId, NULL, NULL, & orientation)) { | 
 |                     return; | 
 |                 } | 
 |  | 
 |                 keyCode = rotateKeyCode(keyCode, orientation); | 
 |             } | 
 |  | 
 |             // Add key down. | 
 |             ssize_t keyDownIndex = findKeyDownLocked(scanCode); | 
 |             if (keyDownIndex >= 0) { | 
 |                 // key repeat, be sure to use same keycode as before in case of rotation | 
 |                 keyCode = mLocked.keyDowns.top().keyCode; | 
 |             } else { | 
 |                 // key down | 
 |                 mLocked.keyDowns.push(); | 
 |                 KeyDown& keyDown = mLocked.keyDowns.editTop(); | 
 |                 keyDown.keyCode = keyCode; | 
 |                 keyDown.scanCode = scanCode; | 
 |             } | 
 |  | 
 |             mLocked.downTime = when; | 
 |         } else { | 
 |             // Remove key down. | 
 |             ssize_t keyDownIndex = findKeyDownLocked(scanCode); | 
 |             if (keyDownIndex >= 0) { | 
 |                 // key up, be sure to use same keycode as before in case of rotation | 
 |                 keyCode = mLocked.keyDowns.top().keyCode; | 
 |                 mLocked.keyDowns.removeAt(size_t(keyDownIndex)); | 
 |             } else { | 
 |                 // key was not actually down | 
 |                 LOGI("Dropping key up from device %s because the key was not down.  " | 
 |                         "keyCode=%d, scanCode=%d", | 
 |                         getDeviceName().string(), keyCode, scanCode); | 
 |                 return; | 
 |             } | 
 |         } | 
 |  | 
 |         int32_t oldMetaState = mLocked.metaState; | 
 |         newMetaState = updateMetaState(keyCode, down, oldMetaState); | 
 |         if (oldMetaState != newMetaState) { | 
 |             mLocked.metaState = newMetaState; | 
 |             metaStateChanged = true; | 
 |         } | 
 |  | 
 |         downTime = mLocked.downTime; | 
 |     } // release lock | 
 |  | 
 |     if (metaStateChanged) { | 
 |         getContext()->updateGlobalMetaState(); | 
 |     } | 
 |  | 
 |     applyPolicyAndDispatch(when, policyFlags, down, keyCode, scanCode, newMetaState, downTime); | 
 | } | 
 |  | 
 | void KeyboardInputMapper::applyPolicyAndDispatch(nsecs_t when, uint32_t policyFlags, bool down, | 
 |         int32_t keyCode, int32_t scanCode, int32_t metaState, nsecs_t downTime) { | 
 |     int32_t policyActions = getPolicy()->interceptKey(when, | 
 |             getDeviceId(), down, keyCode, scanCode, policyFlags); | 
 |  | 
 |     if (! applyStandardPolicyActions(when, policyActions)) { | 
 |         return; // event dropped | 
 |     } | 
 |  | 
 |     int32_t keyEventAction = down ? AKEY_EVENT_ACTION_DOWN : AKEY_EVENT_ACTION_UP; | 
 |     int32_t keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM; | 
 |     if (policyFlags & POLICY_FLAG_WOKE_HERE) { | 
 |         keyEventFlags = keyEventFlags | AKEY_EVENT_FLAG_WOKE_HERE; | 
 |     } | 
 |  | 
 |     getDispatcher()->notifyKey(when, getDeviceId(), AINPUT_SOURCE_KEYBOARD, policyFlags, | 
 |             keyEventAction, keyEventFlags, keyCode, scanCode, metaState, downTime); | 
 | } | 
 |  | 
 | ssize_t KeyboardInputMapper::findKeyDownLocked(int32_t scanCode) { | 
 |     size_t n = mLocked.keyDowns.size(); | 
 |     for (size_t i = 0; i < n; i++) { | 
 |         if (mLocked.keyDowns[i].scanCode == scanCode) { | 
 |             return i; | 
 |         } | 
 |     } | 
 |     return -1; | 
 | } | 
 |  | 
 | int32_t KeyboardInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { | 
 |     return getEventHub()->getKeyCodeState(getDeviceId(), keyCode); | 
 | } | 
 |  | 
 | int32_t KeyboardInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { | 
 |     return getEventHub()->getScanCodeState(getDeviceId(), scanCode); | 
 | } | 
 |  | 
 | bool KeyboardInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, | 
 |         const int32_t* keyCodes, uint8_t* outFlags) { | 
 |     return getEventHub()->markSupportedKeyCodes(getDeviceId(), numCodes, keyCodes, outFlags); | 
 | } | 
 |  | 
 | int32_t KeyboardInputMapper::getMetaState() { | 
 |     { // acquire lock | 
 |         AutoMutex _l(mLock); | 
 |         return mLocked.metaState; | 
 |     } // release lock | 
 | } | 
 |  | 
 |  | 
 | // --- TrackballInputMapper --- | 
 |  | 
 | TrackballInputMapper::TrackballInputMapper(InputDevice* device, int32_t associatedDisplayId) : | 
 |         InputMapper(device), mAssociatedDisplayId(associatedDisplayId) { | 
 |     mXPrecision = TRACKBALL_MOVEMENT_THRESHOLD; | 
 |     mYPrecision = TRACKBALL_MOVEMENT_THRESHOLD; | 
 |     mXScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD; | 
 |     mYScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD; | 
 |  | 
 |     initializeLocked(); | 
 | } | 
 |  | 
 | TrackballInputMapper::~TrackballInputMapper() { | 
 | } | 
 |  | 
 | uint32_t TrackballInputMapper::getSources() { | 
 |     return AINPUT_SOURCE_TRACKBALL; | 
 | } | 
 |  | 
 | void TrackballInputMapper::populateDeviceInfo(InputDeviceInfo* info) { | 
 |     InputMapper::populateDeviceInfo(info); | 
 |  | 
 |     info->addMotionRange(AINPUT_MOTION_RANGE_X, -1.0f, 1.0f, 0.0f, mXScale); | 
 |     info->addMotionRange(AINPUT_MOTION_RANGE_Y, -1.0f, 1.0f, 0.0f, mYScale); | 
 | } | 
 |  | 
 | void TrackballInputMapper::initializeLocked() { | 
 |     mAccumulator.clear(); | 
 |  | 
 |     mLocked.down = false; | 
 |     mLocked.downTime = 0; | 
 | } | 
 |  | 
 | void TrackballInputMapper::reset() { | 
 |     for (;;) { | 
 |         { // acquire lock | 
 |             AutoMutex _l(mLock); | 
 |  | 
 |             if (! mLocked.down) { | 
 |                 initializeLocked(); | 
 |                 break; // done | 
 |             } | 
 |         } // release lock | 
 |  | 
 |         // Synthesize trackball button up event on reset. | 
 |         nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC); | 
 |         mAccumulator.fields = Accumulator::FIELD_BTN_MOUSE; | 
 |         mAccumulator.btnMouse = false; | 
 |         sync(when); | 
 |     } | 
 |  | 
 |     InputMapper::reset(); | 
 | } | 
 |  | 
 | void TrackballInputMapper::process(const RawEvent* rawEvent) { | 
 |     switch (rawEvent->type) { | 
 |     case EV_KEY: | 
 |         switch (rawEvent->scanCode) { | 
 |         case BTN_MOUSE: | 
 |             mAccumulator.fields |= Accumulator::FIELD_BTN_MOUSE; | 
 |             mAccumulator.btnMouse = rawEvent->value != 0; | 
 |             // Sync now since BTN_MOUSE is not necessarily followed by SYN_REPORT and | 
 |             // we need to ensure that we report the up/down promptly. | 
 |             sync(rawEvent->when); | 
 |             break; | 
 |         } | 
 |         break; | 
 |  | 
 |     case EV_REL: | 
 |         switch (rawEvent->scanCode) { | 
 |         case REL_X: | 
 |             mAccumulator.fields |= Accumulator::FIELD_REL_X; | 
 |             mAccumulator.relX = rawEvent->value; | 
 |             break; | 
 |         case REL_Y: | 
 |             mAccumulator.fields |= Accumulator::FIELD_REL_Y; | 
 |             mAccumulator.relY = rawEvent->value; | 
 |             break; | 
 |         } | 
 |         break; | 
 |  | 
 |     case EV_SYN: | 
 |         switch (rawEvent->scanCode) { | 
 |         case SYN_REPORT: | 
 |             sync(rawEvent->when); | 
 |             break; | 
 |         } | 
 |         break; | 
 |     } | 
 | } | 
 |  | 
 | void TrackballInputMapper::sync(nsecs_t when) { | 
 |     uint32_t fields = mAccumulator.fields; | 
 |     if (fields == 0) { | 
 |         return; // no new state changes, so nothing to do | 
 |     } | 
 |  | 
 |     int motionEventAction; | 
 |     PointerCoords pointerCoords; | 
 |     nsecs_t downTime; | 
 |     { // acquire lock | 
 |         AutoMutex _l(mLock); | 
 |  | 
 |         bool downChanged = fields & Accumulator::FIELD_BTN_MOUSE; | 
 |  | 
 |         if (downChanged) { | 
 |             if (mAccumulator.btnMouse) { | 
 |                 mLocked.down = true; | 
 |                 mLocked.downTime = when; | 
 |             } else { | 
 |                 mLocked.down = false; | 
 |             } | 
 |         } | 
 |  | 
 |         downTime = mLocked.downTime; | 
 |         float x = fields & Accumulator::FIELD_REL_X ? mAccumulator.relX * mXScale : 0.0f; | 
 |         float y = fields & Accumulator::FIELD_REL_Y ? mAccumulator.relY * mYScale : 0.0f; | 
 |  | 
 |         if (downChanged) { | 
 |             motionEventAction = mLocked.down ? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP; | 
 |         } else { | 
 |             motionEventAction = AMOTION_EVENT_ACTION_MOVE; | 
 |         } | 
 |  | 
 |         pointerCoords.x = x; | 
 |         pointerCoords.y = y; | 
 |         pointerCoords.pressure = mLocked.down ? 1.0f : 0.0f; | 
 |         pointerCoords.size = 0; | 
 |         pointerCoords.touchMajor = 0; | 
 |         pointerCoords.touchMinor = 0; | 
 |         pointerCoords.toolMajor = 0; | 
 |         pointerCoords.toolMinor = 0; | 
 |         pointerCoords.orientation = 0; | 
 |  | 
 |         if (mAssociatedDisplayId >= 0 && (x != 0.0f || y != 0.0f)) { | 
 |             // Rotate motion based on display orientation if needed. | 
 |             // Note: getDisplayInfo is non-reentrant so we can continue holding the lock. | 
 |             int32_t orientation; | 
 |             if (! getPolicy()->getDisplayInfo(mAssociatedDisplayId, NULL, NULL, & orientation)) { | 
 |                 return; | 
 |             } | 
 |  | 
 |             float temp; | 
 |             switch (orientation) { | 
 |             case InputReaderPolicyInterface::ROTATION_90: | 
 |                 temp = pointerCoords.x; | 
 |                 pointerCoords.x = pointerCoords.y; | 
 |                 pointerCoords.y = - temp; | 
 |                 break; | 
 |  | 
 |             case InputReaderPolicyInterface::ROTATION_180: | 
 |                 pointerCoords.x = - pointerCoords.x; | 
 |                 pointerCoords.y = - pointerCoords.y; | 
 |                 break; | 
 |  | 
 |             case InputReaderPolicyInterface::ROTATION_270: | 
 |                 temp = pointerCoords.x; | 
 |                 pointerCoords.x = - pointerCoords.y; | 
 |                 pointerCoords.y = temp; | 
 |                 break; | 
 |             } | 
 |         } | 
 |     } // release lock | 
 |  | 
 |     applyPolicyAndDispatch(when, motionEventAction, & pointerCoords, downTime); | 
 |  | 
 |     mAccumulator.clear(); | 
 | } | 
 |  | 
 | void TrackballInputMapper::applyPolicyAndDispatch(nsecs_t when, int32_t motionEventAction, | 
 |         PointerCoords* pointerCoords, nsecs_t downTime) { | 
 |     uint32_t policyFlags = 0; | 
 |     int32_t policyActions = getPolicy()->interceptGeneric(when, policyFlags); | 
 |  | 
 |     if (! applyStandardPolicyActions(when, policyActions)) { | 
 |         return; // event dropped | 
 |     } | 
 |  | 
 |     int32_t metaState = mContext->getGlobalMetaState(); | 
 |     int32_t pointerId = 0; | 
 |  | 
 |     getDispatcher()->notifyMotion(when, getDeviceId(), AINPUT_SOURCE_TRACKBALL, policyFlags, | 
 |             motionEventAction, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE, | 
 |             1, & pointerId, pointerCoords, mXPrecision, mYPrecision, downTime); | 
 | } | 
 |  | 
 | int32_t TrackballInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { | 
 |     if (scanCode >= BTN_MOUSE && scanCode < BTN_JOYSTICK) { | 
 |         return getEventHub()->getScanCodeState(getDeviceId(), scanCode); | 
 |     } else { | 
 |         return AKEY_STATE_UNKNOWN; | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | // --- TouchInputMapper --- | 
 |  | 
 | TouchInputMapper::TouchInputMapper(InputDevice* device, int32_t associatedDisplayId) : | 
 |         InputMapper(device), mAssociatedDisplayId(associatedDisplayId) { | 
 |     mLocked.surfaceOrientation = -1; | 
 |     mLocked.surfaceWidth = -1; | 
 |     mLocked.surfaceHeight = -1; | 
 |  | 
 |     initializeLocked(); | 
 | } | 
 |  | 
 | TouchInputMapper::~TouchInputMapper() { | 
 | } | 
 |  | 
 | uint32_t TouchInputMapper::getSources() { | 
 |     return mAssociatedDisplayId >= 0 ? AINPUT_SOURCE_TOUCHSCREEN : AINPUT_SOURCE_TOUCHPAD; | 
 | } | 
 |  | 
 | void TouchInputMapper::populateDeviceInfo(InputDeviceInfo* info) { | 
 |     InputMapper::populateDeviceInfo(info); | 
 |  | 
 |     { // acquire lock | 
 |         AutoMutex _l(mLock); | 
 |  | 
 |         // Ensure surface information is up to date so that orientation changes are | 
 |         // noticed immediately. | 
 |         configureSurfaceLocked(); | 
 |  | 
 |         info->addMotionRange(AINPUT_MOTION_RANGE_X, mLocked.orientedRanges.x); | 
 |         info->addMotionRange(AINPUT_MOTION_RANGE_Y, mLocked.orientedRanges.y); | 
 |  | 
 |         if (mLocked.orientedRanges.havePressure) { | 
 |             info->addMotionRange(AINPUT_MOTION_RANGE_PRESSURE, | 
 |                     mLocked.orientedRanges.pressure); | 
 |         } | 
 |  | 
 |         if (mLocked.orientedRanges.haveSize) { | 
 |             info->addMotionRange(AINPUT_MOTION_RANGE_SIZE, | 
 |                     mLocked.orientedRanges.size); | 
