blob: 15830909627f588cbb74f0a2d3cdc30b572e408d [file] [log] [blame]
/** @file rs_core.rsh
* \brief todo-jsams
*
* todo-jsams
*
*/
#ifndef __RS_CORE_RSH__
#define __RS_CORE_RSH__
#define _RS_RUNTIME extern
/**
* Debug function. Prints a string and value to the log.
*/
extern void __attribute__((overloadable))
rsDebug(const char *, float);
/**
* Debug function. Prints a string and value to the log.
*/
extern void __attribute__((overloadable))
rsDebug(const char *, float, float);
/**
* Debug function. Prints a string and value to the log.
*/
extern void __attribute__((overloadable))
rsDebug(const char *, float, float, float);
/**
* Debug function. Prints a string and value to the log.
*/
extern void __attribute__((overloadable))
rsDebug(const char *, float, float, float, float);
/**
* Debug function. Prints a string and value to the log.
*/
extern void __attribute__((overloadable))
rsDebug(const char *, double);
/**
* Debug function. Prints a string and value to the log.
*/
extern void __attribute__((overloadable))
rsDebug(const char *, const rs_matrix4x4 *);
/**
* Debug function. Prints a string and value to the log.
*/
extern void __attribute__((overloadable))
rsDebug(const char *, const rs_matrix3x3 *);
/**
* Debug function. Prints a string and value to the log.
*/
extern void __attribute__((overloadable))
rsDebug(const char *, const rs_matrix2x2 *);
/**
* Debug function. Prints a string and value to the log.
*/
extern void __attribute__((overloadable))
rsDebug(const char *, int);
/**
* Debug function. Prints a string and value to the log.
*/
extern void __attribute__((overloadable))
rsDebug(const char *, uint);
/**
* Debug function. Prints a string and value to the log.
*/
extern void __attribute__((overloadable))
rsDebug(const char *, long);
/**
* Debug function. Prints a string and value to the log.
*/
extern void __attribute__((overloadable))
rsDebug(const char *, unsigned long);
/**
* Debug function. Prints a string and value to the log.
*/
extern void __attribute__((overloadable))
rsDebug(const char *, long long);
/**
* Debug function. Prints a string and value to the log.
*/
extern void __attribute__((overloadable))
rsDebug(const char *, unsigned long long);
/**
* Debug function. Prints a string and value to the log.
*/
extern void __attribute__((overloadable))
rsDebug(const char *, const void *);
#define RS_DEBUG(a) rsDebug(#a, a)
#define RS_DEBUG_MARKER rsDebug(__FILE__, __LINE__)
/**
* Debug function. Prints a string and value to the log.
*/
_RS_RUNTIME void __attribute__((overloadable)) rsDebug(const char *s, float2 v);
/**
* Debug function. Prints a string and value to the log.
*/
_RS_RUNTIME void __attribute__((overloadable)) rsDebug(const char *s, float3 v);
/**
* Debug function. Prints a string and value to the log.
*/
_RS_RUNTIME void __attribute__((overloadable)) rsDebug(const char *s, float4 v);
/**
* Pack floating point (0-1) RGB values into a uchar4. The alpha component is
* set to 255 (1.0).
*
* @param r
* @param g
* @param b
*
* @return uchar4
*/
_RS_RUNTIME uchar4 __attribute__((overloadable)) rsPackColorTo8888(float r, float g, float b);
/**
* Pack floating point (0-1) RGBA values into a uchar4.
*
* @param r
* @param g
* @param b
* @param a
*
* @return uchar4
*/
_RS_RUNTIME uchar4 __attribute__((overloadable)) rsPackColorTo8888(float r, float g, float b, float a);
/**
* Pack floating point (0-1) RGB values into a uchar4. The alpha component is
* set to 255 (1.0).
*
* @param color
*
* @return uchar4
*/
_RS_RUNTIME uchar4 __attribute__((overloadable)) rsPackColorTo8888(float3 color);
/**
* Pack floating point (0-1) RGBA values into a uchar4.
*
* @param color
*
* @return uchar4
*/
_RS_RUNTIME uchar4 __attribute__((overloadable)) rsPackColorTo8888(float4 color);
/**
* Unpack a uchar4 color to float4. The resulting float range will be (0-1).
