blob: 4cb0071facf2fb49c7db0da3f6a5bd210ed34cee [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "usb_audio_hw"
/* #define LOG_NDEBUG 0 */
#include <errno.h>
#include <pthread.h>
#include <stdint.h>
#include <sys/time.h>
#include <stdlib.h>
#include <cutils/log.h>
#include <cutils/str_parms.h>
#include <cutils/properties.h>
#include <hardware/hardware.h>
#include <system/audio.h>
#include <hardware/audio.h>
#include <tinyalsa/asoundlib.h>
/* This is the default configuration to hand to The Framework on the initial
* adev_open_output_stream(). Actual device attributes will be used on the subsequent
* adev_open_output_stream() after the card and device number have been set in out_set_parameters()
*/
#define OUT_PERIOD_SIZE 1024
#define OUT_PERIOD_COUNT 4
#define OUT_SAMPLING_RATE 44100
struct pcm_config default_alsa_out_config = {
.channels = 2,
.rate = OUT_SAMPLING_RATE,
.period_size = OUT_PERIOD_SIZE,
.period_count = OUT_PERIOD_COUNT,
.format = PCM_FORMAT_S16_LE,
};
/*
* Input defaults. See comment above.
*/
#define IN_PERIOD_SIZE 1024
#define IN_PERIOD_COUNT 4
#define IN_SAMPLING_RATE 44100
struct pcm_config default_alsa_in_config = {
.channels = 2,
.rate = IN_SAMPLING_RATE,
.period_size = IN_PERIOD_SIZE,
.period_count = IN_PERIOD_COUNT,
.format = PCM_FORMAT_S16_LE,
.start_threshold = 1,
.stop_threshold = (IN_PERIOD_SIZE * IN_PERIOD_COUNT),
};
struct audio_device {
struct audio_hw_device hw_device;
pthread_mutex_t lock; /* see note below on mutex acquisition order */
/* output */
int out_card;
int out_device;
/* input */
int in_card;
int in_device;
bool standby;
};
struct stream_out {
struct audio_stream_out stream;
pthread_mutex_t lock; /* see note below on mutex acquisition order */
struct pcm *pcm; /* state of the stream */
bool standby;
struct audio_device *dev; /* hardware information */
void * conversion_buffer; /* any conversions are put into here
* they could come from here too if
* there was a previous conversion */
size_t conversion_buffer_size; /* in bytes */
};
/*
* Output Configuration Cache
* FIXME(pmclean) This is not reentrant. Should probably be moved into the stream structure
* but that will involve changes in The Framework.
*/
static struct pcm_config cached_output_hardware_config;
static bool output_hardware_config_is_cached = false;
struct stream_in {
struct audio_stream_in stream;
pthread_mutex_t lock; /* see note below on mutex acquisition order */
struct pcm *pcm;
bool standby;
struct audio_device *dev;
struct audio_config hal_pcm_config;
// struct resampler_itfe *resampler;
// struct resampler_buffer_provider buf_provider;
int read_status;
// We may need to read more data from the device in order to data reduce to 16bit, 4chan */
void * conversion_buffer; /* any conversions are put into here
* they could come from here too if
* there was a previous conversion */
size_t conversion_buffer_size; /* in bytes */
};
/*
* Input Configuration Cache
* FIXME(pmclean) This is not reentrant. Should probably be moved into the stream structure
* but that will involve changes in The Framework.
*/
static struct pcm_config cached_input_hardware_config;
static bool input_hardware_config_is_cached = false;
/*
* Utility
*/
/*
* Translates from ALSA format ID to ANDROID_AUDIO_CORE format ID
* (see master/system/core/include/core/audio.h)
* TODO(pmclean) Replace with audio_format_from_pcm_format() (in hardware/audio_alsaops.h).
* post-integration.
*/
static audio_format_t alsa_to_fw_format_id(int alsa_fmt_id)
{
switch (alsa_fmt_id) {
case PCM_FORMAT_S8:
return AUDIO_FORMAT_PCM_8_BIT;
case PCM_FORMAT_S24_3LE:
//TODO(pmclean) make sure this is the 'right' sort of 24-bit
return AUDIO_FORMAT_PCM_8_24_BIT;
case PCM_FORMAT_S32_LE:
case PCM_FORMAT_S24_LE:
return AUDIO_FORMAT_PCM_32_BIT;
}
return AUDIO_FORMAT_PCM_16_BIT;
}
/*
* Data Conversions
*/
/*
* Convert a buffer of PCM16LE samples to packed (3-byte) PCM24LE samples.
