blob: 34b9532e9ddf9473fa16405a6ded152e13e79d97 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/** @file rs_matrix.rsh
* \brief Matrix functions.
*
* These functions let you manipulate square matrices of rank 2x2, 3x3, and 4x4.
* They are particularly useful for graphical transformations and are
* compatible with OpenGL.
*
* A few general notes:
*
* \li We use a zero-based index for rows and columns. E.g. the last element of
* a \ref rs_matrix4x4 is found at (3, 3).
*
* \li RenderScript uses column-based vectors. Transforming a vector is done by
* postmultiplying the vector, e.g. <em>(matrix * vector)</em>, as provided by
* \ref rsMatrixMultiply.
*
* \li To create a transformation matrix that performs two transformations at
* once, multiply the two source matrices, with the first transformation as the
* right argument. E.g. to create a transformation matrix that applies the
* transformation \e s1 followed by \e s2, call
* </c>rsMatrixLoadMultiply(&combined, &s2, &s1)</c>.
* This derives from <em>s2 * (s1 * v)</em>, which is <em>(s2 * s1) * v</em>.
*
* \li We have two style of functions to create transformation matrices:
* rsMatrixLoad<em>Transformation</em> and rsMatrix<em>Transformation</em>. The
* former style simply stores the transformation matrix in the first argument.
* The latter modifies a pre-existing transformation matrix so that the new
* transformation happens first. E.g. if you call \ref rsMatrixTranslate
* on a matrix that already does a scaling, the resulting matrix when applied
* to a vector will first do the translation then the scaling.
*
*/
#ifndef __RS_MATRIX_RSH__
#define __RS_MATRIX_RSH__
/**
* Set an element of a matrix.
*
* @param m The matrix that will be modified.
* @param col The zero-based column of the element to be set.
* @param row The zero-based row of the element to be set.
* @param v The value to set.
*
* \warning The order of the column and row parameters may be
* unexpected.
*
* @return void
*/
_RS_RUNTIME void __attribute__((overloadable))
rsMatrixSet(rs_matrix4x4 *m, uint32_t col, uint32_t row, float v);
/**
* \overload
*/
_RS_RUNTIME void __attribute__((overloadable))
rsMatrixSet(rs_matrix3x3 *m, uint32_t col, uint32_t row, float v);
/**
* \overload
*/
_RS_RUNTIME void __attribute__((overloadable))
rsMatrixSet(rs_matrix2x2 *m, uint32_t col, uint32_t row, float v);
/**
* Returns one element of a matrix.
*
* @param m The matrix to extract the element from.
* @param col The zero-based column of the element to be extracted.
* @param row The zero-based row of the element to extracted.
*
* \warning The order of the column and row parameters may be
* unexpected.
*
* @return float
*/
_RS_RUNTIME float __attribute__((overloadable))
rsMatrixGet(const rs_matrix4x4 *m, uint32_t col, uint32_t row);
/**
* \overload
*/
_RS_RUNTIME float __attribute__((overloadable))
rsMatrixGet(const rs_matrix3x3 *m, uint32_t col, uint32_t row);
/**
* \overload
*/
_RS_RUNTIME float __attribute__((overloadable))
rsMatrixGet(const rs_matrix2x2 *m, uint32_t col, uint32_t row);
/**
* Set the elements of a matrix to the identity matrix.
*
* @param m The matrix to set.
*/
extern void __attribute__((overloadable)) rsMatrixLoadIdentity(rs_matrix4x4 *m);
/**
* \overload
*/
extern void __attribute__((overloadable)) rsMatrixLoadIdentity(rs_matrix3x3 *m);
/**
* \overload
*/
extern void __attribute__((overloadable)) rsMatrixLoadIdentity(rs_matrix2x2 *m);
/**
* Set the elements of a matrix from an array of floats.
*
* The array of floats should be in row-major order, i.e. the element a
* <em>row 0, column 0</em> should be first, followed by the element at
* <em>row 0, column 1</em>, etc.
*
* @param m The matrix to set.
* @param v The array of values to set the matrix to. These arrays should be
* 4, 9, or 16 floats long, depending on the matrix size.
*/
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix4x4 *m, const float *v);
/**
* \overload
*/
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix3x3 *m, const float *v);
/**
* \overload
*/
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix2x2 *m, const float *v);
/**
* Set the elements of a matrix from another matrix.