*
* @param c
*
* @return float4
*/
_RS_RUNTIME float4 rsUnpackColor8888(uchar4 c);
/////////////////////////////////////////////////////
// Matrix ops
/////////////////////////////////////////////////////
/**
* Set one element of a matrix.
*
* @param m The matrix to be set
* @param row
* @param col
* @param v
*
* @return void
*/
_RS_RUNTIME void __attribute__((overloadable))
rsMatrixSet(rs_matrix4x4 *m, uint32_t row, uint32_t col, float v);
/**
* \overload
*/
_RS_RUNTIME void __attribute__((overloadable))
rsMatrixSet(rs_matrix3x3 *m, uint32_t row, uint32_t col, float v);
/**
* \overload
*/
_RS_RUNTIME void __attribute__((overloadable))
rsMatrixSet(rs_matrix2x2 *m, uint32_t row, uint32_t col, float v);
/**
* Get one element of a matrix.
*
* @param m The matrix to read from
* @param row
* @param col
*
* @return float
*/
_RS_RUNTIME float __attribute__((overloadable))
rsMatrixGet(const rs_matrix4x4 *m, uint32_t row, uint32_t col);
/**
* \overload
*/
_RS_RUNTIME float __attribute__((overloadable))
rsMatrixGet(const rs_matrix3x3 *m, uint32_t row, uint32_t col);
/**
* \overload
*/
_RS_RUNTIME float __attribute__((overloadable))
rsMatrixGet(const rs_matrix2x2 *m, uint32_t row, uint32_t col);
/**
* Set the elements of a matrix to the identity matrix.
*
* @param m
*/
extern void __attribute__((overloadable)) rsMatrixLoadIdentity(rs_matrix4x4 *m);
/**
* \overload
*/
extern void __attribute__((overloadable)) rsMatrixLoadIdentity(rs_matrix3x3 *m);
/**
* \overload
*/
extern void __attribute__((overloadable)) rsMatrixLoadIdentity(rs_matrix2x2 *m);
/**
* Set the elements of a matrix from an array of floats.
*
* @param m
*/
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix4x4 *m, const float *v);
/**
* \overload
*/
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix3x3 *m, const float *v);
/**
* \overload
*/
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix2x2 *m, const float *v);
/**
* \overload
*/
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix4x4 *m, const rs_matrix4x4 *v);
/**
* \overload
*/
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix4x4 *m, const rs_matrix3x3 *v);
/**
* Set the elements of a matrix from another matrix.
*
* @param m
*/
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix4x4 *m, const rs_matrix2x2 *v);
/**
* \overload
*/
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix3x3 *m, const rs_matrix3x3 *v);
/**
* \overload
*/
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix2x2 *m, const rs_matrix2x2 *v);
/**
* Load a rotation matrix.
*
* @param m
* @param rot
* @param x
* @param y
* @param z
*/
extern void __attribute__((overloadable))
rsMatrixLoadRotate(rs_matrix4x4 *m, float rot, float x, float y, float z);
/**
* Load a scale matrix.
*
* @param m
* @param x
* @param y
* @param z
*/
extern void __attribute__((overloadable))
rsMatrixLoadScale(rs_matrix4x4 *m, float x, float y, float z);
/**
* Load a translation matrix.
*
* @param m
* @param x
* @param y
* @param z
*/
extern void __attribute__((overloadable))
rsMatrixLoadTranslate(rs_matrix4x4 *m, float x, float y, float z);
/**
* Multiply two matrix (lhs, rhs) and place the result in m.
*
* @param m
* @param lhs
* @param rhs
*/
extern void __attribute__((overloadable))
rsMatrixLoadMultiply(rs_matrix4x4 *m, const rs_matrix4x4 *lhs, const rs_matrix4x4 *rhs);
/**
* \overload
*/
extern void __attribute__((overloadable))
rsMatrixLoadMultiply(rs_matrix3x3 *m, const rs_matrix3x3 *lhs, const rs_matrix3x3 *rhs);
/**
* \overload
*/
extern void __attribute__((overloadable))
rsMatrixLoadMultiply(rs_matrix2x2 *m, const rs_matrix2x2 *lhs, const rs_matrix2x2 *rhs);
/**
* Multiply the matrix m by rhs and place the result back into m.