 |         } | 
 |  | 
 |         if (mLocked.orientedRanges.haveTouchArea) { | 
 |             info->addMotionRange(AINPUT_MOTION_RANGE_TOUCH_MAJOR, | 
 |                     mLocked.orientedRanges.touchMajor); | 
 |             info->addMotionRange(AINPUT_MOTION_RANGE_TOUCH_MINOR, | 
 |                     mLocked.orientedRanges.touchMinor); | 
 |         } | 
 |  | 
 |         if (mLocked.orientedRanges.haveToolArea) { | 
 |             info->addMotionRange(AINPUT_MOTION_RANGE_TOOL_MAJOR, | 
 |                     mLocked.orientedRanges.toolMajor); | 
 |             info->addMotionRange(AINPUT_MOTION_RANGE_TOOL_MINOR, | 
 |                     mLocked.orientedRanges.toolMinor); | 
 |         } | 
 |  | 
 |         if (mLocked.orientedRanges.haveOrientation) { | 
 |             info->addMotionRange(AINPUT_MOTION_RANGE_ORIENTATION, | 
 |                     mLocked.orientedRanges.orientation); | 
 |         } | 
 |     } // release lock | 
 | } | 
 |  | 
 | void TouchInputMapper::initializeLocked() { | 
 |     mCurrentTouch.clear(); | 
 |     mLastTouch.clear(); | 
 |     mDownTime = 0; | 
 |  | 
 |     for (uint32_t i = 0; i < MAX_POINTERS; i++) { | 
 |         mAveragingTouchFilter.historyStart[i] = 0; | 
 |         mAveragingTouchFilter.historyEnd[i] = 0; | 
 |     } | 
 |  | 
 |     mJumpyTouchFilter.jumpyPointsDropped = 0; | 
 |  | 
 |     mLocked.currentVirtualKey.down = false; | 
 |  | 
 |     mLocked.orientedRanges.havePressure = false; | 
 |     mLocked.orientedRanges.haveSize = false; | 
 |     mLocked.orientedRanges.haveTouchArea = false; | 
 |     mLocked.orientedRanges.haveToolArea = false; | 
 |     mLocked.orientedRanges.haveOrientation = false; | 
 | } | 
 |  | 
 | static void logAxisInfo(RawAbsoluteAxisInfo axis, const char* name) { | 
 |     if (axis.valid) { | 
 |         LOGI(INDENT "Raw %s axis: min=%d, max=%d, flat=%d, fuzz=%d", | 
 |                 name, axis.minValue, axis.maxValue, axis.flat, axis.fuzz); | 
 |     } else { | 
 |         LOGI(INDENT "Raw %s axis: unknown range", name); | 
 |     } | 
 | } | 
 |  | 
 | void TouchInputMapper::configure() { | 
 |     InputMapper::configure(); | 
 |  | 
 |     // Configure basic parameters. | 
 |     configureParameters(); | 
 |  | 
 |     // Configure absolute axis information. | 
 |     configureRawAxes(); | 
 |     logRawAxes(); | 
 |  | 
 |     // Prepare input device calibration. | 
 |     parseCalibration(); | 
 |     resolveCalibration(); | 
 |     logCalibration(); | 
 |  | 
 |     { // acquire lock | 
 |         AutoMutex _l(mLock); | 
 |  | 
 |          // Configure surface dimensions and orientation. | 
 |         configureSurfaceLocked(); | 
 |     } // release lock | 
 | } | 
 |  | 
 | void TouchInputMapper::configureParameters() { | 
 |     mParameters.useBadTouchFilter = getPolicy()->filterTouchEvents(); | 
 |     mParameters.useAveragingTouchFilter = getPolicy()->filterTouchEvents(); | 
 |     mParameters.useJumpyTouchFilter = getPolicy()->filterJumpyTouchEvents(); | 
 | } | 
 |  | 
 | void TouchInputMapper::configureRawAxes() { | 
 |     mRawAxes.x.clear(); | 
 |     mRawAxes.y.clear(); | 
 |     mRawAxes.pressure.clear(); | 
 |     mRawAxes.touchMajor.clear(); | 
 |     mRawAxes.touchMinor.clear(); | 
 |     mRawAxes.toolMajor.clear(); | 
 |     mRawAxes.toolMinor.clear(); | 
 |     mRawAxes.orientation.clear(); | 
 | } | 
 |  | 
 | void TouchInputMapper::logRawAxes() { | 
 |     logAxisInfo(mRawAxes.x, "x"); | 
 |     logAxisInfo(mRawAxes.y, "y"); | 
 |     logAxisInfo(mRawAxes.pressure, "pressure"); | 
 |     logAxisInfo(mRawAxes.touchMajor, "touchMajor"); | 
 |     logAxisInfo(mRawAxes.touchMinor, "touchMinor"); | 
 |     logAxisInfo(mRawAxes.toolMajor, "toolMajor"); | 
 |     logAxisInfo(mRawAxes.toolMinor, "toolMinor"); | 
 |     logAxisInfo(mRawAxes.orientation, "orientation"); | 
 | } | 
 |  | 
 | bool TouchInputMapper::configureSurfaceLocked() { | 
 |     // Update orientation and dimensions if needed. | 
 |     int32_t orientation; | 
 |     int32_t width, height; | 
 |     if (mAssociatedDisplayId >= 0) { | 
 |         // Note: getDisplayInfo is non-reentrant so we can continue holding the lock. | 
 |         if (! getPolicy()->getDisplayInfo(mAssociatedDisplayId, & width, & height, & orientation)) { | 
 |             return false; | 
 |         } | 
 |     } else { | 
 |         orientation = InputReaderPolicyInterface::ROTATION_0; | 
 |         width = mRawAxes.x.getRange(); | 
 |         height = mRawAxes.y.getRange(); | 
 |     } | 
 |  | 
 |     bool orientationChanged = mLocked.surfaceOrientation != orientation; | 
 |     if (orientationChanged) { | 
 |         mLocked.surfaceOrientation = orientation; | 
 |     } | 
 |  | 
 |     bool sizeChanged = mLocked.surfaceWidth != width || mLocked.surfaceHeight != height; | 
 |     if (sizeChanged) { | 
 |         LOGI("Device configured: id=0x%x, name=%s (display size was changed)", | 
 |                 getDeviceId(), getDeviceName().string()); | 
 |  | 
 |         mLocked.surfaceWidth = width; | 
 |         mLocked.surfaceHeight = height; | 
 |  | 
 |         // Configure X and Y factors. | 
 |         if (mRawAxes.x.valid && mRawAxes.y.valid) { | 
 |             mLocked.xOrigin = mRawAxes.x.minValue; | 
 |             mLocked.yOrigin = mRawAxes.y.minValue; | 
 |             mLocked.xScale = float(width) / mRawAxes.x.getRange(); | 
 |             mLocked.yScale = float(height) / mRawAxes.y.getRange(); | 
 |             mLocked.xPrecision = 1.0f / mLocked.xScale; | 
 |             mLocked.yPrecision = 1.0f / mLocked.yScale; | 
 |  | 
 |             configureVirtualKeysLocked(); | 
 |         } else { | 
 |             LOGW(INDENT "Touch device did not report support for X or Y axis!"); | 
 |             mLocked.xOrigin = 0; | 
 |             mLocked.yOrigin = 0; | 
 |             mLocked.xScale = 1.0f; | 
 |             mLocked.yScale = 1.0f; | 
 |             mLocked.xPrecision = 1.0f; | 
 |             mLocked.yPrecision = 1.0f; | 
 |         } | 
 |  | 
 |         // Scale factor for terms that are not oriented in a particular axis. | 
 |         // If the pixels are square then xScale == yScale otherwise we fake it | 
 |         // by choosing an average. | 
 |         mLocked.geometricScale = avg(mLocked.xScale, mLocked.yScale); | 
 |  | 
 |         // Size of diagonal axis. | 
 |         float diagonalSize = pythag(width, height); | 
 |  | 
 |         // TouchMajor and TouchMinor factors. | 
 |         if (mCalibration.touchAreaCalibration != Calibration::TOUCH_AREA_CALIBRATION_NONE) { | 
 |             mLocked.orientedRanges.haveTouchArea = true; | 
 |             mLocked.orientedRanges.touchMajor.min = 0; | 
 |             mLocked.orientedRanges.touchMajor.max = diagonalSize; | 
 |             mLocked.orientedRanges.touchMajor.flat = 0; | 
 |             mLocked.orientedRanges.touchMajor.fuzz = 0; | 
 |             mLocked.orientedRanges.touchMinor = mLocked.orientedRanges.touchMajor; | 
 |         } | 
 |  | 
 |         // ToolMajor and ToolMinor factors. | 
 |         if (mCalibration.toolAreaCalibration != Calibration::TOOL_AREA_CALIBRATION_NONE) { | 
 |             mLocked.toolAreaLinearScale = 0; | 
 |             mLocked.toolAreaLinearBias = 0; | 
 |             if (mCalibration.toolAreaCalibration == Calibration::TOOL_AREA_CALIBRATION_LINEAR) { | 
 |                 if (mCalibration.haveToolAreaLinearScale) { | 
 |                     mLocked.toolAreaLinearScale = mCalibration.toolAreaLinearScale; | 
 |                 } else if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) { | 
 |                     mLocked.toolAreaLinearScale = float(min(width, height)) | 
 |                             / mRawAxes.toolMajor.maxValue; | 
 |                 } | 
 |  | 
 |                 if (mCalibration.haveToolAreaLinearBias) { | 
 |                     mLocked.toolAreaLinearBias = mCalibration.toolAreaLinearBias; | 
 |                 } | 
 |             } | 
 |  | 
 |             mLocked.orientedRanges.haveToolArea = true; | 
 |             mLocked.orientedRanges.toolMajor.min = 0; | 
 |             mLocked.orientedRanges.toolMajor.max = diagonalSize; | 
 |             mLocked.orientedRanges.toolMajor.flat = 0; | 
 |             mLocked.orientedRanges.toolMajor.fuzz = 0; | 
 |             mLocked.orientedRanges.toolMinor = mLocked.orientedRanges.toolMajor; | 
 |         } | 
 |  | 
 |         // Pressure factors. | 
 |         if (mCalibration.pressureCalibration != Calibration::PRESSURE_CALIBRATION_NONE) { | 
 |             RawAbsoluteAxisInfo rawPressureAxis; | 
 |             switch (mCalibration.pressureSource) { | 
 |             case Calibration::PRESSURE_SOURCE_PRESSURE: | 
 |                 rawPressureAxis = mRawAxes.pressure; | 
 |                 break; | 
 |             case Calibration::PRESSURE_SOURCE_TOUCH: | 
 |                 rawPressureAxis = mRawAxes.touchMajor; | 
 |                 break; | 
 |             default: | 
 |                 rawPressureAxis.clear(); | 
 |             } | 
 |  | 
 |             mLocked.pressureScale = 0; | 
 |             if (mCalibration.pressureCalibration == Calibration::PRESSURE_CALIBRATION_PHYSICAL | 
 |                     || mCalibration.pressureCalibration | 
 |                             == Calibration::PRESSURE_CALIBRATION_AMPLITUDE) { | 
 |                 if (mCalibration.havePressureScale) { | 
 |                     mLocked.pressureScale = mCalibration.pressureScale; | 
 |                 } else if (rawPressureAxis.valid && rawPressureAxis.maxValue != 0) { | 
 |                     mLocked.pressureScale = 1.0f / rawPressureAxis.maxValue; | 
 |                 } | 
 |             } | 
 |  | 
 |             mLocked.orientedRanges.havePressure = true; | 
 |             mLocked.orientedRanges.pressure.min = 0; | 
 |             mLocked.orientedRanges.pressure.max = 1.0; | 
 |             mLocked.orientedRanges.pressure.flat = 0; | 
 |             mLocked.orientedRanges.pressure.fuzz = 0; | 
 |         } | 
 |  | 
 |         // Size factors. | 
 |         if (mCalibration.sizeCalibration != Calibration::SIZE_CALIBRATION_NONE) { | 
 |             mLocked.sizeScale = 0; | 
 |             if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_NORMALIZED) { | 
 |                 if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) { | 
 |                     mLocked.sizeScale = 1.0f / mRawAxes.toolMajor.maxValue; | 
 |                 } | 
 |             } | 
 |  | 
 |             mLocked.orientedRanges.haveSize = true; | 
 |             mLocked.orientedRanges.size.min = 0; | 
 |             mLocked.orientedRanges.size.max = 1.0; | 
 |             mLocked.orientedRanges.size.flat = 0; | 
 |             mLocked.orientedRanges.size.fuzz = 0; | 
 |         } | 
 |  | 
 |         // Orientation | 
 |         if (mCalibration.orientationCalibration != Calibration::ORIENTATION_CALIBRATION_NONE) { | 
 |             mLocked.orientationScale = 0; | 
 |             if (mCalibration.orientationCalibration | 
 |                     == Calibration::ORIENTATION_CALIBRATION_INTERPOLATED) { | 
 |                 if (mRawAxes.orientation.valid && mRawAxes.orientation.maxValue != 0) { | 
 |                     mLocked.orientationScale = float(M_PI_2) / mRawAxes.orientation.maxValue; | 
 |                 } | 
 |             } | 
 |  | 
 |             mLocked.orientedRanges.orientation.min = - M_PI_2; | 
 |             mLocked.orientedRanges.orientation.max = M_PI_2; | 
 |             mLocked.orientedRanges.orientation.flat = 0; | 
 |             mLocked.orientedRanges.orientation.fuzz = 0; | 
 |         } | 
 |     } | 
 |  | 
 |     if (orientationChanged || sizeChanged) { | 
 |         // Compute oriented surface dimensions, precision, and scales. | 
 |         float orientedXScale, orientedYScale; | 
 |         switch (mLocked.surfaceOrientation) { | 
 |         case InputReaderPolicyInterface::ROTATION_90: | 
 |         case InputReaderPolicyInterface::ROTATION_270: | 
 |             mLocked.orientedSurfaceWidth = mLocked.surfaceHeight; | 
 |             mLocked.orientedSurfaceHeight = mLocked.surfaceWidth; | 
 |             mLocked.orientedXPrecision = mLocked.yPrecision; | 
 |             mLocked.orientedYPrecision = mLocked.xPrecision; | 
 |             orientedXScale = mLocked.yScale; | 
 |             orientedYScale = mLocked.xScale; | 
 |             break; | 
 |         default: | 
 |             mLocked.orientedSurfaceWidth = mLocked.surfaceWidth; | 
 |             mLocked.orientedSurfaceHeight = mLocked.surfaceHeight; | 
 |             mLocked.orientedXPrecision = mLocked.xPrecision; | 
 |             mLocked.orientedYPrecision = mLocked.yPrecision; | 
 |             orientedXScale = mLocked.xScale; | 
 |             orientedYScale = mLocked.yScale; | 
 |             break; | 
 |         } | 
 |  | 
 |         // Configure position ranges. | 
 |         mLocked.orientedRanges.x.min = 0; | 
 |         mLocked.orientedRanges.x.max = mLocked.orientedSurfaceWidth; | 
 |         mLocked.orientedRanges.x.flat = 0; | 
 |         mLocked.orientedRanges.x.fuzz = orientedXScale; | 
 |  | 
 |         mLocked.orientedRanges.y.min = 0; | 
