| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "rsMatrix2x2.h" |
| #include "rsMatrix3x3.h" |
| #include "rsMatrix4x4.h" |
| |
| #include "stdlib.h" |
| #include "string.h" |
| #include "math.h" |
| |
| using namespace android; |
| using namespace android::renderscript; |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| // Heavy math functions |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| |
| |
| |
| |
| // Returns true if the matrix was successfully inversed |
| bool Matrix4x4::inverse() { |
| rs_matrix4x4 result; |
| |
| int i, j; |
| for (i = 0; i < 4; ++i) { |
| for (j = 0; j < 4; ++j) { |
| // computeCofactor for int i, int j |
| int c0 = (i+1) % 4; |
| int c1 = (i+2) % 4; |
| int c2 = (i+3) % 4; |
| int r0 = (j+1) % 4; |
| int r1 = (j+2) % 4; |
| int r2 = (j+3) % 4; |
| |
| float minor = |
| (m[c0 + 4*r0] * (m[c1 + 4*r1] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r1])) |
| - (m[c0 + 4*r1] * (m[c1 + 4*r0] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r0])) |
| + (m[c0 + 4*r2] * (m[c1 + 4*r0] * m[c2 + 4*r1] - m[c1 + 4*r1] * m[c2 + 4*r0])); |
| |
| float cofactor = (i+j) & 1 ? -minor : minor; |
| |
| result.m[4*i + j] = cofactor; |
| } |
| } |
| |
| // Dot product of 0th column of source and 0th row of result |
| float det = m[0]*result.m[0] + m[4]*result.m[1] + |
| m[8]*result.m[2] + m[12]*result.m[3]; |
| |
| if (fabs(det) < 1e-6) { |
| return false; |
| } |
| |
| det = 1.0f / det; |
| for (i = 0; i < 16; ++i) { |
| m[i] = result.m[i] * det; |
| } |
| |
| return true; |
| } |
| |
| // Returns true if the matrix was successfully inversed |
| bool Matrix4x4::inverseTranspose() { |
| rs_matrix4x4 result; |
| |
| int i, j; |
| for (i = 0; i < 4; ++i) { |
| for (j = 0; j < 4; ++j) { |
| // computeCofactor for int i, int j |
| int c0 = (i+1) % 4; |
| int c1 = (i+2) % 4; |
| int c2 = (i+3) % 4; |
| int r0 = (j+1) % 4; |
| int r1 = (j+2) % 4; |
| int r2 = (j+3) % 4; |
| |
| float minor = (m[c0 + 4*r0] * (m[c1 + 4*r1] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r1])) |
| - (m[c0 + 4*r1] * (m[c1 + 4*r0] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r0])) |
| + (m[c0 + 4*r2] * (m[c1 + 4*r0] * m[c2 + 4*r1] - m[c1 + 4*r1] * m[c2 + 4*r0])); |
| |
| float cofactor = (i+j) & 1 ? -minor : minor; |
| |
| result.m[4*j + i] = cofactor; |
| } |
| } |
| |
| // Dot product of 0th column of source and 0th column of result |
| float det = m[0]*result.m[0] + m[4]*result.m[4] + |
| m[8]*result.m[8] + m[12]*result.m[12]; |
| |
| if (fabs(det) < 1e-6) { |
| return false; |
| } |
| |
| det = 1.0f / det; |
| for (i = 0; i < 16; ++i) { |
| m[i] = result.m[i] * det; |
| } |
| |
| return true; |
| } |
| |
| void Matrix4x4::transpose() { |
| int i, j; |
| float temp; |
| for (i = 0; i < 3; ++i) { |
| for (j = i + 1; j < 4; ++j) { |
| temp = m[i*4 + j]; |
| m[i*4 + j] = m[j*4 + i]; |
| m[j*4 + i] = temp; |
| } |
| } |
| } |
| |
| |
| /////////////////////////////////////////////////////////////////////////////////// |
| |
| void Matrix4x4::loadIdentity() { |
| m[0] = 1.f; |
| m[1] = 0.f; |
| m[2] = 0.f; |
| m[3] = 0.f; |
| m[4] = 0.f; |
| m[5] = 1.f; |
| m[6] = 0.f; |
| m[7] = 0.f; |
| m[8] = 0.f; |
| m[9] = 0.f; |
| m[10] = 1.f; |
| m[11] = 0.f; |
| m[12] = 0.f; |
| m[13] = 0.f; |
| m[14] = 0.f; |
| m[15] = 1.f; |
| } |
| |
| void Matrix4x4::load(const float *v) { |
| memcpy(m, v, sizeof(m)); |
| } |
| |
| void Matrix4x4::load(const rs_matrix4x4 *v) { |
| memcpy(m, v->m, sizeof(m)); |
| } |
| |
| void Matrix4x4::load(const rs_matrix3x3 *v) { |
| m[0] = v->m[0]; |
| m[1] = v->m[1]; |
| m[2] = v->m[2]; |
| m[3] = 0.f; |
| m[4] = v->m[3]; |
| m[5] = v->m[4]; |
| m[6] = v->m[5]; |
| m[7] = 0.f; |
| m[8] = v->m[6]; |
| m[9] = v->m[7]; |
| m[10] = v->m[8]; |
| m[11] = 0.f; |
| m[12] = 0.f; |
| m[13] = 0.f; |
| m[14] = 0.f; |
| m[15] = 1.f; |
| } |
| |
| void Matrix4x4::load(const rs_matrix2x2 *v) { |
| m[0] = v->m[0]; |
| m[1] = v->m[1]; |
| m[2] = 0.f; |
| m[3] = 0.f; |
| m[4] = v->m[2]; |