*
* If the source matrix is smaller than the destination, the rest of the
* destination is filled with elements of the identity matrix. E.g.
* loading a rs_matrix2x2 into a rs_matrix4x4 will give:
*
* \htmlonly<table>
* <tr><td>m00</td><td>m01</td><td>0.0</td><td>0.0</td></tr>
* <tr><td>m10</td><td>m11</td><td>0.0</td><td>0.0</td></tr>
* <tr><td>0.0</td><td>0.0</td><td>1.0</td><td>0.0</td></tr>
* <tr><td>0.0</td><td>0.0</td><td>0.0</td><td>1.0</td></tr>
* </table>\endhtmlonly
*
* @param m The matrix to set.
* @param v The source matrix.
*/
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix4x4 *m, const rs_matrix4x4 *v);
/**
* \overload
*/
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix4x4 *m, const rs_matrix3x3 *v);
/**
* \overload
*/
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix4x4 *m, const rs_matrix2x2 *v);
/**
* \overload
*/
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix3x3 *m, const rs_matrix3x3 *v);
/**
* \overload
*/
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix2x2 *m, const rs_matrix2x2 *v);
/**
* Load a rotation matrix.
*
* This function creates a rotation matrix. The axis of rotation is the
* <em>(x, y, z)</em> vector.
*
* To rotate a vector, multiply the vector by the created matrix
* using \ref rsMatrixMultiply.
*
* See http://en.wikipedia.org/wiki/Rotation_matrix .
*
* @param m The matrix to set.
* @param rot How much rotation to do, in degrees.
* @param x The x component of the vector that is the axis of rotation.
* @param y The y component of the vector that is the axis of rotation.
* @param z The z component of the vector that is the axis of rotation.
*/
extern void __attribute__((overloadable))
rsMatrixLoadRotate(rs_matrix4x4 *m, float rot, float x, float y, float z);
/**
* Load a scale matrix.
*
* This function creates a scaling matrix, where each component of a
* vector is multiplied by a number. This number can be negative.
*
* To scale a vector, multiply the vector by the created matrix
* using \ref rsMatrixMultiply.
*
* @param m The matrix to set.
* @param x The multiple to scale the x components by.
* @param y The multiple to scale the y components by.
* @param z The multiple to scale the z components by.
*/
extern void __attribute__((overloadable))
rsMatrixLoadScale(rs_matrix4x4 *m, float x, float y, float z);
/**
* Load a translation matrix.
*
* This function creates a translation matrix, where a
* number is added to each element of a vector.
*
* To translate a vector, multiply the vector by the created matrix
* using \ref rsMatrixMultiply.
*
* @param m The matrix to set.
* @param x The number to add to each x component.
* @param y The number to add to each y component.
* @param z The number to add to each z component.
*/
extern void __attribute__((overloadable))
rsMatrixLoadTranslate(rs_matrix4x4 *m, float x, float y, float z);
/**
* Multiply two matrices.
*
* Sets \e m to the matrix product of <em>lhs * rhs</em>.
*
* To combine two 4x4 transformaton matrices, multiply the second transformation matrix
* by the first transformation matrix. E.g. to create a transformation matrix that applies
* the transformation \e s1 followed by \e s2, call
* </c>rsMatrixLoadMultiply(&combined, &s2, &s1)</c>.
*
* \warning Prior to version 21, storing the result back into right matrix is not supported and
* will result in undefined behavior. Use rsMatrixMulitply instead. E.g. instead of doing
* rsMatrixLoadMultiply (&m2r, &m2r, &m2l), use rsMatrixMultiply (&m2r, &m2l).
* rsMatrixLoadMultiply (&m2l, &m2r, &m2l) works as expected.
*
* @param m The matrix to set.
* @param lhs The left matrix of the product.
* @param rhs The right matrix of the product.
*/
extern void __attribute__((overloadable))
rsMatrixLoadMultiply(rs_matrix4x4 *m, const rs_matrix4x4 *lhs, const rs_matrix4x4 *rhs);
/**
* \overload
*/
extern void __attribute__((overloadable))
rsMatrixLoadMultiply(rs_matrix3x3 *m, const rs_matrix3x3 *lhs, const rs_matrix3x3 *rhs);
/**
* \overload
*/
extern void __attribute__((overloadable))
rsMatrixLoadMultiply(rs_matrix2x2 *m, const rs_matrix2x2 *lhs, const rs_matrix2x2 *rhs);
/**
* Multiply a matrix into another one.