 |         mLocked.orientedRanges.y.max = mLocked.orientedSurfaceHeight; | 
 |         mLocked.orientedRanges.y.flat = 0; | 
 |         mLocked.orientedRanges.y.fuzz = orientedYScale; | 
 |     } | 
 |  | 
 |     return true; | 
 | } | 
 |  | 
 | void TouchInputMapper::configureVirtualKeysLocked() { | 
 |     assert(mRawAxes.x.valid && mRawAxes.y.valid); | 
 |  | 
 |     // Note: getVirtualKeyDefinitions is non-reentrant so we can continue holding the lock. | 
 |     Vector<VirtualKeyDefinition> virtualKeyDefinitions; | 
 |     getPolicy()->getVirtualKeyDefinitions(getDeviceName(), virtualKeyDefinitions); | 
 |  | 
 |     mLocked.virtualKeys.clear(); | 
 |  | 
 |     if (virtualKeyDefinitions.size() == 0) { | 
 |         return; | 
 |     } | 
 |  | 
 |     mLocked.virtualKeys.setCapacity(virtualKeyDefinitions.size()); | 
 |  | 
 |     int32_t touchScreenLeft = mRawAxes.x.minValue; | 
 |     int32_t touchScreenTop = mRawAxes.y.minValue; | 
 |     int32_t touchScreenWidth = mRawAxes.x.getRange(); | 
 |     int32_t touchScreenHeight = mRawAxes.y.getRange(); | 
 |  | 
 |     for (size_t i = 0; i < virtualKeyDefinitions.size(); i++) { | 
 |         const VirtualKeyDefinition& virtualKeyDefinition = | 
 |                 virtualKeyDefinitions[i]; | 
 |  | 
 |         mLocked.virtualKeys.add(); | 
 |         VirtualKey& virtualKey = mLocked.virtualKeys.editTop(); | 
 |  | 
 |         virtualKey.scanCode = virtualKeyDefinition.scanCode; | 
 |         int32_t keyCode; | 
 |         uint32_t flags; | 
 |         if (getEventHub()->scancodeToKeycode(getDeviceId(), virtualKey.scanCode, | 
 |                 & keyCode, & flags)) { | 
 |             LOGW(INDENT "VirtualKey %d: could not obtain key code, ignoring", | 
 |                     virtualKey.scanCode); | 
 |             mLocked.virtualKeys.pop(); // drop the key | 
 |             continue; | 
 |         } | 
 |  | 
 |         virtualKey.keyCode = keyCode; | 
 |         virtualKey.flags = flags; | 
 |  | 
 |         // convert the key definition's display coordinates into touch coordinates for a hit box | 
 |         int32_t halfWidth = virtualKeyDefinition.width / 2; | 
 |         int32_t halfHeight = virtualKeyDefinition.height / 2; | 
 |  | 
 |         virtualKey.hitLeft = (virtualKeyDefinition.centerX - halfWidth) | 
 |                 * touchScreenWidth / mLocked.surfaceWidth + touchScreenLeft; | 
 |         virtualKey.hitRight= (virtualKeyDefinition.centerX + halfWidth) | 
 |                 * touchScreenWidth / mLocked.surfaceWidth + touchScreenLeft; | 
 |         virtualKey.hitTop = (virtualKeyDefinition.centerY - halfHeight) | 
 |                 * touchScreenHeight / mLocked.surfaceHeight + touchScreenTop; | 
 |         virtualKey.hitBottom = (virtualKeyDefinition.centerY + halfHeight) | 
 |                 * touchScreenHeight / mLocked.surfaceHeight + touchScreenTop; | 
 |  | 
 |         LOGI(INDENT "VirtualKey %d: keyCode=%d hitLeft=%d hitRight=%d hitTop=%d hitBottom=%d", | 
 |                 virtualKey.scanCode, virtualKey.keyCode, | 
 |                 virtualKey.hitLeft, virtualKey.hitRight, virtualKey.hitTop, virtualKey.hitBottom); | 
 |     } | 
 | } | 
 |  | 
 | void TouchInputMapper::parseCalibration() { | 
 |     const InputDeviceCalibration& in = getDevice()->getCalibration(); | 
 |     Calibration& out = mCalibration; | 
 |  | 
 |     // Touch Area | 
 |     out.touchAreaCalibration = Calibration::TOUCH_AREA_CALIBRATION_DEFAULT; | 
 |     String8 touchAreaCalibrationString; | 
 |     if (in.tryGetProperty(String8("touch.touchArea.calibration"), touchAreaCalibrationString)) { | 
 |         if (touchAreaCalibrationString == "none") { | 
 |             out.touchAreaCalibration = Calibration::TOUCH_AREA_CALIBRATION_NONE; | 
 |         } else if (touchAreaCalibrationString == "geometric") { | 
 |             out.touchAreaCalibration = Calibration::TOUCH_AREA_CALIBRATION_GEOMETRIC; | 
 |         } else if (touchAreaCalibrationString == "pressure") { | 
 |             out.touchAreaCalibration = Calibration::TOUCH_AREA_CALIBRATION_PRESSURE; | 
 |         } else if (touchAreaCalibrationString != "default") { | 
 |             LOGW("Invalid value for touch.touchArea.calibration: '%s'", | 
 |                     touchAreaCalibrationString.string()); | 
 |         } | 
 |     } | 
 |  | 
 |     // Tool Area | 
 |     out.toolAreaCalibration = Calibration::TOOL_AREA_CALIBRATION_DEFAULT; | 
 |     String8 toolAreaCalibrationString; | 
 |     if (in.tryGetProperty(String8("tool.toolArea.calibration"), toolAreaCalibrationString)) { | 
 |         if (toolAreaCalibrationString == "none") { | 
 |             out.toolAreaCalibration = Calibration::TOOL_AREA_CALIBRATION_NONE; | 
 |         } else if (toolAreaCalibrationString == "geometric") { | 
 |             out.toolAreaCalibration = Calibration::TOOL_AREA_CALIBRATION_GEOMETRIC; | 
 |         } else if (toolAreaCalibrationString == "linear") { | 
 |             out.toolAreaCalibration = Calibration::TOOL_AREA_CALIBRATION_LINEAR; | 
 |         } else if (toolAreaCalibrationString != "default") { | 
 |             LOGW("Invalid value for tool.toolArea.calibration: '%s'", | 
 |                     toolAreaCalibrationString.string()); | 
 |         } | 
 |     } | 
 |  | 
 |     out.haveToolAreaLinearScale = in.tryGetProperty(String8("touch.toolArea.linearScale"), | 
 |             out.toolAreaLinearScale); | 
 |     out.haveToolAreaLinearBias = in.tryGetProperty(String8("touch.toolArea.linearBias"), | 
 |             out.toolAreaLinearBias); | 
 |     out.haveToolAreaIsSummed = in.tryGetProperty(String8("touch.toolArea.isSummed"), | 
 |             out.toolAreaIsSummed); | 
 |  | 
 |     // Pressure | 
 |     out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_DEFAULT; | 
 |     String8 pressureCalibrationString; | 
 |     if (in.tryGetProperty(String8("tool.pressure.calibration"), pressureCalibrationString)) { | 
 |         if (pressureCalibrationString == "none") { | 
 |             out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE; | 
 |         } else if (pressureCalibrationString == "physical") { | 
 |             out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_PHYSICAL; | 
 |         } else if (pressureCalibrationString == "amplitude") { | 
 |             out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE; | 
 |         } else if (pressureCalibrationString != "default") { | 
 |             LOGW("Invalid value for tool.pressure.calibration: '%s'", | 
 |                     pressureCalibrationString.string()); | 
 |         } | 
 |     } | 
 |  | 
 |     out.pressureSource = Calibration::PRESSURE_SOURCE_DEFAULT; | 
 |     String8 pressureSourceString; | 
 |     if (in.tryGetProperty(String8("touch.pressure.source"), pressureSourceString)) { | 
 |         if (pressureSourceString == "pressure") { | 
 |             out.pressureSource = Calibration::PRESSURE_SOURCE_PRESSURE; | 
 |         } else if (pressureSourceString == "touch") { | 
 |             out.pressureSource = Calibration::PRESSURE_SOURCE_TOUCH; | 
 |         } else if (pressureSourceString != "default") { | 
 |             LOGW("Invalid value for touch.pressure.source: '%s'", | 
 |                     pressureSourceString.string()); | 
 |         } | 
 |     } | 
 |  | 
 |     out.havePressureScale = in.tryGetProperty(String8("touch.pressure.scale"), | 
 |             out.pressureScale); | 
 |  | 
 |     // Size | 
 |     out.sizeCalibration = Calibration::SIZE_CALIBRATION_DEFAULT; | 
 |     String8 sizeCalibrationString; | 
 |     if (in.tryGetProperty(String8("tool.size.calibration"), sizeCalibrationString)) { | 
 |         if (sizeCalibrationString == "none") { | 
 |             out.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE; | 
 |         } else if (sizeCalibrationString == "normalized") { | 
 |             out.sizeCalibration = Calibration::SIZE_CALIBRATION_NORMALIZED; | 
 |         } else if (sizeCalibrationString != "default") { | 
 |             LOGW("Invalid value for tool.size.calibration: '%s'", | 
 |                     sizeCalibrationString.string()); | 
 |         } | 
 |     } | 
 |  | 
 |     // Orientation | 
 |     out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_DEFAULT; | 
 |     String8 orientationCalibrationString; | 
 |     if (in.tryGetProperty(String8("tool.orientation.calibration"), orientationCalibrationString)) { | 
 |         if (orientationCalibrationString == "none") { | 
 |             out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE; | 
 |         } else if (orientationCalibrationString == "interpolated") { | 
 |             out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED; | 
 |         } else if (orientationCalibrationString != "default") { | 
 |             LOGW("Invalid value for tool.orientation.calibration: '%s'", | 
 |                     orientationCalibrationString.string()); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void TouchInputMapper::resolveCalibration() { | 
 |     // Pressure | 
 |     switch (mCalibration.pressureSource) { | 
 |     case Calibration::PRESSURE_SOURCE_DEFAULT: | 
 |         if (mRawAxes.pressure.valid) { | 
 |             mCalibration.pressureSource = Calibration::PRESSURE_SOURCE_PRESSURE; | 
 |         } else if (mRawAxes.touchMajor.valid) { | 
 |             mCalibration.pressureSource = Calibration::PRESSURE_SOURCE_TOUCH; | 
 |         } | 
 |         break; | 
 |  | 
 |     case Calibration::PRESSURE_SOURCE_PRESSURE: | 
 |         if (! mRawAxes.pressure.valid) { | 
 |             LOGW("Calibration property touch.pressure.source is 'pressure' but " | 
 |                     "the pressure axis is not available."); | 
 |         } | 
 |         break; | 
 |  | 
 |     case Calibration::PRESSURE_SOURCE_TOUCH: | 
 |         if (! mRawAxes.touchMajor.valid) { | 
 |             LOGW("Calibration property touch.pressure.source is 'touch' but " | 
 |                     "the touchMajor axis is not available."); | 
 |         } | 
 |         break; | 
 |  | 
 |     default: | 
 |         break; | 
 |     } | 
 |  | 
 |     switch (mCalibration.pressureCalibration) { | 
 |     case Calibration::PRESSURE_CALIBRATION_DEFAULT: | 
 |         if (mCalibration.pressureSource != Calibration::PRESSURE_SOURCE_DEFAULT) { | 
 |             mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE; | 
 |         } else { | 
 |             mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE; | 
 |         } | 
 |         break; | 
 |  | 
 |     default: | 
 |         break; | 
 |     } | 
 |  | 
 |     // Tool Area | 
 |     switch (mCalibration.toolAreaCalibration) { | 
 |     case Calibration::TOOL_AREA_CALIBRATION_DEFAULT: | 
 |         if (mRawAxes.toolMajor.valid) { | 
 |             mCalibration.toolAreaCalibration = Calibration::TOOL_AREA_CALIBRATION_LINEAR; | 
 |         } else { | 
 |             mCalibration.toolAreaCalibration = Calibration::TOOL_AREA_CALIBRATION_NONE; | 
 |         } | 
 |         break; | 
 |  | 
 |     default: | 
 |         break; | 
 |     } | 
 |  | 
 |     // Touch Area | 
 |     switch (mCalibration.touchAreaCalibration) { | 
 |     case Calibration::TOUCH_AREA_CALIBRATION_DEFAULT: | 
 |         if (mCalibration.pressureCalibration != Calibration::PRESSURE_CALIBRATION_NONE | 
 |                 && mCalibration.toolAreaCalibration != Calibration::TOOL_AREA_CALIBRATION_NONE) { | 
 |             mCalibration.touchAreaCalibration = Calibration::TOUCH_AREA_CALIBRATION_PRESSURE; | 
 |         } else { | 
 |             mCalibration.touchAreaCalibration = Calibration::TOUCH_AREA_CALIBRATION_NONE; | 
 |         } | 
 |         break; | 
 |  | 
 |     default: | 
 |         break; | 
 |     } | 
 |  | 
 |     // Size | 
 |     switch (mCalibration.sizeCalibration) { | 
 |     case Calibration::SIZE_CALIBRATION_DEFAULT: | 
 |         if (mRawAxes.toolMajor.valid) { | 
 |             mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NORMALIZED; | 
 |         } else { | 
 |             mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE; | 
 |         } | 
 |         break; | 
 |  | 
 |     default: | 
 |         break; | 
 |     } | 
 |  | 
 |     // Orientation | 
 |     switch (mCalibration.orientationCalibration) { | 
 |     case Calibration::ORIENTATION_CALIBRATION_DEFAULT: | 
 |         if (mRawAxes.orientation.valid) { | 
 |             mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED; | 
 |         } else { | 
 |             mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE; | 
 |         } | 
 |         break; | 
 |  | 
 |     default: | 
 |         break; | 
 |     } | 
 | } | 
 |  | 
 | void TouchInputMapper::logCalibration() { | 
 |     // Touch Area | 
 |     switch (mCalibration.touchAreaCalibration) { | 
 |     case Calibration::TOUCH_AREA_CALIBRATION_NONE: | 
 |         LOGI(INDENT "  touch.touchArea.calibration: none"); | 
 |         break; | 
 |     case Calibration::TOUCH_AREA_CALIBRATION_GEOMETRIC: | 
 |         LOGI(INDENT "  touch.touchArea.calibration: geometric"); | 
 |         break; | 
 |     case Calibration::TOUCH_AREA_CALIBRATION_PRESSURE: | 
 |         LOGI(INDENT "  touch.touchArea.calibration: pressure"); | 
 |         break; | 