*
* @param m (lhs)
* @param rhs
*/
extern void __attribute__((overloadable))
rsMatrixMultiply(rs_matrix4x4 *m, const rs_matrix4x4 *rhs);
/**
* \overload
*/
extern void __attribute__((overloadable))
rsMatrixMultiply(rs_matrix3x3 *m, const rs_matrix3x3 *rhs);
/**
* \overload
*/
extern void __attribute__((overloadable))
rsMatrixMultiply(rs_matrix2x2 *m, const rs_matrix2x2 *rhs);
/**
* Multiple matrix m with a rotation matrix
*
* @param m
* @param rot
* @param x
* @param y
* @param z
*/
extern void __attribute__((overloadable))
rsMatrixRotate(rs_matrix4x4 *m, float rot, float x, float y, float z);
/**
* Multiple matrix m with a scale matrix
*
* @param m
* @param x
* @param y
* @param z
*/
extern void __attribute__((overloadable))
rsMatrixScale(rs_matrix4x4 *m, float x, float y, float z);
/**
* Multiple matrix m with a translation matrix
*
* @param m
* @param x
* @param y
* @param z
*/
extern void __attribute__((overloadable))
rsMatrixTranslate(rs_matrix4x4 *m, float x, float y, float z);
/**
* Load an Ortho projection matrix constructed from the 6 planes
*
* @param m
* @param left
* @param right
* @param bottom
* @param top
* @param near
* @param far
*/
extern void __attribute__((overloadable))
rsMatrixLoadOrtho(rs_matrix4x4 *m, float left, float right, float bottom, float top, float near, float far);
/**
* Load an Frustum projection matrix constructed from the 6 planes
*
* @param m
* @param left
* @param right
* @param bottom
* @param top
* @param near
* @param far
*/
extern void __attribute__((overloadable))
rsMatrixLoadFrustum(rs_matrix4x4 *m, float left, float right, float bottom, float top, float near, float far);
/**
* Load an perspective projection matrix constructed from the 6 planes
*
* @param m
* @param fovy Field of view, in degrees along the Y axis.
* @param aspect Ratio of x / y.
* @param near
* @param far
*/
extern void __attribute__((overloadable))
rsMatrixLoadPerspective(rs_matrix4x4* m, float fovy, float aspect, float near, float far);
#if !defined(RS_VERSION) || (RS_VERSION < 14)
/**
* Multiply a vector by a matrix and return the result vector.
* API version 10-13
*/
_RS_RUNTIME float4 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix4x4 *m, float4 in);
/**
* \overload
*/
_RS_RUNTIME float4 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix4x4 *m, float3 in);
/**
* \overload
*/
_RS_RUNTIME float4 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix4x4 *m, float2 in);
/**
* \overload
*/
_RS_RUNTIME float3 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix3x3 *m, float3 in);
/**
* \overload
*/
_RS_RUNTIME float3 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix3x3 *m, float2 in);
/**
* \overload
*/
_RS_RUNTIME float2 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix2x2 *m, float2 in);
#else
/**
* Multiply a vector by a matrix and return the result vector.
* API version 10-13
*/
_RS_RUNTIME float4 __attribute__((overloadable))
rsMatrixMultiply(const rs_matrix4x4 *m, float4 in);
/**
* \overload
*/
_RS_RUNTIME float4 __attribute__((overloadable))
rsMatrixMultiply(const rs_matrix4x4 *m, float3 in);
/**
* \overload
*/
_RS_RUNTIME float4 __attribute__((overloadable))
rsMatrixMultiply(const rs_matrix4x4 *m, float2 in);
/**
* \overload
*/
_RS_RUNTIME float3 __attribute__((overloadable))
rsMatrixMultiply(const rs_matrix3x3 *m, float3 in);
/**
* \overload
*/
_RS_RUNTIME float3 __attribute__((overloadable))
rsMatrixMultiply(const rs_matrix3x3 *m, float2 in);
/**
* \overload
*/
_RS_RUNTIME float2 __attribute__((overloadable))
rsMatrixMultiply(const rs_matrix2x2 *m, float2 in);
#endif
/**
* Returns true if the matrix was successfully inversed
*
* @param m
*/
extern bool __attribute__((overloadable)) rsMatrixInverse(rs_matrix4x4 *m);
/**
* Returns true if the matrix was successfully inversed and transposed.