* in_buff points to the buffer of PCM16 samples
* num_in_samples size of input buffer in SAMPLES
* out_buff points to the buffer to receive converted PCM24 LE samples.
* returns
* the number of BYTES of output data.
* We are doing this since we *always* present to The Framework as A PCM16LE device, but need to
* support PCM24_3LE (24-bit, packed).
* NOTE:
* We're just filling the low-order byte of the PCM24LE samples with 0.
* This conversion is safe to do in-place (in_buff == out_buff).
* TODO(pmclean, hung) Move this to a utilities module.
*/
static size_t convert_16_to_24_3(short * in_buff, size_t num_in_samples, unsigned char * out_buff) {
/*
* Move from back to front so that the conversion can be done in-place
* i.e. in_buff == out_buff
*/
int in_buff_size_in_bytes = num_in_samples * 2;
/* we need 3 bytes in the output for every 2 bytes in the input */
int out_buff_size_in_bytes = ((3 * in_buff_size_in_bytes) / 2);
unsigned char* dst_ptr = out_buff + out_buff_size_in_bytes - 1;
size_t src_smpl_index;
unsigned char* src_ptr = ((unsigned char *)in_buff) + in_buff_size_in_bytes - 1;
for (src_smpl_index = 0; src_smpl_index < num_in_samples; src_smpl_index++) {
*dst_ptr-- = *src_ptr--; /* hi-byte */
*dst_ptr-- = *src_ptr--; /* low-byte */
/*TODO(pmclean) - we might want to consider dithering the lowest byte. */
*dst_ptr-- = 0; /* zero-byte */
}
/* return number of *bytes* generated */
return out_buff_size_in_bytes;
}
/*
* Convert a buffer of packed (3-byte) PCM24LE samples to PCM16LE samples.
* in_buff points to the buffer of PCM24LE samples
* num_in_samples size of input buffer in SAMPLES
* out_buff points to the buffer to receive converted PCM16LE LE samples.
* returns
* the number of BYTES of output data.
* We are doing this since we *always* present to The Framework as A PCM16LE device, but need to
* support PCM24_3LE (24-bit, packed).
* NOTE:
* We're just filling the low-order byte of the PCM24LE samples with 0.
* This conversion is safe to do in-place (in_buff == out_buff).
* TODO(pmclean, hung) Move this to a utilities module.
*/
static size_t convert_24_3_to_16(unsigned char * in_buff, size_t num_in_samples, short * out_buff) {
/*
* Move from front to back so that the conversion can be done in-place
* i.e. in_buff == out_buff
*/
/* we need 2 bytes in the output for every 3 bytes in the input */
unsigned char* dst_ptr = (unsigned char*)out_buff;
unsigned char* src_ptr = in_buff;
size_t src_smpl_index;
for (src_smpl_index = 0; src_smpl_index < num_in_samples; src_smpl_index++) {
src_ptr++; /* lowest-(skip)-byte */
*dst_ptr++ = *src_ptr++; /* low-byte */
*dst_ptr++ = *src_ptr++; /* high-byte */
}
/* return number of *bytes* generated: */
return num_in_samples * 2;
}
/*
* Convert a buffer of N-channel, interleaved PCM16 samples to M-channel PCM16 channels
* (where N < M).
* in_buff points to the buffer of PCM16 samples
* in_buff_channels Specifies the number of channels in the input buffer.
* out_buff points to the buffer to receive converted PCM16 samples.
* out_buff_channels Specifies the number of channels in the output buffer.
* num_in_samples size of input buffer in SAMPLES
* returns
* the number of BYTES of output data.
* NOTE
* channels > N are filled with silence.
* This conversion is safe to do in-place (in_buff == out_buff)
* We are doing this since we *always* present to The Framework as STEREO device, but need to
* support 4-channel devices.
* TODO(pmclean, hung) Move this to a utilities module.