 |     default: | 
 |         assert(false); | 
 |     } | 
 |  | 
 |     // Tool Area | 
 |     switch (mCalibration.toolAreaCalibration) { | 
 |     case Calibration::TOOL_AREA_CALIBRATION_NONE: | 
 |         LOGI(INDENT "  touch.toolArea.calibration: none"); | 
 |         break; | 
 |     case Calibration::TOOL_AREA_CALIBRATION_GEOMETRIC: | 
 |         LOGI(INDENT "  touch.toolArea.calibration: geometric"); | 
 |         break; | 
 |     case Calibration::TOOL_AREA_CALIBRATION_LINEAR: | 
 |         LOGI(INDENT "  touch.toolArea.calibration: linear"); | 
 |         break; | 
 |     default: | 
 |         assert(false); | 
 |     } | 
 |  | 
 |     if (mCalibration.haveToolAreaLinearScale) { | 
 |         LOGI(INDENT "  touch.toolArea.linearScale: %f", mCalibration.toolAreaLinearScale); | 
 |     } | 
 |  | 
 |     if (mCalibration.haveToolAreaLinearBias) { | 
 |         LOGI(INDENT "  touch.toolArea.linearBias: %f", mCalibration.toolAreaLinearBias); | 
 |     } | 
 |  | 
 |     if (mCalibration.haveToolAreaIsSummed) { | 
 |         LOGI(INDENT "  touch.toolArea.isSummed: %d", mCalibration.toolAreaIsSummed); | 
 |     } | 
 |  | 
 |     // Pressure | 
 |     switch (mCalibration.pressureCalibration) { | 
 |     case Calibration::PRESSURE_CALIBRATION_NONE: | 
 |         LOGI(INDENT "  touch.pressure.calibration: none"); | 
 |         break; | 
 |     case Calibration::PRESSURE_CALIBRATION_PHYSICAL: | 
 |         LOGI(INDENT "  touch.pressure.calibration: physical"); | 
 |         break; | 
 |     case Calibration::PRESSURE_CALIBRATION_AMPLITUDE: | 
 |         LOGI(INDENT "  touch.pressure.calibration: amplitude"); | 
 |         break; | 
 |     default: | 
 |         assert(false); | 
 |     } | 
 |  | 
 |     switch (mCalibration.pressureSource) { | 
 |     case Calibration::PRESSURE_SOURCE_PRESSURE: | 
 |         LOGI(INDENT "  touch.pressure.source: pressure"); | 
 |         break; | 
 |     case Calibration::PRESSURE_SOURCE_TOUCH: | 
 |         LOGI(INDENT "  touch.pressure.source: touch"); | 
 |         break; | 
 |     case Calibration::PRESSURE_SOURCE_DEFAULT: | 
 |         break; | 
 |     default: | 
 |         assert(false); | 
 |     } | 
 |  | 
 |     if (mCalibration.havePressureScale) { | 
 |         LOGI(INDENT "  touch.pressure.scale: %f", mCalibration.pressureScale); | 
 |     } | 
 |  | 
 |     // Size | 
 |     switch (mCalibration.sizeCalibration) { | 
 |     case Calibration::SIZE_CALIBRATION_NONE: | 
 |         LOGI(INDENT "  touch.size.calibration: none"); | 
 |         break; | 
 |     case Calibration::SIZE_CALIBRATION_NORMALIZED: | 
 |         LOGI(INDENT "  touch.size.calibration: normalized"); | 
 |         break; | 
 |     default: | 
 |         assert(false); | 
 |     } | 
 |  | 
 |     // Orientation | 
 |     switch (mCalibration.orientationCalibration) { | 
 |     case Calibration::ORIENTATION_CALIBRATION_NONE: | 
 |         LOGI(INDENT "  touch.orientation.calibration: none"); | 
 |         break; | 
 |     case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED: | 
 |         LOGI(INDENT "  touch.orientation.calibration: interpolated"); | 
 |         break; | 
 |     default: | 
 |         assert(false); | 
 |     } | 
 | } | 
 |  | 
 | void TouchInputMapper::reset() { | 
 |     // Synthesize touch up event if touch is currently down. | 
 |     // This will also take care of finishing virtual key processing if needed. | 
 |     if (mLastTouch.pointerCount != 0) { | 
 |         nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC); | 
 |         mCurrentTouch.clear(); | 
 |         syncTouch(when, true); | 
 |     } | 
 |  | 
 |     { // acquire lock | 
 |         AutoMutex _l(mLock); | 
 |         initializeLocked(); | 
 |     } // release lock | 
 |  | 
 |     InputMapper::reset(); | 
 | } | 
 |  | 
 | void TouchInputMapper::syncTouch(nsecs_t when, bool havePointerIds) { | 
 |     // Apply generic policy actions. | 
 |  | 
 |     uint32_t policyFlags = 0; | 
 |     int32_t policyActions = getPolicy()->interceptGeneric(when, policyFlags); | 
 |  | 
 |     if (! applyStandardPolicyActions(when, policyActions)) { | 
 |         mLastTouch.clear(); | 
 |         return; // event dropped | 
 |     } | 
 |  | 
 |     // Preprocess pointer data. | 
 |  | 
 |     if (mParameters.useBadTouchFilter) { | 
 |         if (applyBadTouchFilter()) { | 
 |             havePointerIds = false; | 
 |         } | 
 |     } | 
 |  | 
 |     if (mParameters.useJumpyTouchFilter) { | 
 |         if (applyJumpyTouchFilter()) { | 
 |             havePointerIds = false; | 
 |         } | 
 |     } | 
 |  | 
 |     if (! havePointerIds) { | 
 |         calculatePointerIds(); | 
 |     } | 
 |  | 
 |     TouchData temp; | 
 |     TouchData* savedTouch; | 
 |     if (mParameters.useAveragingTouchFilter) { | 
 |         temp.copyFrom(mCurrentTouch); | 
 |         savedTouch = & temp; | 
 |  | 
 |         applyAveragingTouchFilter(); | 
 |     } else { | 
 |         savedTouch = & mCurrentTouch; | 
 |     } | 
 |  | 
 |     // Process touches and virtual keys. | 
 |  | 
 |     TouchResult touchResult = consumeOffScreenTouches(when, policyFlags); | 
 |     if (touchResult == DISPATCH_TOUCH) { | 
 |         dispatchTouches(when, policyFlags); | 
 |     } | 
 |  | 
 |     // Copy current touch to last touch in preparation for the next cycle. | 
 |  | 
 |     if (touchResult == DROP_STROKE) { | 
 |         mLastTouch.clear(); | 
 |     } else { | 
 |         mLastTouch.copyFrom(*savedTouch); | 
 |     } | 
 | } | 
 |  | 
 | TouchInputMapper::TouchResult TouchInputMapper::consumeOffScreenTouches( | 
 |         nsecs_t when, uint32_t policyFlags) { | 
 |     int32_t keyEventAction, keyEventFlags; | 
 |     int32_t keyCode, scanCode, downTime; | 
 |     TouchResult touchResult; | 
 |  | 
 |     { // acquire lock | 
 |         AutoMutex _l(mLock); | 
 |  | 
 |         // Update surface size and orientation, including virtual key positions. | 
 |         if (! configureSurfaceLocked()) { | 
 |             return DROP_STROKE; | 
 |         } | 
 |  | 
 |         // Check for virtual key press. | 
 |         if (mLocked.currentVirtualKey.down) { | 
 |             if (mCurrentTouch.pointerCount == 0) { | 
 |                 // Pointer went up while virtual key was down. | 
 |                 mLocked.currentVirtualKey.down = false; | 
 | #if DEBUG_VIRTUAL_KEYS | 
 |                 LOGD("VirtualKeys: Generating key up: keyCode=%d, scanCode=%d", | 
 |                         mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode); | 
 | #endif | 
 |                 keyEventAction = AKEY_EVENT_ACTION_UP; | 
 |                 keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY; | 
 |                 touchResult = SKIP_TOUCH; | 
 |                 goto DispatchVirtualKey; | 
 |             } | 
 |  | 
 |             if (mCurrentTouch.pointerCount == 1) { | 
 |                 int32_t x = mCurrentTouch.pointers[0].x; | 
 |                 int32_t y = mCurrentTouch.pointers[0].y; | 
 |                 const VirtualKey* virtualKey = findVirtualKeyHitLocked(x, y); | 
 |                 if (virtualKey && virtualKey->keyCode == mLocked.currentVirtualKey.keyCode) { | 
 |                     // Pointer is still within the space of the virtual key. | 
 |                     return SKIP_TOUCH; | 
 |                 } | 
 |             } | 
 |  | 
 |             // Pointer left virtual key area or another pointer also went down. | 
 |             // Send key cancellation and drop the stroke so subsequent motions will be | 
 |             // considered fresh downs.  This is useful when the user swipes away from the | 
 |             // virtual key area into the main display surface. | 
 |             mLocked.currentVirtualKey.down = false; | 
 | #if DEBUG_VIRTUAL_KEYS | 
 |             LOGD("VirtualKeys: Canceling key: keyCode=%d, scanCode=%d", | 
 |                     mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode); | 
 | #endif | 
 |             keyEventAction = AKEY_EVENT_ACTION_UP; | 
 |             keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY | 
 |                     | AKEY_EVENT_FLAG_CANCELED; | 
 |             touchResult = DROP_STROKE; | 
 |             goto DispatchVirtualKey; | 
 |         } else { | 
 |             if (mCurrentTouch.pointerCount >= 1 && mLastTouch.pointerCount == 0) { | 
 |                 // Pointer just went down.  Handle off-screen touches, if needed. | 
 |                 int32_t x = mCurrentTouch.pointers[0].x; | 
 |                 int32_t y = mCurrentTouch.pointers[0].y; | 
 |                 if (! isPointInsideSurfaceLocked(x, y)) { | 
 |                     // If exactly one pointer went down, check for virtual key hit. | 
 |                     // Otherwise we will drop the entire stroke. | 
 |                     if (mCurrentTouch.pointerCount == 1) { | 
 |                         const VirtualKey* virtualKey = findVirtualKeyHitLocked(x, y); | 
 |                         if (virtualKey) { | 
 |                             mLocked.currentVirtualKey.down = true; | 
 |                             mLocked.currentVirtualKey.downTime = when; | 
 |                             mLocked.currentVirtualKey.keyCode = virtualKey->keyCode; | 
 |                             mLocked.currentVirtualKey.scanCode = virtualKey->scanCode; | 
 | #if DEBUG_VIRTUAL_KEYS | 
 |                             LOGD("VirtualKeys: Generating key down: keyCode=%d, scanCode=%d", | 
 |                                     mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode); | 
 | #endif | 
 |                             keyEventAction = AKEY_EVENT_ACTION_DOWN; | 
 |                             keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM | 
 |                                     | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY; | 
 |                             touchResult = SKIP_TOUCH; | 
 |                             goto DispatchVirtualKey; | 
 |                         } | 
 |                     } | 
 |                     return DROP_STROKE; | 
 |                 } | 
 |             } | 
 |             return DISPATCH_TOUCH; | 
 |         } | 
 |  | 
 |     DispatchVirtualKey: | 
 |         // Collect remaining state needed to dispatch virtual key. | 
 |         keyCode = mLocked.currentVirtualKey.keyCode; | 
 |         scanCode = mLocked.currentVirtualKey.scanCode; | 
 |         downTime = mLocked.currentVirtualKey.downTime; | 
 |     } // release lock | 
 |  | 
 |     // Dispatch virtual key. | 
 |     applyPolicyAndDispatchVirtualKey(when, policyFlags, keyEventAction, keyEventFlags, | 
 |             keyCode, scanCode, downTime); | 
 |     return touchResult; | 
 | } | 
 |  | 
 | void TouchInputMapper::applyPolicyAndDispatchVirtualKey(nsecs_t when, uint32_t policyFlags, | 
 |         int32_t keyEventAction, int32_t keyEventFlags, | 
 |         int32_t keyCode, int32_t scanCode, nsecs_t downTime) { | 
 |     int32_t metaState = mContext->getGlobalMetaState(); | 
 |  | 
 |     if (keyEventAction == AKEY_EVENT_ACTION_DOWN) { | 
 |         getPolicy()->virtualKeyDownFeedback(); | 
 |     } | 
 |  | 
 |     int32_t policyActions = getPolicy()->interceptKey(when, getDeviceId(), | 
 |             keyEventAction == AKEY_EVENT_ACTION_DOWN, keyCode, scanCode, policyFlags); | 
 |  | 
 |     if (applyStandardPolicyActions(when, policyActions)) { | 
 |         getDispatcher()->notifyKey(when, getDeviceId(), AINPUT_SOURCE_KEYBOARD, policyFlags, | 
 |                 keyEventAction, keyEventFlags, keyCode, scanCode, metaState, downTime); | 
 |     } | 
 | } | 
 |  | 
 | void TouchInputMapper::dispatchTouches(nsecs_t when, uint32_t policyFlags) { | 
 |     uint32_t currentPointerCount = mCurrentTouch.pointerCount; | 
 |     uint32_t lastPointerCount = mLastTouch.pointerCount; | 
 |     if (currentPointerCount == 0 && lastPointerCount == 0) { | 
 |         return; // nothing to do! | 
 |     } | 
 |  | 
 |     BitSet32 currentIdBits = mCurrentTouch.idBits; | 
 |     BitSet32 lastIdBits = mLastTouch.idBits; | 
 |  | 
 |     if (currentIdBits == lastIdBits) { | 
 |         // No pointer id changes so this is a move event. | 
 |         // The dispatcher takes care of batching moves so we don't have to deal with that here. | 
 |         int32_t motionEventAction = AMOTION_EVENT_ACTION_MOVE; | 
 |         dispatchTouch(when, policyFlags, & mCurrentTouch, | 
 |                 currentIdBits, -1, currentPointerCount, motionEventAction); | 
 |     } else { | 
 |         // There may be pointers going up and pointers going down at the same time when pointer | 
 |         // ids are reported by the device driver. | 
 |         BitSet32 upIdBits(lastIdBits.value & ~ currentIdBits.value); | 
 |         BitSet32 downIdBits(currentIdBits.value & ~ lastIdBits.value); | 
 |         BitSet32 activeIdBits(lastIdBits.value); | 
 |         uint32_t pointerCount = lastPointerCount; | 
 |  | 
 |         while (! upIdBits.isEmpty()) { | 
 |             uint32_t upId = upIdBits.firstMarkedBit(); | 
 |             upIdBits.clearBit(upId); | 
 |             BitSet32 oldActiveIdBits = activeIdBits; | 
 |             activeIdBits.clearBit(upId); | 
 |  | 