| m[5] = v->m[3]; |
| m[6] = 0.f; |
| m[7] = 0.f; |
| m[8] = 0.f; |
| m[9] = 0.f; |
| m[10] = 1.f; |
| m[11] = 0.f; |
| m[12] = 0.f; |
| m[13] = 0.f; |
| m[14] = 0.f; |
| m[15] = 1.f; |
| } |
| |
| |
| void Matrix4x4::loadRotate(float rot, float x, float y, float z) { |
| float c, s; |
| m[3] = 0; |
| m[7] = 0; |
| m[11]= 0; |
| m[12]= 0; |
| m[13]= 0; |
| m[14]= 0; |
| m[15]= 1; |
| rot *= float(M_PI / 180.0f); |
| c = cosf(rot); |
| s = sinf(rot); |
| |
| const float len = x*x + y*y + z*z; |
| if (len != 1) { |
| const float recipLen = 1.f / sqrtf(len); |
| x *= recipLen; |
| y *= recipLen; |
| z *= recipLen; |
| } |
| const float nc = 1.0f - c; |
| const float xy = x * y; |
| const float yz = y * z; |
| const float zx = z * x; |
| const float xs = x * s; |
| const float ys = y * s; |
| const float zs = z * s; |
| m[ 0] = x*x*nc + c; |
| m[ 4] = xy*nc - zs; |
| m[ 8] = zx*nc + ys; |
| m[ 1] = xy*nc + zs; |
| m[ 5] = y*y*nc + c; |
| m[ 9] = yz*nc - xs; |
| m[ 2] = zx*nc - ys; |
| m[ 6] = yz*nc + xs; |
| m[10] = z*z*nc + c; |
| } |
| |
| void Matrix4x4::loadScale(float x, float y, float z) { |
| loadIdentity(); |
| set(0, 0, x); |
| set(1, 1, y); |
| set(2, 2, z); |
| } |
| |
| void Matrix4x4::loadTranslate(float x, float y, float z) { |
| loadIdentity(); |
| m[12] = x; |
| m[13] = y; |
| m[14] = z; |
| } |
| |
| void Matrix4x4::loadMultiply(const rs_matrix4x4 *lhs, const rs_matrix4x4 *rhs) { |
| // Use a temporary variable to support the case where one of the inputs |
| // is also the destination, e.g. left.loadMultiply(left, right); |
| Matrix4x4 temp; |
| for (int i=0 ; i<4 ; i++) { |
| float ri0 = 0; |
| float ri1 = 0; |
| float ri2 = 0; |
| float ri3 = 0; |
| for (int j=0 ; j<4 ; j++) { |
| const float rhs_ij = ((const Matrix4x4 *)rhs)->get(i,j); |
| ri0 += ((const Matrix4x4 *)lhs)->get(j,0) * rhs_ij; |
| ri1 += ((const Matrix4x4 *)lhs)->get(j,1) * rhs_ij; |
| ri2 += ((const Matrix4x4 *)lhs)->get(j,2) * rhs_ij; |
| ri3 += ((const Matrix4x4 *)lhs)->get(j,3) * rhs_ij; |
| } |
| temp.set(i,0, ri0); |
| temp.set(i,1, ri1); |
| temp.set(i,2, ri2); |
| temp.set(i,3, ri3); |
| } |
| load(&temp); |
| } |
| |
| void Matrix4x4::loadOrtho(float left, float right, float bottom, float top, float near, float far) { |
| loadIdentity(); |
| m[0] = 2.f / (right - left); |
| m[5] = 2.f / (top - bottom); |
| m[10]= -2.f / (far - near); |
| m[12]= -(right + left) / (right - left); |
| m[13]= -(top + bottom) / (top - bottom); |
| m[14]= -(far + near) / (far - near); |
| } |
| |
| void Matrix4x4::loadFrustum(float left, float right, float bottom, float top, float near, float far) { |
| loadIdentity(); |
| m[0] = 2.f * near / (right - left); |
| m[5] = 2.f * near / (top - bottom); |
| m[8] = (right + left) / (right - left); |
| m[9] = (top + bottom) / (top - bottom); |
| m[10]= -(far + near) / (far - near); |
| m[11]= -1.f; |
| m[14]= -2.f * far * near / (far - near); |
| m[15]= 0.f; |
| } |
| |
| void Matrix4x4::loadPerspective(float fovy, float aspect, float near, float far) { |
| float top = near * tan((float) (fovy * M_PI / 360.0f)); |
| float bottom = -top; |
| float left = bottom * aspect; |
| float right = top * aspect; |
| loadFrustum(left, right, bottom, top, near, far); |
| } |
| |
| // Note: This assumes that the input vector (in) is of length 3. |
| void Matrix4x4::vectorMultiply(float *out, const float *in) const { |
| out[0] = (m[0] * in[0]) + (m[4] * in[1]) + (m[8] * in[2]) + m[12]; |
| out[1] = (m[1] * in[0]) + (m[5] * in[1]) + (m[9] * in[2]) + m[13]; |
| out[2] = (m[2] * in[0]) + (m[6] * in[1]) + (m[10] * in[2]) + m[14]; |
| out[3] = (m[3] * in[0]) + (m[7] * in[1]) + (m[11] * in[2]) + m[15]; |
| } |
| |
| void Matrix4x4::logv(const char *s) const { |
| ALOGV("%s {%f, %f, %f, %f", s, m[0], m[4], m[8], m[12]); |
| ALOGV("%s %f, %f, %f, %f", s, m[1], m[5], m[9], m[13]); |
| ALOGV("%s %f, %f, %f, %f", s, m[2], m[6], m[10], m[14]); |
| ALOGV("%s %f, %f, %f, %f}", s, m[3], m[7], m[11], m[15]); |
| } |