*/
static size_t expand_channels_16(short* in_buff, int in_buff_chans,
short* out_buff, int out_buff_chans,
size_t num_in_samples) {
/*
* Move from back to front so that the conversion can be done in-place
* i.e. in_buff == out_buff
* NOTE: num_in_samples * out_buff_channels must be an even multiple of in_buff_chans
*/
int num_out_samples = (num_in_samples * out_buff_chans)/in_buff_chans;
short* dst_ptr = out_buff + num_out_samples - 1;
int src_index;
short* src_ptr = in_buff + num_in_samples - 1;
int num_zero_chans = out_buff_chans - in_buff_chans;
for (src_index = 0; src_index < num_in_samples; src_index += in_buff_chans) {
int dst_offset;
for(dst_offset = 0; dst_offset < num_zero_chans; dst_offset++) {
*dst_ptr-- = 0;
}
for(; dst_offset < out_buff_chans; dst_offset++) {
*dst_ptr-- = *src_ptr--;
}
}
/* return number of *bytes* generated */
return num_out_samples * sizeof(short);
}
/*
* Convert a buffer of N-channel, interleaved PCM16 samples to M-channel PCM16 channels
* (where N > M).
* in_buff points to the buffer of PCM16 samples
* in_buff_channels Specifies the number of channels in the input buffer.
* out_buff points to the buffer to receive converted PCM16 samples.
* out_buff_channels Specifies the number of channels in the output buffer.
* num_in_samples size of input buffer in SAMPLES
* returns
* the number of BYTES of output data.
* NOTE
* channels > N are thrown away.
* This conversion is safe to do in-place (in_buff == out_buff)
* We are doing this since we *always* present to The Framework as STEREO device, but need to
* support 4-channel devices.
* TODO(pmclean, hung) Move this to a utilities module.
*/
static size_t contract_channels_16(short* in_buff, int in_buff_chans,
short* out_buff, int out_buff_chans,
size_t num_in_samples) {
/*
* Move from front to back so that the conversion can be done in-place
* i.e. in_buff == out_buff
* NOTE: num_in_samples * out_buff_channels must be an even multiple of in_buff_chans
*/
int num_out_samples = (num_in_samples * out_buff_chans)/in_buff_chans;
int num_skip_samples = in_buff_chans - out_buff_chans;
short* dst_ptr = out_buff;
short* src_ptr = in_buff;
int src_index;
for (src_index = 0; src_index < num_in_samples; src_index += in_buff_chans) {
int dst_offset;
for(dst_offset = 0; dst_offset < out_buff_chans; dst_offset++) {
*dst_ptr++ = *src_ptr++;
}
src_ptr += num_skip_samples;
}
/* return number of *bytes* generated */
return num_out_samples * sizeof(short);
}
/*
* ALSA Utilities
*/
/*
* gets the ALSA bit-format flag from a bits-per-sample value.
* TODO(pmclean, hung) Move this to a utilities module.
*/
static int bits_to_alsa_format(int bits_per_sample, int default_format)
{
enum pcm_format format;
for (format = PCM_FORMAT_S16_LE; format < PCM_FORMAT_MAX; format++) {
if (pcm_format_to_bits(format) == bits_per_sample) {
return format;
}
}
return default_format;
}
/*
* Reads and decodes configuration info from the specified ALSA card/device
*/
static int read_alsa_device_config(int card, int device, int io_type, struct pcm_config * config)
{
ALOGV("usb:audio_hw - read_alsa_device_config(c:%d d:%d t:0x%X)",card, device, io_type);
if (card < 0 || device < 0) {
return -EINVAL;
}
struct pcm_params * alsa_hw_params = pcm_params_get(card, device, io_type);
if (alsa_hw_params == NULL) {
return -EINVAL;
}
/*
* This Logging will be useful when testing new USB devices.