 |             int32_t motionEventAction; | 
 |             if (activeIdBits.isEmpty()) { | 
 |                 motionEventAction = AMOTION_EVENT_ACTION_UP; | 
 |             } else { | 
 |                 motionEventAction = AMOTION_EVENT_ACTION_POINTER_UP; | 
 |             } | 
 |  | 
 |             dispatchTouch(when, policyFlags, & mLastTouch, | 
 |                     oldActiveIdBits, upId, pointerCount, motionEventAction); | 
 |             pointerCount -= 1; | 
 |         } | 
 |  | 
 |         while (! downIdBits.isEmpty()) { | 
 |             uint32_t downId = downIdBits.firstMarkedBit(); | 
 |             downIdBits.clearBit(downId); | 
 |             BitSet32 oldActiveIdBits = activeIdBits; | 
 |             activeIdBits.markBit(downId); | 
 |  | 
 |             int32_t motionEventAction; | 
 |             if (oldActiveIdBits.isEmpty()) { | 
 |                 motionEventAction = AMOTION_EVENT_ACTION_DOWN; | 
 |                 mDownTime = when; | 
 |             } else { | 
 |                 motionEventAction = AMOTION_EVENT_ACTION_POINTER_DOWN; | 
 |             } | 
 |  | 
 |             pointerCount += 1; | 
 |             dispatchTouch(when, policyFlags, & mCurrentTouch, | 
 |                     activeIdBits, downId, pointerCount, motionEventAction); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void TouchInputMapper::dispatchTouch(nsecs_t when, uint32_t policyFlags, | 
 |         TouchData* touch, BitSet32 idBits, uint32_t changedId, uint32_t pointerCount, | 
 |         int32_t motionEventAction) { | 
 |     int32_t pointerIds[MAX_POINTERS]; | 
 |     PointerCoords pointerCoords[MAX_POINTERS]; | 
 |     int32_t motionEventEdgeFlags = 0; | 
 |     float xPrecision, yPrecision; | 
 |  | 
 |     { // acquire lock | 
 |         AutoMutex _l(mLock); | 
 |  | 
 |         // Walk through the the active pointers and map touch screen coordinates (TouchData) into | 
 |         // display coordinates (PointerCoords) and adjust for display orientation. | 
 |         for (uint32_t outIndex = 0; ! idBits.isEmpty(); outIndex++) { | 
 |             uint32_t id = idBits.firstMarkedBit(); | 
 |             idBits.clearBit(id); | 
 |             uint32_t inIndex = touch->idToIndex[id]; | 
 |  | 
 |             const PointerData& in = touch->pointers[inIndex]; | 
 |  | 
 |             // X and Y | 
 |             float x = float(in.x - mLocked.xOrigin) * mLocked.xScale; | 
 |             float y = float(in.y - mLocked.yOrigin) * mLocked.yScale; | 
 |  | 
 |             // ToolMajor and ToolMinor | 
 |             float toolMajor, toolMinor; | 
 |             switch (mCalibration.toolAreaCalibration) { | 
 |             case Calibration::TOOL_AREA_CALIBRATION_GEOMETRIC: | 
 |                 toolMajor = in.toolMajor * mLocked.geometricScale; | 
 |                 if (mRawAxes.toolMinor.valid) { | 
 |                     toolMinor = in.toolMinor * mLocked.geometricScale; | 
 |                 } else { | 
 |                     toolMinor = toolMajor; | 
 |                 } | 
 |                 break; | 
 |             case Calibration::TOOL_AREA_CALIBRATION_LINEAR: | 
 |                 toolMajor = in.toolMajor != 0 | 
 |                         ? in.toolMajor * mLocked.toolAreaLinearScale + mLocked.toolAreaLinearBias | 
 |                         : 0; | 
 |                 if (mRawAxes.toolMinor.valid) { | 
 |                     toolMinor = in.toolMinor != 0 | 
 |                             ? in.toolMinor * mLocked.toolAreaLinearScale | 
 |                                     + mLocked.toolAreaLinearBias | 
 |                             : 0; | 
 |                 } else { | 
 |                     toolMinor = toolMajor; | 
 |                 } | 
 |                 break; | 
 |             default: | 
 |                 toolMajor = 0; | 
 |                 toolMinor = 0; | 
 |                 break; | 
 |             } | 
 |  | 
 |             if (mCalibration.haveToolAreaIsSummed && mCalibration.toolAreaIsSummed) { | 
 |                 toolMajor /= pointerCount; | 
 |                 toolMinor /= pointerCount; | 
 |             } | 
 |  | 
 |             // Pressure | 
 |             float rawPressure; | 
 |             switch (mCalibration.pressureSource) { | 
 |             case Calibration::PRESSURE_SOURCE_PRESSURE: | 
 |                 rawPressure = in.pressure; | 
 |                 break; | 
 |             case Calibration::PRESSURE_SOURCE_TOUCH: | 
 |                 rawPressure = in.touchMajor; | 
 |                 break; | 
 |             default: | 
 |                 rawPressure = 0; | 
 |             } | 
 |  | 
 |             float pressure; | 
 |             switch (mCalibration.pressureCalibration) { | 
 |             case Calibration::PRESSURE_CALIBRATION_PHYSICAL: | 
 |             case Calibration::PRESSURE_CALIBRATION_AMPLITUDE: | 
 |                 pressure = rawPressure * mLocked.pressureScale; | 
 |                 break; | 
 |             default: | 
 |                 pressure = 1; | 
 |                 break; | 
 |             } | 
 |  | 
 |             // TouchMajor and TouchMinor | 
 |             float touchMajor, touchMinor; | 
 |             switch (mCalibration.touchAreaCalibration) { | 
 |             case Calibration::TOUCH_AREA_CALIBRATION_GEOMETRIC: | 
 |                 touchMajor = in.touchMajor * mLocked.geometricScale; | 
 |                 if (mRawAxes.touchMinor.valid) { | 
 |                     touchMinor = in.touchMinor * mLocked.geometricScale; | 
 |                 } else { | 
 |                     touchMinor = touchMajor; | 
 |                 } | 
 |                 break; | 
 |             case Calibration::TOUCH_AREA_CALIBRATION_PRESSURE: | 
 |                 touchMajor = toolMajor * pressure; | 
 |                 touchMinor = toolMinor * pressure; | 
 |                 break; | 
 |             default: | 
 |                 touchMajor = 0; | 
 |                 touchMinor = 0; | 
 |                 break; | 
 |             } | 
 |  | 
 |             if (touchMajor > toolMajor) { | 
 |                 touchMajor = toolMajor; | 
 |             } | 
 |             if (touchMinor > toolMinor) { | 
 |                 touchMinor = toolMinor; | 
 |             } | 
 |  | 
 |             // Size | 
 |             float size; | 
 |             switch (mCalibration.sizeCalibration) { | 
 |             case Calibration::SIZE_CALIBRATION_NORMALIZED: { | 
 |                 float rawSize = mRawAxes.toolMinor.valid | 
 |                         ? avg(in.toolMajor, in.toolMinor) | 
 |                         : in.toolMajor; | 
 |                 size = rawSize * mLocked.sizeScale; | 
 |                 break; | 
 |             } | 
 |             default: | 
 |                 size = 0; | 
 |                 break; | 
 |             } | 
 |  | 
 |             // Orientation | 
 |             float orientation; | 
 |             switch (mCalibration.orientationCalibration) { | 
 |             case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED: | 
 |                 orientation = in.orientation * mLocked.orientationScale; | 
 |                 break; | 
 |             default: | 
 |                 orientation = 0; | 
 |             } | 
 |  | 
 |             // Adjust coords for orientation. | 
 |             switch (mLocked.surfaceOrientation) { | 
 |             case InputReaderPolicyInterface::ROTATION_90: { | 
 |                 float xTemp = x; | 
 |                 x = y; | 
 |                 y = mLocked.surfaceWidth - xTemp; | 
 |                 orientation -= M_PI_2; | 
 |                 if (orientation < - M_PI_2) { | 
 |                     orientation += M_PI; | 
 |                 } | 
 |                 break; | 
 |             } | 
 |             case InputReaderPolicyInterface::ROTATION_180: { | 
 |                 x = mLocked.surfaceWidth - x; | 
 |                 y = mLocked.surfaceHeight - y; | 
 |                 orientation = - orientation; | 
 |                 break; | 
 |             } | 
 |             case InputReaderPolicyInterface::ROTATION_270: { | 
 |                 float xTemp = x; | 
 |                 x = mLocked.surfaceHeight - y; | 
 |                 y = xTemp; | 
 |                 orientation += M_PI_2; | 
 |                 if (orientation > M_PI_2) { | 
 |                     orientation -= M_PI; | 
 |                 } | 
 |                 break; | 
 |             } | 
 |             } | 
 |  | 
 |             // Write output coords. | 
 |             PointerCoords& out = pointerCoords[outIndex]; | 
 |             out.x = x; | 
 |             out.y = y; | 
 |             out.pressure = pressure; | 
 |             out.size = size; | 
 |             out.touchMajor = touchMajor; | 
 |             out.touchMinor = touchMinor; | 
 |             out.toolMajor = toolMajor; | 
 |             out.toolMinor = toolMinor; | 
 |             out.orientation = orientation; | 
 |  | 
 |             pointerIds[outIndex] = int32_t(id); | 
 |  | 
 |             if (id == changedId) { | 
 |                 motionEventAction |= outIndex << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT; | 
 |             } | 
 |         } | 
 |  | 
 |         // Check edge flags by looking only at the first pointer since the flags are | 
 |         // global to the event. | 
 |         if (motionEventAction == AMOTION_EVENT_ACTION_DOWN) { | 
 |             if (pointerCoords[0].x <= 0) { | 
 |                 motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_LEFT; | 
 |             } else if (pointerCoords[0].x >= mLocked.orientedSurfaceWidth) { | 
 |                 motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_RIGHT; | 
 |             } | 
 |             if (pointerCoords[0].y <= 0) { | 
 |                 motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_TOP; | 
 |             } else if (pointerCoords[0].y >= mLocked.orientedSurfaceHeight) { | 
 |                 motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_BOTTOM; | 
 |             } | 
 |         } | 
 |  | 
 |         xPrecision = mLocked.orientedXPrecision; | 
 |         yPrecision = mLocked.orientedYPrecision; | 
 |     } // release lock | 
 |  | 
 |     getDispatcher()->notifyMotion(when, getDeviceId(), AINPUT_SOURCE_TOUCHSCREEN, policyFlags, | 
 |             motionEventAction, 0, getContext()->getGlobalMetaState(), motionEventEdgeFlags, | 
 |             pointerCount, pointerIds, pointerCoords, | 
 |             xPrecision, yPrecision, mDownTime); | 
 | } | 
 |  | 
 | bool TouchInputMapper::isPointInsideSurfaceLocked(int32_t x, int32_t y) { | 
 |     if (mRawAxes.x.valid && mRawAxes.y.valid) { | 
 |         return x >= mRawAxes.x.minValue && x <= mRawAxes.x.maxValue | 
 |                 && y >= mRawAxes.y.minValue && y <= mRawAxes.y.maxValue; | 
 |     } | 
 |     return true; | 
 | } | 
 |  | 
 | const TouchInputMapper::VirtualKey* TouchInputMapper::findVirtualKeyHitLocked( | 
 |         int32_t x, int32_t y) { | 
 |     size_t numVirtualKeys = mLocked.virtualKeys.size(); | 
 |     for (size_t i = 0; i < numVirtualKeys; i++) { | 
 |         const VirtualKey& virtualKey = mLocked.virtualKeys[i]; | 
 |  | 
 | #if DEBUG_VIRTUAL_KEYS | 
 |         LOGD("VirtualKeys: Hit test (%d, %d): keyCode=%d, scanCode=%d, " | 
 |                 "left=%d, top=%d, right=%d, bottom=%d", | 
 |                 x, y, | 
 |                 virtualKey.keyCode, virtualKey.scanCode, | 
 |                 virtualKey.hitLeft, virtualKey.hitTop, | 
 |                 virtualKey.hitRight, virtualKey.hitBottom); | 
 | #endif | 
 |  | 
 |         if (virtualKey.isHit(x, y)) { | 
 |             return & virtualKey; | 
 |         } | 
 |     } | 
 |  | 
 |     return NULL; | 
 | } | 
 |  | 
 | void TouchInputMapper::calculatePointerIds() { | 
 |     uint32_t currentPointerCount = mCurrentTouch.pointerCount; | 
 |     uint32_t lastPointerCount = mLastTouch.pointerCount; | 
 |  | 
 |     if (currentPointerCount == 0) { | 
 |         // No pointers to assign. | 
 |         mCurrentTouch.idBits.clear(); | 
 |     } else if (lastPointerCount == 0) { | 
 |         // All pointers are new. | 
 |         mCurrentTouch.idBits.clear(); | 
 |         for (uint32_t i = 0; i < currentPointerCount; i++) { | 
 |             mCurrentTouch.pointers[i].id = i; | 
 |             mCurrentTouch.idToIndex[i] = i; | 
 |             mCurrentTouch.idBits.markBit(i); | 
 |         } | 
 |     } else if (currentPointerCount == 1 && lastPointerCount == 1) { | 
 |         // Only one pointer and no change in count so it must have the same id as before. | 
 |         uint32_t id = mLastTouch.pointers[0].id; | 
 |         mCurrentTouch.pointers[0].id = id; | 
 |         mCurrentTouch.idToIndex[id] = 0; | 
 |         mCurrentTouch.idBits.value = BitSet32::valueForBit(id); | 
 |     } else { | 
 |         // General case. | 
 |         // We build a heap of squared euclidean distances between current and last pointers | 
 |         // associated with the current and last pointer indices.  Then, we find the best | 
 |         // match (by distance) for each current pointer. | 
 |         PointerDistanceHeapElement heap[MAX_POINTERS * MAX_POINTERS]; | 
 |  | 