*
* Sets \e m to the matrix product <em>m * rhs</em>.
*
* When combining two 4x4 transformation matrices using this function, the resulting
* matrix will correspond to performing the \e rhs transformation first followed by
* the original \e m transformation.
*
* @param m The left matrix of the product and the matrix to be set.
* @param rhs The right matrix of the product.
*/
extern void __attribute__((overloadable))
rsMatrixMultiply(rs_matrix4x4 *m, const rs_matrix4x4 *rhs);
/**
* \overload
*/
extern void __attribute__((overloadable))
rsMatrixMultiply(rs_matrix3x3 *m, const rs_matrix3x3 *rhs);
/**
* \overload
*/
extern void __attribute__((overloadable))
rsMatrixMultiply(rs_matrix2x2 *m, const rs_matrix2x2 *rhs);
/**
* Multiply the matrix \e m with a rotation matrix.
*
* This function modifies a transformation matrix to first do a rotation.
* The axis of rotation is the <em>(x, y, z)</em> vector.
*
* To apply this combined transformation to a vector, multiply
* the vector by the created matrix using \ref rsMatrixMultiply.
*
* @param m The matrix to modify.
* @param rot How much rotation to do, in degrees.
* @param x The x component of the vector that is the axis of rotation.
* @param y The y component of the vector that is the axis of rotation.
* @param z The z component of the vector that is the axis of rotation.
*/
extern void __attribute__((overloadable))
rsMatrixRotate(rs_matrix4x4 *m, float rot, float x, float y, float z);
/**
* Multiply the matrix \e m with a scaling matrix.
*
* This function modifies a transformation matrix to first do a scaling.
* When scaling, each component of a vector is multiplied by a number.
* This number can be negative.
*
* To apply this combined transformation to a vector, multiply
* the vector by the created matrix using \ref rsMatrixMultiply.
*
* @param m The matrix to modify.
* @param x The multiple to scale the x components by.
* @param y The multiple to scale the y components by.
* @param z The multiple to scale the z components by.
*/
extern void __attribute__((overloadable))
rsMatrixScale(rs_matrix4x4 *m, float x, float y, float z);
/**
* Multiply the matrix \e m with a translation matrix.
*
* This function modifies a transformation matrix to first
* do a translation. When translating, a number is added
* to each component of a vector.
*
* To apply this combined transformation to a vector, multiply
* the vector by the created matrix using \ref rsMatrixMultiply.
*
* @param m The matrix to modify.
* @param x The number to add to each x component.
* @param y The number to add to each y component.
* @param z The number to add to each z component.
*/
extern void __attribute__((overloadable))
rsMatrixTranslate(rs_matrix4x4 *m, float x, float y, float z);
/**
* Load an orthographic projection matrix.
*
* Constructs an orthographic projection matrix, transforming the box
* identified by the six clipping planes <em>left, right, bottom, top,
* near, far</em> into a unit cube with a corner at
* <em>(-1, -1, -1)</em> and the opposite at <em>(1, 1, 1)</em>.
*
* To apply this projection to a vector, multiply the vector by the
* created matrix using \ref rsMatrixMultiply.
*
* See https://en.wikipedia.org/wiki/Orthographic_projection .
*
* @param m The matrix to set.
* @param left
* @param right
* @param bottom
* @param top
* @param near
* @param far
*/
extern void __attribute__((overloadable))
rsMatrixLoadOrtho(rs_matrix4x4 *m, float left, float right, float bottom, float top, float near, float far);
/**
* Load a frustum projection matrix.
*
* Constructs a frustum projection matrix, transforming the box
* identified by the six clipping planes <em>left, right, bottom, top,
* near, far</em>.
*
* To apply this projection to a vector, multiply the vector by the
* created matrix using \ref rsMatrixMultiply.
*
* @param m The matrix to set.
* @param left
* @param right
* @param bottom
* @param top
* @param near
* @param far
*/
extern void __attribute__((overloadable))
rsMatrixLoadFrustum(rs_matrix4x4 *m, float left, float right, float bottom, float top, float near, float far);
/**
* Load a perspective projection matrix.