*/
/* ALOGV("usb:audio_hw - PCM_PARAM_SAMPLE_BITS min:%d, max:%d", pcm_params_get_min(alsa_hw_params, PCM_PARAM_SAMPLE_BITS), pcm_params_get_max(alsa_hw_params, PCM_PARAM_SAMPLE_BITS)); */
/* ALOGV("usb:audio_hw - PCM_PARAM_FRAME_BITS min:%d, max:%d", pcm_params_get_min(alsa_hw_params, PCM_PARAM_FRAME_BITS), pcm_params_get_max(alsa_hw_params, PCM_PARAM_FRAME_BITS)); */
/* ALOGV("usb:audio_hw - PCM_PARAM_CHANNELS min:%d, max:%d", pcm_params_get_min(alsa_hw_params, PCM_PARAM_CHANNELS), pcm_params_get_max(alsa_hw_params, PCM_PARAM_CHANNELS)); */
/* ALOGV("usb:audio_hw - PCM_PARAM_RATE min:%d, max:%d", pcm_params_get_min(alsa_hw_params, PCM_PARAM_RATE), pcm_params_get_max(alsa_hw_params, PCM_PARAM_RATE)); */
/* ALOGV("usb:audio_hw - PCM_PARAM_PERIOD_TIME min:%d, max:%d", pcm_params_get_min(alsa_hw_params, PCM_PARAM_PERIOD_TIME), pcm_params_get_max(alsa_hw_params, PCM_PARAM_PERIOD_TIME)); */
/* ALOGV("usb:audio_hw - PCM_PARAM_PERIOD_SIZE min:%d, max:%d", pcm_params_get_min(alsa_hw_params, PCM_PARAM_PERIOD_SIZE), pcm_params_get_max(alsa_hw_params, PCM_PARAM_PERIOD_SIZE)); */
/* ALOGV("usb:audio_hw - PCM_PARAM_PERIOD_BYTES min:%d, max:%d", pcm_params_get_min(alsa_hw_params, PCM_PARAM_PERIOD_BYTES), pcm_params_get_max(alsa_hw_params, PCM_PARAM_PERIOD_BYTES)); */
/* ALOGV("usb:audio_hw - PCM_PARAM_PERIODS min:%d, max:%d", pcm_params_get_min(alsa_hw_params, PCM_PARAM_PERIODS), pcm_params_get_max(alsa_hw_params, PCM_PARAM_PERIODS)); */
/* ALOGV("usb:audio_hw - PCM_PARAM_BUFFER_TIME min:%d, max:%d", pcm_params_get_min(alsa_hw_params, PCM_PARAM_BUFFER_TIME), pcm_params_get_max(alsa_hw_params, PCM_PARAM_BUFFER_TIME)); */
/* ALOGV("usb:audio_hw - PCM_PARAM_BUFFER_SIZE min:%d, max:%d", pcm_params_get_min(alsa_hw_params, PCM_PARAM_BUFFER_SIZE), pcm_params_get_max(alsa_hw_params, PCM_PARAM_BUFFER_SIZE)); */
/* ALOGV("usb:audio_hw - PCM_PARAM_BUFFER_BYTES min:%d, max:%d", pcm_params_get_min(alsa_hw_params, PCM_PARAM_BUFFER_BYTES), pcm_params_get_max(alsa_hw_params, PCM_PARAM_BUFFER_BYTES)); */
/* ALOGV("usb:audio_hw - PCM_PARAM_TICK_TIME min:%d, max:%d", pcm_params_get_min(alsa_hw_params, PCM_PARAM_TICK_TIME), pcm_params_get_max(alsa_hw_params, PCM_PARAM_TICK_TIME)); */
config->channels = pcm_params_get_min(alsa_hw_params, PCM_PARAM_CHANNELS);
config->rate = pcm_params_get_min(alsa_hw_params, PCM_PARAM_RATE);
config->period_size = pcm_params_get_max(alsa_hw_params, PCM_PARAM_PERIODS);
config->period_count = pcm_params_get_min(alsa_hw_params, PCM_PARAM_PERIODS);
int bits_per_sample = pcm_params_get_min(alsa_hw_params, PCM_PARAM_SAMPLE_BITS);
config->format = bits_to_alsa_format(bits_per_sample, PCM_FORMAT_S16_LE);
return 0;
}
/*
* HAl Functions
*/
/**
* NOTE: when multiple mutexes have to be acquired, always respect the
* following order: hw device > out stream
*/
/* Helper functions */
static uint32_t out_get_sample_rate(const struct audio_stream *stream)
{
return cached_output_hardware_config.rate;
}
static int out_set_sample_rate(struct audio_stream *stream, uint32_t rate)
{
return 0;
}
static size_t out_get_buffer_size(const struct audio_stream *stream)
{
return cached_output_hardware_config.period_size * audio_stream_frame_size(stream);
}
static uint32_t out_get_channels(const struct audio_stream *stream)
{
// Always Stero for now. We will do *some* conversions in this HAL.
// TODO(pmclean) When AudioPolicyManager & AudioFlinger supports arbitrary channels
// rewrite this to return the ACTUAL channel format
return AUDIO_CHANNEL_OUT_STEREO;
}
static audio_format_t out_get_format(const struct audio_stream *stream)
{
// Always return 16-bit PCM. We will do *some* conversions in this HAL.