 |         uint32_t heapSize = 0; | 
 |         for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount; | 
 |                 currentPointerIndex++) { | 
 |             for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount; | 
 |                     lastPointerIndex++) { | 
 |                 int64_t deltaX = mCurrentTouch.pointers[currentPointerIndex].x | 
 |                         - mLastTouch.pointers[lastPointerIndex].x; | 
 |                 int64_t deltaY = mCurrentTouch.pointers[currentPointerIndex].y | 
 |                         - mLastTouch.pointers[lastPointerIndex].y; | 
 |  | 
 |                 uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY); | 
 |  | 
 |                 // Insert new element into the heap (sift up). | 
 |                 heap[heapSize].currentPointerIndex = currentPointerIndex; | 
 |                 heap[heapSize].lastPointerIndex = lastPointerIndex; | 
 |                 heap[heapSize].distance = distance; | 
 |                 heapSize += 1; | 
 |             } | 
 |         } | 
 |  | 
 |         // Heapify | 
 |         for (uint32_t startIndex = heapSize / 2; startIndex != 0; ) { | 
 |             startIndex -= 1; | 
 |             for (uint32_t parentIndex = startIndex; ;) { | 
 |                 uint32_t childIndex = parentIndex * 2 + 1; | 
 |                 if (childIndex >= heapSize) { | 
 |                     break; | 
 |                 } | 
 |  | 
 |                 if (childIndex + 1 < heapSize | 
 |                         && heap[childIndex + 1].distance < heap[childIndex].distance) { | 
 |                     childIndex += 1; | 
 |                 } | 
 |  | 
 |                 if (heap[parentIndex].distance <= heap[childIndex].distance) { | 
 |                     break; | 
 |                 } | 
 |  | 
 |                 swap(heap[parentIndex], heap[childIndex]); | 
 |                 parentIndex = childIndex; | 
 |             } | 
 |         } | 
 |  | 
 | #if DEBUG_POINTER_ASSIGNMENT | 
 |         LOGD("calculatePointerIds - initial distance min-heap: size=%d", heapSize); | 
 |         for (size_t i = 0; i < heapSize; i++) { | 
 |             LOGD("  heap[%d]: cur=%d, last=%d, distance=%lld", | 
 |                     i, heap[i].currentPointerIndex, heap[i].lastPointerIndex, | 
 |                     heap[i].distance); | 
 |         } | 
 | #endif | 
 |  | 
 |         // Pull matches out by increasing order of distance. | 
 |         // To avoid reassigning pointers that have already been matched, the loop keeps track | 
 |         // of which last and current pointers have been matched using the matchedXXXBits variables. | 
 |         // It also tracks the used pointer id bits. | 
 |         BitSet32 matchedLastBits(0); | 
 |         BitSet32 matchedCurrentBits(0); | 
 |         BitSet32 usedIdBits(0); | 
 |         bool first = true; | 
 |         for (uint32_t i = min(currentPointerCount, lastPointerCount); i > 0; i--) { | 
 |             for (;;) { | 
 |                 if (first) { | 
 |                     // The first time through the loop, we just consume the root element of | 
 |                     // the heap (the one with smallest distance). | 
 |                     first = false; | 
 |                 } else { | 
 |                     // Previous iterations consumed the root element of the heap. | 
 |                     // Pop root element off of the heap (sift down). | 
 |                     heapSize -= 1; | 
 |                     assert(heapSize > 0); | 
 |  | 
 |                     // Sift down. | 
 |                     heap[0] = heap[heapSize]; | 
 |                     for (uint32_t parentIndex = 0; ;) { | 
 |                         uint32_t childIndex = parentIndex * 2 + 1; | 
 |                         if (childIndex >= heapSize) { | 
 |                             break; | 
 |                         } | 
 |  | 
 |                         if (childIndex + 1 < heapSize | 
 |                                 && heap[childIndex + 1].distance < heap[childIndex].distance) { | 
 |                             childIndex += 1; | 
 |                         } | 
 |  | 
 |                         if (heap[parentIndex].distance <= heap[childIndex].distance) { | 
 |                             break; | 
 |                         } | 
 |  | 
 |                         swap(heap[parentIndex], heap[childIndex]); | 
 |                         parentIndex = childIndex; | 
 |                     } | 
 |  | 
 | #if DEBUG_POINTER_ASSIGNMENT | 
 |                     LOGD("calculatePointerIds - reduced distance min-heap: size=%d", heapSize); | 
 |                     for (size_t i = 0; i < heapSize; i++) { | 
 |                         LOGD("  heap[%d]: cur=%d, last=%d, distance=%lld", | 
 |                                 i, heap[i].currentPointerIndex, heap[i].lastPointerIndex, | 
 |                                 heap[i].distance); | 
 |                     } | 
 | #endif | 
 |                 } | 
 |  | 
 |                 uint32_t currentPointerIndex = heap[0].currentPointerIndex; | 
 |                 if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched | 
 |  | 
 |                 uint32_t lastPointerIndex = heap[0].lastPointerIndex; | 
 |                 if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched | 
 |  | 
 |                 matchedCurrentBits.markBit(currentPointerIndex); | 
 |                 matchedLastBits.markBit(lastPointerIndex); | 
 |  | 
 |                 uint32_t id = mLastTouch.pointers[lastPointerIndex].id; | 
 |                 mCurrentTouch.pointers[currentPointerIndex].id = id; | 
 |                 mCurrentTouch.idToIndex[id] = currentPointerIndex; | 
 |                 usedIdBits.markBit(id); | 
 |  | 
 | #if DEBUG_POINTER_ASSIGNMENT | 
 |                 LOGD("calculatePointerIds - matched: cur=%d, last=%d, id=%d, distance=%lld", | 
 |                         lastPointerIndex, currentPointerIndex, id, heap[0].distance); | 
 | #endif | 
 |                 break; | 
 |             } | 
 |         } | 
 |  | 
 |         // Assign fresh ids to new pointers. | 
 |         if (currentPointerCount > lastPointerCount) { | 
 |             for (uint32_t i = currentPointerCount - lastPointerCount; ;) { | 
 |                 uint32_t currentPointerIndex = matchedCurrentBits.firstUnmarkedBit(); | 
 |                 uint32_t id = usedIdBits.firstUnmarkedBit(); | 
 |  | 
 |                 mCurrentTouch.pointers[currentPointerIndex].id = id; | 
 |                 mCurrentTouch.idToIndex[id] = currentPointerIndex; | 
 |                 usedIdBits.markBit(id); | 
 |  | 
 | #if DEBUG_POINTER_ASSIGNMENT | 
 |                 LOGD("calculatePointerIds - assigned: cur=%d, id=%d", | 
 |                         currentPointerIndex, id); | 
 | #endif | 
 |  | 
 |                 if (--i == 0) break; // done | 
 |                 matchedCurrentBits.markBit(currentPointerIndex); | 
 |             } | 
 |         } | 
 |  | 
 |         // Fix id bits. | 
 |         mCurrentTouch.idBits = usedIdBits; | 
 |     } | 
 | } | 
 |  | 
 | /* Special hack for devices that have bad screen data: if one of the | 
 |  * points has moved more than a screen height from the last position, | 
 |  * then drop it. */ | 
 | bool TouchInputMapper::applyBadTouchFilter() { | 
 |     // This hack requires valid axis parameters. | 
 |     if (! mRawAxes.y.valid) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     uint32_t pointerCount = mCurrentTouch.pointerCount; | 
 |  | 
 |     // Nothing to do if there are no points. | 
 |     if (pointerCount == 0) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     // Don't do anything if a finger is going down or up.  We run | 
 |     // here before assigning pointer IDs, so there isn't a good | 
 |     // way to do per-finger matching. | 
 |     if (pointerCount != mLastTouch.pointerCount) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     // We consider a single movement across more than a 7/16 of | 
 |     // the long size of the screen to be bad.  This was a magic value | 
 |     // determined by looking at the maximum distance it is feasible | 
 |     // to actually move in one sample. | 
 |     int32_t maxDeltaY = mRawAxes.y.getRange() * 7 / 16; | 
 |  | 
 |     // XXX The original code in InputDevice.java included commented out | 
 |     //     code for testing the X axis.  Note that when we drop a point | 
 |     //     we don't actually restore the old X either.  Strange. | 
 |     //     The old code also tries to track when bad points were previously | 
 |     //     detected but it turns out that due to the placement of a "break" | 
 |     //     at the end of the loop, we never set mDroppedBadPoint to true | 
 |     //     so it is effectively dead code. | 
 |     // Need to figure out if the old code is busted or just overcomplicated | 
 |     // but working as intended. | 
 |  | 
 |     // Look through all new points and see if any are farther than | 
 |     // acceptable from all previous points. | 
 |     for (uint32_t i = pointerCount; i-- > 0; ) { | 
 |         int32_t y = mCurrentTouch.pointers[i].y; | 
 |         int32_t closestY = INT_MAX; | 
 |         int32_t closestDeltaY = 0; | 
 |  | 
 | #if DEBUG_HACKS | 
 |         LOGD("BadTouchFilter: Looking at next point #%d: y=%d", i, y); | 
 | #endif | 
 |  | 
 |         for (uint32_t j = pointerCount; j-- > 0; ) { | 
 |             int32_t lastY = mLastTouch.pointers[j].y; | 
 |             int32_t deltaY = abs(y - lastY); | 
 |  | 
 | #if DEBUG_HACKS | 
 |             LOGD("BadTouchFilter: Comparing with last point #%d: y=%d deltaY=%d", | 
 |                     j, lastY, deltaY); | 
 | #endif | 
 |  | 
 |             if (deltaY < maxDeltaY) { | 
 |                 goto SkipSufficientlyClosePoint; | 
 |             } | 
 |             if (deltaY < closestDeltaY) { | 
 |                 closestDeltaY = deltaY; | 
 |                 closestY = lastY; | 
 |             } | 
 |         } | 
 |  | 
 |         // Must not have found a close enough match. | 
 | #if DEBUG_HACKS | 
 |         LOGD("BadTouchFilter: Dropping bad point #%d: newY=%d oldY=%d deltaY=%d maxDeltaY=%d", | 
 |                 i, y, closestY, closestDeltaY, maxDeltaY); | 
 | #endif | 
 |  | 
 |         mCurrentTouch.pointers[i].y = closestY; | 
 |         return true; // XXX original code only corrects one point | 
 |  | 
 |     SkipSufficientlyClosePoint: ; | 
 |     } | 
 |  | 
 |     // No change. | 
 |     return false; | 
 | } | 
 |  | 
 | /* Special hack for devices that have bad screen data: drop points where | 
 |  * the coordinate value for one axis has jumped to the other pointer's location. | 
 |  */ | 
 | bool TouchInputMapper::applyJumpyTouchFilter() { | 
 |     // This hack requires valid axis parameters. | 
 |     if (! mRawAxes.y.valid) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     uint32_t pointerCount = mCurrentTouch.pointerCount; | 
 |     if (mLastTouch.pointerCount != pointerCount) { | 
 | #if DEBUG_HACKS | 
 |         LOGD("JumpyTouchFilter: Different pointer count %d -> %d", | 
 |                 mLastTouch.pointerCount, pointerCount); | 
 |         for (uint32_t i = 0; i < pointerCount; i++) { | 
 |             LOGD("  Pointer %d (%d, %d)", i, | 
 |                     mCurrentTouch.pointers[i].x, mCurrentTouch.pointers[i].y); | 
 |         } | 
 | #endif | 
 |  | 
 |         if (mJumpyTouchFilter.jumpyPointsDropped < JUMPY_TRANSITION_DROPS) { | 
 |             if (mLastTouch.pointerCount == 1 && pointerCount == 2) { | 
 |                 // Just drop the first few events going from 1 to 2 pointers. | 
 |                 // They're bad often enough that they're not worth considering. | 
 |                 mCurrentTouch.pointerCount = 1; | 
 |                 mJumpyTouchFilter.jumpyPointsDropped += 1; | 
 |  | 
 | #if DEBUG_HACKS | 
 |                 LOGD("JumpyTouchFilter: Pointer 2 dropped"); | 
 | #endif | 
 |                 return true; | 
 |             } else if (mLastTouch.pointerCount == 2 && pointerCount == 1) { | 
 |                 // The event when we go from 2 -> 1 tends to be messed up too | 
 |                 mCurrentTouch.pointerCount = 2; | 
 |                 mCurrentTouch.pointers[0] = mLastTouch.pointers[0]; | 
 |                 mCurrentTouch.pointers[1] = mLastTouch.pointers[1]; | 
 |                 mJumpyTouchFilter.jumpyPointsDropped += 1; | 
 |  | 
 | #if DEBUG_HACKS | 
 |                 for (int32_t i = 0; i < 2; i++) { | 
 |                     LOGD("JumpyTouchFilter: Pointer %d replaced (%d, %d)", i, | 
 |                             mCurrentTouch.pointers[i].x, mCurrentTouch.pointers[i].y); | 
 |                 } | 
 | #endif | 
 |                 return true; | 
 |             } | 
 |         } | 
 |         // Reset jumpy points dropped on other transitions or if limit exceeded. | 
 |         mJumpyTouchFilter.jumpyPointsDropped = 0; | 
 |  | 
 | #if DEBUG_HACKS | 
 |         LOGD("JumpyTouchFilter: Transition - drop limit reset"); | 
 | #endif | 
 |         return false; | 
 |     } | 
 |  | 
 |     // We have the same number of pointers as last time. | 
 |     // A 'jumpy' point is one where the coordinate value for one axis | 