*
* Constructs a perspective projection matrix, assuming a symmetrical field of view.
*
* To apply this projection to a vector, multiply the vector by the
* created matrix using \ref rsMatrixMultiply.
*
* @param m The matrix to set.
* @param fovy Field of view, in degrees along the Y axis.
* @param aspect Ratio of x / y.
* @param near The near clipping plane.
* @param far The far clipping plane.
*/
extern void __attribute__((overloadable))
rsMatrixLoadPerspective(rs_matrix4x4* m, float fovy, float aspect, float near, float far);
#if !defined(RS_VERSION) || (RS_VERSION < 14)
/**
* Multiply a vector by a matrix.
*
* Returns the post-multiplication of the vector by the matrix, ie. <em>m * in</em>.
*
* When multiplying a \e float3 to a \e rs_matrix4x4, the vector is expanded with (1).
*
* When multiplying a \e float2 to a \e rs_matrix4x4, the vector is expanded with (0, 1).
*
* When multiplying a \e float2 to a \e rs_matrix3x3, the vector is expanded with (0).
*
* This function is available in API version 10-13. Starting with API 14,
* the function takes a const matrix as the first argument.
*/
_RS_RUNTIME float4 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix4x4 *m, float4 in);
/**
* \overload
*/
_RS_RUNTIME float4 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix4x4 *m, float3 in);
/**
* \overload
*/
_RS_RUNTIME float4 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix4x4 *m, float2 in);
/**
* \overload
*/
_RS_RUNTIME float3 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix3x3 *m, float3 in);
/**
* \overload
*/
_RS_RUNTIME float3 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix3x3 *m, float2 in);
/**
* \overload
*/
_RS_RUNTIME float2 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix2x2 *m, float2 in);
#else
/**
* Multiply a vector by a matrix.
*
* Returns the post-multiplication of the vector of the matrix, i.e. <em>m * in</em>.
*
* When multiplying a \e float3 to a \e rs_matrix4x4, the vector is expanded with (1).
*
* When multiplying a \e float2 to a \e rs_matrix4x4, the vector is expanded with (0, 1).
*
* When multiplying a \e float2 to a \e rs_matrix3x3, the vector is expanded with (0).
*
* This function is available starting with API version 14.
*/
_RS_RUNTIME float4 __attribute__((overloadable))
rsMatrixMultiply(const rs_matrix4x4 *m, float4 in);
/**
* \overload
*/
_RS_RUNTIME float4 __attribute__((overloadable))
rsMatrixMultiply(const rs_matrix4x4 *m, float3 in);
/**
* \overload
*/
_RS_RUNTIME float4 __attribute__((overloadable))
rsMatrixMultiply(const rs_matrix4x4 *m, float2 in);
/**
* \overload
*/
_RS_RUNTIME float3 __attribute__((overloadable))
rsMatrixMultiply(const rs_matrix3x3 *m, float3 in);
/**
* \overload
*/
_RS_RUNTIME float3 __attribute__((overloadable))
rsMatrixMultiply(const rs_matrix3x3 *m, float2 in);
/**
* \overload
*/
_RS_RUNTIME float2 __attribute__((overloadable))
rsMatrixMultiply(const rs_matrix2x2 *m, float2 in);
#endif
/**
* Inverts a matrix in place.
*
* Returns true if the matrix was successfully inverted.
*
* @param m The matrix to invert.
*/
extern bool __attribute__((overloadable)) rsMatrixInverse(rs_matrix4x4 *m);
/**
* Inverts and transpose a matrix in place.
*
* The matrix is first inverted then transposed.
* Returns true if the matrix was successfully inverted.
*
* @param m The matrix to modify.
*/
extern bool __attribute__((overloadable)) rsMatrixInverseTranspose(rs_matrix4x4 *m);
/**
* Transpose the matrix m in place.
*
* @param m The matrix to transpose.
*/
extern void __attribute__((overloadable)) rsMatrixTranspose(rs_matrix4x4 *m);
/**
* \overload
*/
extern void __attribute__((overloadable)) rsMatrixTranspose(rs_matrix3x3 *m);
/**
* \overload
*/
extern void __attribute__((overloadable)) rsMatrixTranspose(rs_matrix2x2 *m);
#endif