| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /** @file rs_quaternion.rsh |
| * \brief Quaternion routines |
| * |
| * |
| */ |
| |
| #ifndef __RS_QUATERNION_RSH__ |
| #define __RS_QUATERNION_RSH__ |
| |
| |
| /** |
| * Set the quaternion components |
| * @param w component |
| * @param x component |
| * @param y component |
| * @param z component |
| */ |
| static void __attribute__((overloadable)) |
| rsQuaternionSet(rs_quaternion *q, float w, float x, float y, float z) { |
| q->w = w; |
| q->x = x; |
| q->y = y; |
| q->z = z; |
| } |
| |
| /** |
| * Set the quaternion from another quaternion |
| * @param q destination quaternion |
| * @param rhs source quaternion |
| */ |
| static void __attribute__((overloadable)) |
| rsQuaternionSet(rs_quaternion *q, const rs_quaternion *rhs) { |
| q->w = rhs->w; |
| q->x = rhs->x; |
| q->y = rhs->y; |
| q->z = rhs->z; |
| } |
| |
| /** |
| * Multiply quaternion by a scalar |
| * @param q quaternion to multiply |
| * @param s scalar |
| */ |
| static void __attribute__((overloadable)) |
| rsQuaternionMultiply(rs_quaternion *q, float s) { |
| q->w *= s; |
| q->x *= s; |
| q->y *= s; |
| q->z *= s; |
| } |
| |
| /** |
| * Add two quaternions |
| * @param q destination quaternion to add to |
| * @param rsh right hand side quaternion to add |
| */ |
| static void |
| rsQuaternionAdd(rs_quaternion *q, const rs_quaternion *rhs) { |
| q->w *= rhs->w; |
| q->x *= rhs->x; |
| q->y *= rhs->y; |
| q->z *= rhs->z; |
| } |
| |
| /** |
| * Loads a quaternion that represents a rotation about an arbitrary unit vector |
| * @param q quaternion to set |
| * @param rot angle to rotate by |
| * @param x component of a vector |
| * @param y component of a vector |
| * @param x component of a vector |
| */ |
| static void |
| rsQuaternionLoadRotateUnit(rs_quaternion *q, float rot, float x, float y, float z) { |
| rot *= (float)(M_PI / 180.0f) * 0.5f; |
| float c = cos(rot); |
| float s = sin(rot); |
| |
| q->w = c; |
| q->x = x * s; |
| q->y = y * s; |
| q->z = z * s; |
| } |
| |
| /** |
| * Loads a quaternion that represents a rotation about an arbitrary vector |
| * (doesn't have to be unit) |
| * @param q quaternion to set |
| * @param rot angle to rotate by |
| * @param x component of a vector |
| * @param y component of a vector |
| * @param x component of a vector |
| */ |
| static void |
| rsQuaternionLoadRotate(rs_quaternion *q, float rot, float x, float y, float z) { |
| const float len = x*x + y*y + z*z; |
| if (len != 1) { |
| const float recipLen = 1.f / sqrt(len); |
| x *= recipLen; |
| y *= recipLen; |
| z *= recipLen; |
| } |
| rsQuaternionLoadRotateUnit(q, rot, x, y, z); |
| } |
| |
| /** |
| * Conjugates the quaternion |
| * @param q quaternion to conjugate |
| */ |
| static void |
| rsQuaternionConjugate(rs_quaternion *q) { |
| q->x = -q->x; |
| q->y = -q->y; |
| q->z = -q->z; |
| } |
| |
| /** |
| * Dot product of two quaternions |
| * @param q0 first quaternion |
| * @param q1 second quaternion |
| * @return dot product between q0 and q1 |
| */ |
| static float |
| rsQuaternionDot(const rs_quaternion *q0, const rs_quaternion *q1) { |
| return q0->w*q1->w + q0->x*q1->x + q0->y*q1->y + q0->z*q1->z; |
| } |
| |
| /** |
| * Normalizes the quaternion |