 |     // has jumped to the other pointer's location. No need to do anything | 
 |     // else if we only have one pointer. | 
 |     if (pointerCount < 2) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     if (mJumpyTouchFilter.jumpyPointsDropped < JUMPY_DROP_LIMIT) { | 
 |         int jumpyEpsilon = mRawAxes.y.getRange() / JUMPY_EPSILON_DIVISOR; | 
 |  | 
 |         // We only replace the single worst jumpy point as characterized by pointer distance | 
 |         // in a single axis. | 
 |         int32_t badPointerIndex = -1; | 
 |         int32_t badPointerReplacementIndex = -1; | 
 |         int32_t badPointerDistance = INT_MIN; // distance to be corrected | 
 |  | 
 |         for (uint32_t i = pointerCount; i-- > 0; ) { | 
 |             int32_t x = mCurrentTouch.pointers[i].x; | 
 |             int32_t y = mCurrentTouch.pointers[i].y; | 
 |  | 
 | #if DEBUG_HACKS | 
 |             LOGD("JumpyTouchFilter: Point %d (%d, %d)", i, x, y); | 
 | #endif | 
 |  | 
 |             // Check if a touch point is too close to another's coordinates | 
 |             bool dropX = false, dropY = false; | 
 |             for (uint32_t j = 0; j < pointerCount; j++) { | 
 |                 if (i == j) { | 
 |                     continue; | 
 |                 } | 
 |  | 
 |                 if (abs(x - mCurrentTouch.pointers[j].x) <= jumpyEpsilon) { | 
 |                     dropX = true; | 
 |                     break; | 
 |                 } | 
 |  | 
 |                 if (abs(y - mCurrentTouch.pointers[j].y) <= jumpyEpsilon) { | 
 |                     dropY = true; | 
 |                     break; | 
 |                 } | 
 |             } | 
 |             if (! dropX && ! dropY) { | 
 |                 continue; // not jumpy | 
 |             } | 
 |  | 
 |             // Find a replacement candidate by comparing with older points on the | 
 |             // complementary (non-jumpy) axis. | 
 |             int32_t distance = INT_MIN; // distance to be corrected | 
 |             int32_t replacementIndex = -1; | 
 |  | 
 |             if (dropX) { | 
 |                 // X looks too close.  Find an older replacement point with a close Y. | 
 |                 int32_t smallestDeltaY = INT_MAX; | 
 |                 for (uint32_t j = 0; j < pointerCount; j++) { | 
 |                     int32_t deltaY = abs(y - mLastTouch.pointers[j].y); | 
 |                     if (deltaY < smallestDeltaY) { | 
 |                         smallestDeltaY = deltaY; | 
 |                         replacementIndex = j; | 
 |                     } | 
 |                 } | 
 |                 distance = abs(x - mLastTouch.pointers[replacementIndex].x); | 
 |             } else { | 
 |                 // Y looks too close.  Find an older replacement point with a close X. | 
 |                 int32_t smallestDeltaX = INT_MAX; | 
 |                 for (uint32_t j = 0; j < pointerCount; j++) { | 
 |                     int32_t deltaX = abs(x - mLastTouch.pointers[j].x); | 
 |                     if (deltaX < smallestDeltaX) { | 
 |                         smallestDeltaX = deltaX; | 
 |                         replacementIndex = j; | 
 |                     } | 
 |                 } | 
 |                 distance = abs(y - mLastTouch.pointers[replacementIndex].y); | 
 |             } | 
 |  | 
 |             // If replacing this pointer would correct a worse error than the previous ones | 
 |             // considered, then use this replacement instead. | 
 |             if (distance > badPointerDistance) { | 
 |                 badPointerIndex = i; | 
 |                 badPointerReplacementIndex = replacementIndex; | 
 |                 badPointerDistance = distance; | 
 |             } | 
 |         } | 
 |  | 
 |         // Correct the jumpy pointer if one was found. | 
 |         if (badPointerIndex >= 0) { | 
 | #if DEBUG_HACKS | 
 |             LOGD("JumpyTouchFilter: Replacing bad pointer %d with (%d, %d)", | 
 |                     badPointerIndex, | 
 |                     mLastTouch.pointers[badPointerReplacementIndex].x, | 
 |                     mLastTouch.pointers[badPointerReplacementIndex].y); | 
 | #endif | 
 |  | 
 |             mCurrentTouch.pointers[badPointerIndex].x = | 
 |                     mLastTouch.pointers[badPointerReplacementIndex].x; | 
 |             mCurrentTouch.pointers[badPointerIndex].y = | 
 |                     mLastTouch.pointers[badPointerReplacementIndex].y; | 
 |             mJumpyTouchFilter.jumpyPointsDropped += 1; | 
 |             return true; | 
 |         } | 
 |     } | 
 |  | 
 |     mJumpyTouchFilter.jumpyPointsDropped = 0; | 
 |     return false; | 
 | } | 
 |  | 
 | /* Special hack for devices that have bad screen data: aggregate and | 
 |  * compute averages of the coordinate data, to reduce the amount of | 
 |  * jitter seen by applications. */ | 
 | void TouchInputMapper::applyAveragingTouchFilter() { | 
 |     for (uint32_t currentIndex = 0; currentIndex < mCurrentTouch.pointerCount; currentIndex++) { | 
 |         uint32_t id = mCurrentTouch.pointers[currentIndex].id; | 
 |         int32_t x = mCurrentTouch.pointers[currentIndex].x; | 
 |         int32_t y = mCurrentTouch.pointers[currentIndex].y; | 
 |         int32_t pressure; | 
 |         switch (mCalibration.pressureSource) { | 
 |         case Calibration::PRESSURE_SOURCE_PRESSURE: | 
 |             pressure = mCurrentTouch.pointers[currentIndex].pressure; | 
 |             break; | 
 |         case Calibration::PRESSURE_SOURCE_TOUCH: | 
 |             pressure = mCurrentTouch.pointers[currentIndex].touchMajor; | 
 |             break; | 
 |         default: | 
 |             pressure = 1; | 
 |             break; | 
 |         } | 
 |  | 
 |         if (mLastTouch.idBits.hasBit(id)) { | 
 |             // Pointer was down before and is still down now. | 
 |             // Compute average over history trace. | 
 |             uint32_t start = mAveragingTouchFilter.historyStart[id]; | 
 |             uint32_t end = mAveragingTouchFilter.historyEnd[id]; | 
 |  | 
 |             int64_t deltaX = x - mAveragingTouchFilter.historyData[end].pointers[id].x; | 
 |             int64_t deltaY = y - mAveragingTouchFilter.historyData[end].pointers[id].y; | 
 |             uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY); | 
 |  | 
 | #if DEBUG_HACKS | 
 |             LOGD("AveragingTouchFilter: Pointer id %d - Distance from last sample: %lld", | 
 |                     id, distance); | 
 | #endif | 
 |  | 
 |             if (distance < AVERAGING_DISTANCE_LIMIT) { | 
 |                 // Increment end index in preparation for recording new historical data. | 
 |                 end += 1; | 
 |                 if (end > AVERAGING_HISTORY_SIZE) { | 
 |                     end = 0; | 
 |                 } | 
 |  | 
 |                 // If the end index has looped back to the start index then we have filled | 
 |                 // the historical trace up to the desired size so we drop the historical | 
 |                 // data at the start of the trace. | 
 |                 if (end == start) { | 
 |                     start += 1; | 
 |                     if (start > AVERAGING_HISTORY_SIZE) { | 
 |                         start = 0; | 
 |                     } | 
 |                 } | 
 |  | 
 |                 // Add the raw data to the historical trace. | 
 |                 mAveragingTouchFilter.historyStart[id] = start; | 
 |                 mAveragingTouchFilter.historyEnd[id] = end; | 
 |                 mAveragingTouchFilter.historyData[end].pointers[id].x = x; | 
 |                 mAveragingTouchFilter.historyData[end].pointers[id].y = y; | 
 |                 mAveragingTouchFilter.historyData[end].pointers[id].pressure = pressure; | 
 |  | 
 |                 // Average over all historical positions in the trace by total pressure. | 
 |                 int32_t averagedX = 0; | 
 |                 int32_t averagedY = 0; | 
 |                 int32_t totalPressure = 0; | 
 |                 for (;;) { | 
 |                     int32_t historicalX = mAveragingTouchFilter.historyData[start].pointers[id].x; | 
 |                     int32_t historicalY = mAveragingTouchFilter.historyData[start].pointers[id].y; | 
 |                     int32_t historicalPressure = mAveragingTouchFilter.historyData[start] | 
 |                             .pointers[id].pressure; | 
 |  | 
 |                     averagedX += historicalX * historicalPressure; | 
 |                     averagedY += historicalY * historicalPressure; | 
 |                     totalPressure += historicalPressure; | 
 |  | 
 |                     if (start == end) { | 
 |                         break; | 
 |                     } | 
 |  | 
 |                     start += 1; | 
 |                     if (start > AVERAGING_HISTORY_SIZE) { | 
 |                         start = 0; | 
 |                     } | 
 |                 } | 
 |  | 
 |                 if (totalPressure != 0) { | 
 |                     averagedX /= totalPressure; | 
 |                     averagedY /= totalPressure; | 
 |  | 
 | #if DEBUG_HACKS | 
 |                     LOGD("AveragingTouchFilter: Pointer id %d - " | 
 |                             "totalPressure=%d, averagedX=%d, averagedY=%d", id, totalPressure, | 
 |                             averagedX, averagedY); | 
 | #endif | 
 |  | 
 |                     mCurrentTouch.pointers[currentIndex].x = averagedX; | 
 |                     mCurrentTouch.pointers[currentIndex].y = averagedY; | 
 |                 } | 
 |             } else { | 
 | #if DEBUG_HACKS | 
 |                 LOGD("AveragingTouchFilter: Pointer id %d - Exceeded max distance", id); | 
 | #endif | 
 |             } | 
 |         } else { | 
 | #if DEBUG_HACKS | 
 |             LOGD("AveragingTouchFilter: Pointer id %d - Pointer went up", id); | 
 | #endif | 
 |         } | 
 |  | 
 |         // Reset pointer history. | 
 |         mAveragingTouchFilter.historyStart[id] = 0; | 
 |         mAveragingTouchFilter.historyEnd[id] = 0; | 
 |         mAveragingTouchFilter.historyData[0].pointers[id].x = x; | 
 |         mAveragingTouchFilter.historyData[0].pointers[id].y = y; | 
 |         mAveragingTouchFilter.historyData[0].pointers[id].pressure = pressure; | 
 |     } | 
 | } | 
 |  | 
 | int32_t TouchInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { | 
 |     { // acquire lock | 
 |         AutoMutex _l(mLock); | 
 |  | 
 |         if (mLocked.currentVirtualKey.down && mLocked.currentVirtualKey.keyCode == keyCode) { | 
 |             return AKEY_STATE_VIRTUAL; | 
 |         } | 
 |  | 
 |         size_t numVirtualKeys = mLocked.virtualKeys.size(); | 
 |         for (size_t i = 0; i < numVirtualKeys; i++) { | 
 |             const VirtualKey& virtualKey = mLocked.virtualKeys[i]; | 
 |             if (virtualKey.keyCode == keyCode) { | 
 |                 return AKEY_STATE_UP; | 
 |             } | 
 |         } | 
 |     } // release lock | 
 |  | 
 |     return AKEY_STATE_UNKNOWN; | 
 | } | 
 |  | 
 | int32_t TouchInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { | 
 |     { // acquire lock | 
 |         AutoMutex _l(mLock); | 
 |  | 
 |         if (mLocked.currentVirtualKey.down && mLocked.currentVirtualKey.scanCode == scanCode) { | 
 |             return AKEY_STATE_VIRTUAL; | 
 |         } | 
 |  | 
 |         size_t numVirtualKeys = mLocked.virtualKeys.size(); | 
 |         for (size_t i = 0; i < numVirtualKeys; i++) { | 
 |             const VirtualKey& virtualKey = mLocked.virtualKeys[i]; | 
 |             if (virtualKey.scanCode == scanCode) { | 
 |                 return AKEY_STATE_UP; | 
 |             } | 
 |         } | 
 |     } // release lock | 
 |  | 
 |     return AKEY_STATE_UNKNOWN; | 
 | } | 
 |  | 
 | bool TouchInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, | 
 |         const int32_t* keyCodes, uint8_t* outFlags) { | 
 |     { // acquire lock | 
 |         AutoMutex _l(mLock); | 
 |  | 
 |         size_t numVirtualKeys = mLocked.virtualKeys.size(); | 
 |         for (size_t i = 0; i < numVirtualKeys; i++) { | 
 |             const VirtualKey& virtualKey = mLocked.virtualKeys[i]; | 
 |  | 
 |             for (size_t i = 0; i < numCodes; i++) { | 
 |                 if (virtualKey.keyCode == keyCodes[i]) { | 
 |                     outFlags[i] = 1; | 
 |                 } | 
 |             } | 
 |         } | 
 |     } // release lock | 
 |  | 
 |     return true; | 
 | } | 
 |  | 
 |  | 
 | // --- SingleTouchInputMapper --- | 
 |  | 
 | SingleTouchInputMapper::SingleTouchInputMapper(InputDevice* device, int32_t associatedDisplayId) : | 
 |         TouchInputMapper(device, associatedDisplayId) { | 
 |     initialize(); | 
 | } | 
 |  | 
 | SingleTouchInputMapper::~SingleTouchInputMapper() { | 
 | } | 
 |  | 
 | void SingleTouchInputMapper::initialize() { | 
 |     mAccumulator.clear(); | 
 |  | 
 |     mDown = false; | 
 |     mX = 0; | 
 |     mY = 0; | 
 |     mPressure = 0; // default to 0 for devices that don't report pressure | 
 |     mToolWidth = 0; // default to 0 for devices that don't report tool width | 
 | } | 
 |  | 
 | void SingleTouchInputMapper::reset() { | 