*
* @param m
*/
extern bool __attribute__((overloadable)) rsMatrixInverseTranspose(rs_matrix4x4 *m);
/**
* Transpose the matrix m.
*
* @param m
*/
extern void __attribute__((overloadable)) rsMatrixTranspose(rs_matrix4x4 *m);
/**
* \overload
*/
extern void __attribute__((overloadable)) rsMatrixTranspose(rs_matrix3x3 *m);
/**
* \overload
*/
extern void __attribute__((overloadable)) rsMatrixTranspose(rs_matrix2x2 *m);
/////////////////////////////////////////////////////
// quaternion ops
/////////////////////////////////////////////////////
/**
* Set the quaternion components
* @param w component
* @param x component
* @param y component
* @param z component
*/
static void __attribute__((overloadable))
rsQuaternionSet(rs_quaternion *q, float w, float x, float y, float z) {
q->w = w;
q->x = x;
q->y = y;
q->z = z;
}
/**
* Set the quaternion from another quaternion
* @param q destination quaternion
* @param rhs source quaternion
*/
static void __attribute__((overloadable))
rsQuaternionSet(rs_quaternion *q, const rs_quaternion *rhs) {
q->w = rhs->w;
q->x = rhs->x;
q->y = rhs->y;
q->z = rhs->z;
}
/**
* Multiply quaternion by a scalar
* @param q quaternion to multiply
* @param s scalar
*/
static void __attribute__((overloadable))
rsQuaternionMultiply(rs_quaternion *q, float s) {
q->w *= s;
q->x *= s;
q->y *= s;
q->z *= s;
}
/**
* Multiply quaternion by another quaternion
* @param q destination quaternion
* @param rhs right hand side quaternion to multiply by
*/
static void __attribute__((overloadable))
rsQuaternionMultiply(rs_quaternion *q, const rs_quaternion *rhs) {
q->w = -q->x*rhs->x - q->y*rhs->y - q->z*rhs->z + q->w*rhs->w;
q->x = q->x*rhs->w + q->y*rhs->z - q->z*rhs->y + q->w*rhs->x;
q->y = -q->x*rhs->z + q->y*rhs->w + q->z*rhs->x + q->w*rhs->y;
q->z = q->x*rhs->y - q->y*rhs->x + q->z*rhs->w + q->w*rhs->z;
}
/**
* Add two quaternions
* @param q destination quaternion to add to
* @param rsh right hand side quaternion to add
*/
static void
rsQuaternionAdd(rs_quaternion *q, const rs_quaternion *rhs) {
q->w *= rhs->w;
q->x *= rhs->x;
q->y *= rhs->y;
q->z *= rhs->z;
}
/**
* Loads a quaternion that represents a rotation about an arbitrary unit vector
* @param q quaternion to set
* @param rot angle to rotate by
* @param x component of a vector
* @param y component of a vector
* @param x component of a vector
*/
static void
rsQuaternionLoadRotateUnit(rs_quaternion *q, float rot, float x, float y, float z) {
rot *= (float)(M_PI / 180.0f) * 0.5f;
float c = cos(rot);
float s = sin(rot);
q->w = c;
q->x = x * s;
q->y = y * s;
q->z = z * s;
}
/**
* Loads a quaternion that represents a rotation about an arbitrary vector
* (doesn't have to be unit)
* @param q quaternion to set
* @param rot angle to rotate by
* @param x component of a vector
* @param y component of a vector
* @param x component of a vector
*/
static void
rsQuaternionLoadRotate(rs_quaternion *q, float rot, float x, float y, float z) {
const float len = x*x + y*y + z*z;
if (len != 1) {
const float recipLen = 1.f / sqrt(len);
x *= recipLen;
y *= recipLen;
z *= recipLen;
}
rsQuaternionLoadRotateUnit(q, rot, x, y, z);
}
/**
* Conjugates the quaternion
* @param q quaternion to conjugate
*/
static void
rsQuaternionConjugate(rs_quaternion *q) {
q->x = -q->x;
q->y = -q->y;