| * @param q quaternion to normalize |
| */ |
| static void |
| rsQuaternionNormalize(rs_quaternion *q) { |
| const float len = rsQuaternionDot(q, q); |
| if (len != 1) { |
| const float recipLen = 1.f / sqrt(len); |
| rsQuaternionMultiply(q, recipLen); |
| } |
| } |
| |
| /** |
| * Multiply quaternion by another quaternion |
| * @param q destination quaternion |
| * @param rhs right hand side quaternion to multiply by |
| */ |
| static void __attribute__((overloadable)) |
| rsQuaternionMultiply(rs_quaternion *q, const rs_quaternion *rhs) { |
| rs_quaternion qtmp; |
| rsQuaternionSet(&qtmp, q); |
| |
| q->w = qtmp.w*rhs->w - qtmp.x*rhs->x - qtmp.y*rhs->y - qtmp.z*rhs->z; |
| q->x = qtmp.w*rhs->x + qtmp.x*rhs->w + qtmp.y*rhs->z - qtmp.z*rhs->y; |
| q->y = qtmp.w*rhs->y + qtmp.y*rhs->w + qtmp.z*rhs->x - qtmp.x*rhs->z; |
| q->z = qtmp.w*rhs->z + qtmp.z*rhs->w + qtmp.x*rhs->y - qtmp.y*rhs->x; |
| rsQuaternionNormalize(q); |
| } |
| |
| /** |
| * Performs spherical linear interpolation between two quaternions |
| * @param q result quaternion from interpolation |
| * @param q0 first param |
| * @param q1 second param |
| * @param t how much to interpolate by |
| */ |
| static void |
| rsQuaternionSlerp(rs_quaternion *q, const rs_quaternion *q0, const rs_quaternion *q1, float t) { |
| if (t <= 0.0f) { |
| rsQuaternionSet(q, q0); |
| return; |
| } |
| if (t >= 1.0f) { |
| rsQuaternionSet(q, q1); |
| return; |
| } |
| |
| rs_quaternion tempq0, tempq1; |
| rsQuaternionSet(&tempq0, q0); |
| rsQuaternionSet(&tempq1, q1); |
| |
| float angle = rsQuaternionDot(q0, q1); |
| if (angle < 0) { |
| rsQuaternionMultiply(&tempq0, -1.0f); |
| angle *= -1.0f; |
| } |
| |
| float scale, invScale; |
| if (angle + 1.0f > 0.05f) { |
| if (1.0f - angle >= 0.05f) { |
| float theta = acos(angle); |
| float invSinTheta = 1.0f / sin(theta); |
| scale = sin(theta * (1.0f - t)) * invSinTheta; |
| invScale = sin(theta * t) * invSinTheta; |
| } else { |
| scale = 1.0f - t; |
| invScale = t; |
| } |
| } else { |
| rsQuaternionSet(&tempq1, tempq0.z, -tempq0.y, tempq0.x, -tempq0.w); |
| scale = sin(M_PI * (0.5f - t)); |
| invScale = sin(M_PI * t); |
| } |
| |
| rsQuaternionSet(q, tempq0.w*scale + tempq1.w*invScale, tempq0.x*scale + tempq1.x*invScale, |
| tempq0.y*scale + tempq1.y*invScale, tempq0.z*scale + tempq1.z*invScale); |
| } |
| |
| /** |
| * Computes rotation matrix from the normalized quaternion |
| * @param m resulting matrix |
| * @param p normalized quaternion |
| */ |
| static void rsQuaternionGetMatrixUnit(rs_matrix4x4 *m, const rs_quaternion *q) { |
| float xx = q->x * q->x; |
| float xy = q->x * q->y; |
| float xz = q->x * q->z; |
| float xw = q->x * q->w; |
| float yy = q->y * q->y; |
| float yz = q->y * q->z; |
| float yw = q->y * q->w; |
| float zz = q->z * q->z; |
| float zw = q->z * q->w; |
| |
| m->m[0] = 1.0f - 2.0f * ( yy + zz ); |
| m->m[4] = 2.0f * ( xy - zw ); |
| m->m[8] = 2.0f * ( xz + yw ); |
| m->m[1] = 2.0f * ( xy + zw ); |
| m->m[5] = 1.0f - 2.0f * ( xx + zz ); |
| m->m[9] = 2.0f * ( yz - xw ); |
| m->m[2] = 2.0f * ( xz - yw ); |
| m->m[6] = 2.0f * ( yz + xw ); |
| m->m[10] = 1.0f - 2.0f * ( xx + yy ); |
| m->m[3] = m->m[7] = m->m[11] = m->m[12] = m->m[13] = m->m[14] = 0.0f; |
| m->m[15] = 1.0f; |
| } |
| |
| #endif |
| |