 |     TouchInputMapper::reset(); | 
 |  | 
 |     initialize(); | 
 |  } | 
 |  | 
 | void SingleTouchInputMapper::process(const RawEvent* rawEvent) { | 
 |     switch (rawEvent->type) { | 
 |     case EV_KEY: | 
 |         switch (rawEvent->scanCode) { | 
 |         case BTN_TOUCH: | 
 |             mAccumulator.fields |= Accumulator::FIELD_BTN_TOUCH; | 
 |             mAccumulator.btnTouch = rawEvent->value != 0; | 
 |             // Don't sync immediately.  Wait until the next SYN_REPORT since we might | 
 |             // not have received valid position information yet.  This logic assumes that | 
 |             // BTN_TOUCH is always followed by SYN_REPORT as part of a complete packet. | 
 |             break; | 
 |         } | 
 |         break; | 
 |  | 
 |     case EV_ABS: | 
 |         switch (rawEvent->scanCode) { | 
 |         case ABS_X: | 
 |             mAccumulator.fields |= Accumulator::FIELD_ABS_X; | 
 |             mAccumulator.absX = rawEvent->value; | 
 |             break; | 
 |         case ABS_Y: | 
 |             mAccumulator.fields |= Accumulator::FIELD_ABS_Y; | 
 |             mAccumulator.absY = rawEvent->value; | 
 |             break; | 
 |         case ABS_PRESSURE: | 
 |             mAccumulator.fields |= Accumulator::FIELD_ABS_PRESSURE; | 
 |             mAccumulator.absPressure = rawEvent->value; | 
 |             break; | 
 |         case ABS_TOOL_WIDTH: | 
 |             mAccumulator.fields |= Accumulator::FIELD_ABS_TOOL_WIDTH; | 
 |             mAccumulator.absToolWidth = rawEvent->value; | 
 |             break; | 
 |         } | 
 |         break; | 
 |  | 
 |     case EV_SYN: | 
 |         switch (rawEvent->scanCode) { | 
 |         case SYN_REPORT: | 
 |             sync(rawEvent->when); | 
 |             break; | 
 |         } | 
 |         break; | 
 |     } | 
 | } | 
 |  | 
 | void SingleTouchInputMapper::sync(nsecs_t when) { | 
 |     uint32_t fields = mAccumulator.fields; | 
 |     if (fields == 0) { | 
 |         return; // no new state changes, so nothing to do | 
 |     } | 
 |  | 
 |     if (fields & Accumulator::FIELD_BTN_TOUCH) { | 
 |         mDown = mAccumulator.btnTouch; | 
 |     } | 
 |  | 
 |     if (fields & Accumulator::FIELD_ABS_X) { | 
 |         mX = mAccumulator.absX; | 
 |     } | 
 |  | 
 |     if (fields & Accumulator::FIELD_ABS_Y) { | 
 |         mY = mAccumulator.absY; | 
 |     } | 
 |  | 
 |     if (fields & Accumulator::FIELD_ABS_PRESSURE) { | 
 |         mPressure = mAccumulator.absPressure; | 
 |     } | 
 |  | 
 |     if (fields & Accumulator::FIELD_ABS_TOOL_WIDTH) { | 
 |         mToolWidth = mAccumulator.absToolWidth; | 
 |     } | 
 |  | 
 |     mCurrentTouch.clear(); | 
 |  | 
 |     if (mDown) { | 
 |         mCurrentTouch.pointerCount = 1; | 
 |         mCurrentTouch.pointers[0].id = 0; | 
 |         mCurrentTouch.pointers[0].x = mX; | 
 |         mCurrentTouch.pointers[0].y = mY; | 
 |         mCurrentTouch.pointers[0].pressure = mPressure; | 
 |         mCurrentTouch.pointers[0].touchMajor = 0; | 
 |         mCurrentTouch.pointers[0].touchMinor = 0; | 
 |         mCurrentTouch.pointers[0].toolMajor = mToolWidth; | 
 |         mCurrentTouch.pointers[0].toolMinor = mToolWidth; | 
 |         mCurrentTouch.pointers[0].orientation = 0; | 
 |         mCurrentTouch.idToIndex[0] = 0; | 
 |         mCurrentTouch.idBits.markBit(0); | 
 |     } | 
 |  | 
 |     syncTouch(when, true); | 
 |  | 
 |     mAccumulator.clear(); | 
 | } | 
 |  | 
 | void SingleTouchInputMapper::configureRawAxes() { | 
 |     TouchInputMapper::configureRawAxes(); | 
 |  | 
 |     getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_X, & mRawAxes.x); | 
 |     getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_Y, & mRawAxes.y); | 
 |     getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_PRESSURE, & mRawAxes.pressure); | 
 |     getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_TOOL_WIDTH, & mRawAxes.toolMajor); | 
 | } | 
 |  | 
 |  | 
 | // --- MultiTouchInputMapper --- | 
 |  | 
 | MultiTouchInputMapper::MultiTouchInputMapper(InputDevice* device, int32_t associatedDisplayId) : | 
 |         TouchInputMapper(device, associatedDisplayId) { | 
 |     initialize(); | 
 | } | 
 |  | 
 | MultiTouchInputMapper::~MultiTouchInputMapper() { | 
 | } | 
 |  | 
 | void MultiTouchInputMapper::initialize() { | 
 |     mAccumulator.clear(); | 
 | } | 
 |  | 
 | void MultiTouchInputMapper::reset() { | 
 |     TouchInputMapper::reset(); | 
 |  | 
 |     initialize(); | 
 | } | 
 |  | 
 | void MultiTouchInputMapper::process(const RawEvent* rawEvent) { | 
 |     switch (rawEvent->type) { | 
 |     case EV_ABS: { | 
 |         uint32_t pointerIndex = mAccumulator.pointerCount; | 
 |         Accumulator::Pointer* pointer = & mAccumulator.pointers[pointerIndex]; | 
 |  | 
 |         switch (rawEvent->scanCode) { | 
 |         case ABS_MT_POSITION_X: | 
 |             pointer->fields |= Accumulator::FIELD_ABS_MT_POSITION_X; | 
 |             pointer->absMTPositionX = rawEvent->value; | 
 |             break; | 
 |         case ABS_MT_POSITION_Y: | 
 |             pointer->fields |= Accumulator::FIELD_ABS_MT_POSITION_Y; | 
 |             pointer->absMTPositionY = rawEvent->value; | 
 |             break; | 
 |         case ABS_MT_TOUCH_MAJOR: | 
 |             pointer->fields |= Accumulator::FIELD_ABS_MT_TOUCH_MAJOR; | 
 |             pointer->absMTTouchMajor = rawEvent->value; | 
 |             break; | 
 |         case ABS_MT_TOUCH_MINOR: | 
 |             pointer->fields |= Accumulator::FIELD_ABS_MT_TOUCH_MINOR; | 
 |             pointer->absMTTouchMinor = rawEvent->value; | 
 |             break; | 
 |         case ABS_MT_WIDTH_MAJOR: | 
 |             pointer->fields |= Accumulator::FIELD_ABS_MT_WIDTH_MAJOR; | 
 |             pointer->absMTWidthMajor = rawEvent->value; | 
 |             break; | 
 |         case ABS_MT_WIDTH_MINOR: | 
 |             pointer->fields |= Accumulator::FIELD_ABS_MT_WIDTH_MINOR; | 
 |             pointer->absMTWidthMinor = rawEvent->value; | 
 |             break; | 
 |         case ABS_MT_ORIENTATION: | 
 |             pointer->fields |= Accumulator::FIELD_ABS_MT_ORIENTATION; | 
 |             pointer->absMTOrientation = rawEvent->value; | 
 |             break; | 
 |         case ABS_MT_TRACKING_ID: | 
 |             pointer->fields |= Accumulator::FIELD_ABS_MT_TRACKING_ID; | 
 |             pointer->absMTTrackingId = rawEvent->value; | 
 |             break; | 
 |         case ABS_MT_PRESSURE: | 
 |             pointer->fields |= Accumulator::FIELD_ABS_MT_PRESSURE; | 
 |             pointer->absMTPressure = rawEvent->value; | 
 |             break; | 
 |         } | 
 |         break; | 
 |     } | 
 |  | 
 |     case EV_SYN: | 
 |         switch (rawEvent->scanCode) { | 
 |         case SYN_MT_REPORT: { | 
 |             // MultiTouch Sync: The driver has returned all data for *one* of the pointers. | 
 |             uint32_t pointerIndex = mAccumulator.pointerCount; | 
 |  | 
 |             if (mAccumulator.pointers[pointerIndex].fields) { | 
 |                 if (pointerIndex == MAX_POINTERS) { | 
 |                     LOGW("MultiTouch device driver returned more than maximum of %d pointers.", | 
 |                             MAX_POINTERS); | 
 |                 } else { | 
 |                     pointerIndex += 1; | 
 |                     mAccumulator.pointerCount = pointerIndex; | 
 |                 } | 
 |             } | 
 |  | 
 |             mAccumulator.pointers[pointerIndex].clear(); | 
 |             break; | 
 |         } | 
 |  | 
 |         case SYN_REPORT: | 
 |             sync(rawEvent->when); | 
 |             break; | 
 |         } | 
 |         break; | 
 |     } | 
 | } | 
 |  | 
 | void MultiTouchInputMapper::sync(nsecs_t when) { | 
 |     static const uint32_t REQUIRED_FIELDS = | 
 |             Accumulator::FIELD_ABS_MT_POSITION_X | Accumulator::FIELD_ABS_MT_POSITION_Y; | 
 |  | 
 |     uint32_t inCount = mAccumulator.pointerCount; | 
 |     uint32_t outCount = 0; | 
 |     bool havePointerIds = true; | 
 |  | 
 |     mCurrentTouch.clear(); | 
 |  | 
 |     for (uint32_t inIndex = 0; inIndex < inCount; inIndex++) { | 
 |         const Accumulator::Pointer& inPointer = mAccumulator.pointers[inIndex]; | 
 |         uint32_t fields = inPointer.fields; | 
 |  | 
 |         if ((fields & REQUIRED_FIELDS) != REQUIRED_FIELDS) { | 
 |             // Some drivers send empty MT sync packets without X / Y to indicate a pointer up. | 
 |             // Drop this finger. | 
 |             continue; | 
 |         } | 
 |  | 
 |         PointerData& outPointer = mCurrentTouch.pointers[outCount]; | 
 |         outPointer.x = inPointer.absMTPositionX; | 
 |         outPointer.y = inPointer.absMTPositionY; | 
 |  | 
 |         if (fields & Accumulator::FIELD_ABS_MT_PRESSURE) { | 
 |             if (inPointer.absMTPressure <= 0) { | 
 |                 // Some devices send sync packets with X / Y but with a 0 presure to indicate | 
 |                 // a pointer up.  Drop this finger. | 
 |                 continue; | 
 |             } | 
 |             outPointer.pressure = inPointer.absMTPressure; | 
 |         } else { | 
 |             // Default pressure to 0 if absent. | 
 |             outPointer.pressure = 0; | 
 |         } | 
 |  | 
 |         if (fields & Accumulator::FIELD_ABS_MT_TOUCH_MAJOR) { | 
 |             if (inPointer.absMTTouchMajor <= 0) { | 
 |                 // Some devices send sync packets with X / Y but with a 0 touch major to indicate | 
 |                 // a pointer going up.  Drop this finger. | 
 |                 continue; | 
 |             } | 
 |             outPointer.touchMajor = inPointer.absMTTouchMajor; | 
 |         } else { | 
 |             // Default touch area to 0 if absent. | 
 |             outPointer.touchMajor = 0; | 
 |         } | 
 |  | 
 |         if (fields & Accumulator::FIELD_ABS_MT_TOUCH_MINOR) { | 
 |             outPointer.touchMinor = inPointer.absMTTouchMinor; | 
 |         } else { | 
 |             // Assume touch area is circular. | 
 |             outPointer.touchMinor = outPointer.touchMajor; | 
 |         } | 
 |  | 
 |         if (fields & Accumulator::FIELD_ABS_MT_WIDTH_MAJOR) { | 
 |             outPointer.toolMajor = inPointer.absMTWidthMajor; | 
 |         } else { | 
 |             // Default tool area to 0 if absent. | 
 |             outPointer.toolMajor = 0; | 
 |         } | 
 |  | 
 |         if (fields & Accumulator::FIELD_ABS_MT_WIDTH_MINOR) { | 
 |             outPointer.toolMinor = inPointer.absMTWidthMinor; | 
 |         } else { | 
 |             // Assume tool area is circular. | 
 |             outPointer.toolMinor = outPointer.toolMajor; | 
 |         } | 
 |  | 
 |         if (fields & Accumulator::FIELD_ABS_MT_ORIENTATION) { | 
 |             outPointer.orientation = inPointer.absMTOrientation; | 
 |         } else { | 
 |             // Default orientation to vertical if absent. | 
 |             outPointer.orientation = 0; | 
 |         } | 
 |  | 
 |         // Assign pointer id using tracking id if available. | 
 |         if (havePointerIds) { | 
 |             if (fields & Accumulator::FIELD_ABS_MT_TRACKING_ID) { | 
 |                 uint32_t id = uint32_t(inPointer.absMTTrackingId); | 
 |  | 
 |                 if (id > MAX_POINTER_ID) { | 
 | #if DEBUG_POINTERS | 
 |                     LOGD("Pointers: Ignoring driver provided pointer id %d because " | 
 |                             "it is larger than max supported id %d for optimizations", | 
 |                             id, MAX_POINTER_ID); | 
 | #endif | 
 |                     havePointerIds = false; | 
 |                 } | 
 |                 else { | 
 |                     outPointer.id = id; | 
 |                     mCurrentTouch.idToIndex[id] = outCount; | 
 |                     mCurrentTouch.idBits.markBit(id); | 
 |                 } | 
 |             } else { | 
 |                 havePointerIds = false; | 
 |             } | 
 |         } | 
 |  | 
 |         outCount += 1; | 
 |     } | 
 |  | 
 |     mCurrentTouch.pointerCount = outCount; | 
 |  | 
 |     syncTouch(when, havePointerIds); | 
 |  | 
 |     mAccumulator.clear(); | 
 | } | 
 |  | 
 | void MultiTouchInputMapper::configureRawAxes() { | 
 |     TouchInputMapper::configureRawAxes(); | 
 |  | 
 |     getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_POSITION_X, & mRawAxes.x); | 
 |     getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_POSITION_Y, & mRawAxes.y); | 
 |     getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_TOUCH_MAJOR, & mRawAxes.touchMajor); | 
 |     getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_TOUCH_MINOR, & mRawAxes.touchMinor); | 
 |     getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_WIDTH_MAJOR, & mRawAxes.toolMajor); | 
 |     getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_WIDTH_MINOR, & mRawAxes.toolMinor); | 
 |     getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_ORIENTATION, & mRawAxes.orientation); | 
 |     getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_PRESSURE, & mRawAxes.pressure); | 
 | } | 
 |  | 
 |  | 
 | } // namespace android |