q->z = -q->z;
}
/**
* Dot product of two quaternions
* @param q0 first quaternion
* @param q1 second quaternion
* @return dot product between q0 and q1
*/
static float
rsQuaternionDot(const rs_quaternion *q0, const rs_quaternion *q1) {
return q0->w*q1->w + q0->x*q1->x + q0->y*q1->y + q0->z*q1->z;
}
/**
* Normalizes the quaternion
* @param q quaternion to normalize
*/
static void
rsQuaternionNormalize(rs_quaternion *q) {
const float len = rsQuaternionDot(q, q);
if (len != 1) {
const float recipLen = 1.f / sqrt(len);
rsQuaternionMultiply(q, recipLen);
}
}
/**
* Performs spherical linear interpolation between two quaternions
* @param q result quaternion from interpolation
* @param q0 first param
* @param q1 second param
* @param t how much to interpolate by
*/
static void
rsQuaternionSlerp(rs_quaternion *q, const rs_quaternion *q0, const rs_quaternion *q1, float t) {
if (t <= 0.0f) {
rsQuaternionSet(q, q0);
return;
}
if (t >= 1.0f) {
rsQuaternionSet(q, q1);
return;
}
rs_quaternion tempq0, tempq1;
rsQuaternionSet(&tempq0, q0);
rsQuaternionSet(&tempq1, q1);
float angle = rsQuaternionDot(q0, q1);
if (angle < 0) {
rsQuaternionMultiply(&tempq0, -1.0f);
angle *= -1.0f;
}
float scale, invScale;
if (angle + 1.0f > 0.05f) {
if (1.0f - angle >= 0.05f) {
float theta = acos(angle);
float invSinTheta = 1.0f / sin(theta);
scale = sin(theta * (1.0f - t)) * invSinTheta;
invScale = sin(theta * t) * invSinTheta;
} else {
scale = 1.0f - t;
invScale = t;
}
} else {
rsQuaternionSet(&tempq1, tempq0.z, -tempq0.y, tempq0.x, -tempq0.w);
scale = sin(M_PI * (0.5f - t));
invScale = sin(M_PI * t);
}
rsQuaternionSet(q, tempq0.w*scale + tempq1.w*invScale, tempq0.x*scale + tempq1.x*invScale,
tempq0.y*scale + tempq1.y*invScale, tempq0.z*scale + tempq1.z*invScale);
}
/**
* Computes rotation matrix from the normalized quaternion
* @param m resulting matrix
* @param p normalized quaternion
*/
static void rsQuaternionGetMatrixUnit(rs_matrix4x4 *m, const rs_quaternion *q) {
float x2 = 2.0f * q->x * q->x;
float y2 = 2.0f * q->y * q->y;
float z2 = 2.0f * q->z * q->z;
float xy = 2.0f * q->x * q->y;
float wz = 2.0f * q->w * q->z;
float xz = 2.0f * q->x * q->z;
float wy = 2.0f * q->w * q->y;
float wx = 2.0f * q->w * q->x;
float yz = 2.0f * q->y * q->z;
m->m[0] = 1.0f - y2 - z2;
m->m[1] = xy - wz;
m->m[2] = xz + wy;
m->m[3] = 0.0f;
m->m[4] = xy + wz;
m->m[5] = 1.0f - x2 - z2;
m->m[6] = yz - wx;
m->m[7] = 0.0f;
m->m[8] = xz - wy;
m->m[9] = yz - wx;
m->m[10] = 1.0f - x2 - y2;
m->m[11] = 0.0f;
m->m[12] = 0.0f;
m->m[13] = 0.0f;
m->m[14] = 0.0f;
m->m[15] = 1.0f;
}
/////////////////////////////////////////////////////
// utility funcs
/////////////////////////////////////////////////////
/**
* Computes 6 frustum planes from the view projection matrix
* @param viewProj matrix to extract planes from
* @param left plane
* @param right plane
* @param top plane
* @param bottom plane
* @param near plane
* @param far plane
*/
__inline__ static void __attribute__((overloadable, always_inline))
rsExtractFrustumPlanes(const rs_matrix4x4 *viewProj,
float4 *left, float4 *right,
float4 *top, float4 *bottom,
float4 *near, float4 *far) {
// x y z w = a b c d in the plane equation
left->x = viewProj->m[3] + viewProj->m[0];
left->y = viewProj->m[7] + viewProj->m[4];
left->z = viewProj->m[11] + viewProj->m[8];
left->w = viewProj->m[15] + viewProj->m[12];
right->x = viewProj->m[3] - viewProj->m[0];
right->y = viewProj->m[7] - viewProj->m[4];
right->z = viewProj->m[11] - viewProj->m[8];
right->w = viewProj->m[15] - viewProj->m[12];
top->x = viewProj->m[3] - viewProj->m[1];
top->y = viewProj->m[7] - viewProj->m[5];
top->z = viewProj->m[11] - viewProj->m[9];
top->w = viewProj->m[15] - viewProj->m[13];
bottom->x = viewProj->m[3] + viewProj->m[1];
bottom->y = viewProj->m[7] + viewProj->m[5];
bottom->z = viewProj->m[11] + viewProj->m[9];
bottom->w = viewProj->m[15] + viewProj->m[13];
near->x = viewProj->m[3] + viewProj->m[2];
near->y = viewProj->m[7] + viewProj->m[6];
near->z = viewProj->m[11] + viewProj->m[10];
near->w = viewProj->m[15] + viewProj->m[14];
far->x = viewProj->m[3] - viewProj->m[2];
far->y = viewProj->m[7] - viewProj->m[6];
far->z = viewProj->m[11] - viewProj->m[10];
far->w = viewProj->m[15] - viewProj->m[14];
float len = length(left->xyz);
*left /= len;
len = length(right->xyz);
*right /= len;
len = length(top->xyz);
*top /= len;
len = length(bottom->xyz);
*bottom /= len;
len = length(near->xyz);
*near /= len;
len = length(far->xyz);
*far /= len;
}
/**
* Checks if a sphere is withing the 6 frustum planes
* @param sphere float4 representing the sphere
* @param left plane
* @param right plane
* @param top plane
* @param bottom plane
* @param near plane
* @param far plane
*/
__inline__ static bool __attribute__((overloadable, always_inline))
rsIsSphereInFrustum(float4 *sphere,
float4 *left, float4 *right,
float4 *top, float4 *bottom,
float4 *near, float4 *far) {
float distToCenter = dot(left->xyz, sphere->xyz) + left->w;
if (distToCenter < -sphere->w) {
return false;
}
distToCenter = dot(right->xyz, sphere->xyz) + right->w;
if (distToCenter < -sphere->w) {
return false;
}
distToCenter = dot(top->xyz, sphere->xyz) + top->w;
if (distToCenter < -sphere->w) {
return false;
}
distToCenter = dot(bottom->xyz, sphere->xyz) + bottom->w;
if (distToCenter < -sphere->w) {
return false;
}
distToCenter = dot(near->xyz, sphere->xyz) + near->w;
if (distToCenter < -sphere->w) {
return false;
}
distToCenter = dot(far->xyz, sphere->xyz) + far->w;
if (distToCenter < -sphere->w) {
return false;
}
return true;
}
/////////////////////////////////////////////////////
// int ops
/////////////////////////////////////////////////////
/**
* Clamp the value amount between low and high.
*
* @param amount The value to clamp
* @param low
* @param high
*/
_RS_RUNTIME uint __attribute__((overloadable, always_inline)) rsClamp(uint amount, uint low, uint high);
/**
* \overload
*/
_RS_RUNTIME int __attribute__((overloadable, always_inline)) rsClamp(int amount, int low, int high);
/**
* \overload
*/
_RS_RUNTIME ushort __attribute__((overloadable, always_inline)) rsClamp(ushort amount, ushort low, ushort high);
/**
* \overload
*/
_RS_RUNTIME short __attribute__((overloadable, always_inline)) rsClamp(short amount, short low, short high);
/**
* \overload
*/
_RS_RUNTIME uchar __attribute__((overloadable, always_inline)) rsClamp(uchar amount, uchar low, uchar high);
/**
* \overload
*/
_RS_RUNTIME char __attribute__((overloadable, always_inline)) rsClamp(char amount, char low, char high);
#undef _RS_RUNTIME
#endif