// TODO(pmclean) When AudioPolicyManager & AudioFlinger supports arbitrary PCM formats
// rewrite this to return the ACTUAL data format
return AUDIO_FORMAT_PCM_16_BIT;
}
static int out_set_format(struct audio_stream *stream, audio_format_t format)
{
return 0;
}
static int out_standby(struct audio_stream *stream)
{
struct stream_out *out = (struct stream_out *)stream;
pthread_mutex_lock(&out->dev->lock);
pthread_mutex_lock(&out->lock);
if (!out->standby) {
pcm_close(out->pcm);
out->pcm = NULL;
out->standby = true;
}
pthread_mutex_unlock(&out->lock);
pthread_mutex_unlock(&out->dev->lock);
return 0;
}
static int out_dump(const struct audio_stream *stream, int fd)
{
return 0;
}
static int out_set_parameters(struct audio_stream *stream, const char *kvpairs)
{
ALOGV("usb:audio_hw::out out_set_parameters() keys:%s", kvpairs);
struct stream_out *out = (struct stream_out *)stream;
struct audio_device *adev = out->dev;
struct str_parms *parms;
char value[32];
int param_val;
int routing = 0;
int ret_value = 0;
parms = str_parms_create_str(kvpairs);
pthread_mutex_lock(&adev->lock);
bool recache_device_params = false;
param_val = str_parms_get_str(parms, "card", value, sizeof(value));
if (param_val >= 0) {
adev->out_card = atoi(value);
recache_device_params = true;
}
param_val = str_parms_get_str(parms, "device", value, sizeof(value));
if (param_val >= 0) {
adev->out_device = atoi(value);
recache_device_params = true;
}
if (recache_device_params && adev->out_card >= 0 && adev->out_device >= 0) {
ret_value = read_alsa_device_config(adev->out_card, adev->out_device, PCM_OUT,
&cached_output_hardware_config);
output_hardware_config_is_cached = (ret_value == 0);
}
pthread_mutex_unlock(&adev->lock);
str_parms_destroy(parms);
return ret_value;
}
//TODO(pmclean) it seems like both out_get_parameters() and in_get_parameters()
// could be written in terms of a get_device_parameters(io_type)
static char * out_get_parameters(const struct audio_stream *stream, const char *keys)
{
ALOGV("usb:audio_hw::out out_get_parameters() keys:%s", keys);
struct stream_out *out = (struct stream_out *) stream;
struct audio_device *adev = out->dev;
if (adev->out_card < 0 || adev->out_device < 0)
return strdup("");
unsigned min, max;
struct str_parms *query = str_parms_create_str(keys);
struct str_parms *result = str_parms_create();
int num_written = 0;
char buffer[256];
int buffer_size = sizeof(buffer) / sizeof(buffer[0]);
char* result_str = NULL;
struct pcm_params * alsa_hw_params = pcm_params_get(adev->out_card, adev->out_device, PCM_OUT);
// These keys are from hardware/libhardware/include/audio.h
// supported sample rates
if (str_parms_has_key(query, AUDIO_PARAMETER_STREAM_SUP_SAMPLING_RATES)) {
// pcm_hw_params doesn't have a list of supported samples rates, just a min and a max, so
// if they are different, return a list containing those two values, otherwise just the one.
min = pcm_params_get_min(alsa_hw_params, PCM_PARAM_RATE);
max = pcm_params_get_max(alsa_hw_params, PCM_PARAM_RATE);
num_written = snprintf(buffer, buffer_size, "%d", min);
if (min != max) {
snprintf(buffer + num_written, buffer_size - num_written, "|%d", max);
}
str_parms_add_str(result, AUDIO_PARAMETER_STREAM_SUP_SAMPLING_RATES,
buffer);
} // AUDIO_PARAMETER_STREAM_SUP_SAMPLING_RATES
// supported channel counts
if (str_parms_has_key(query, AUDIO_PARAMETER_STREAM_SUP_CHANNELS)) {
// Similarly for output channels count
min = pcm_params_get_min(alsa_hw_params, PCM_PARAM_CHANNELS);
max = pcm_params_get_max(alsa_hw_params, PCM_PARAM_CHANNELS);
num_written = snprintf(buffer, buffer_size, "%d", min);
if (min != max) {
snprintf(buffer + num_written, buffer_size - num_written, "|%d", max);
}
str_parms_add_str(result, AUDIO_PARAMETER_STREAM_SUP_CHANNELS, buffer);
} // AUDIO_PARAMETER_STREAM_SUP_CHANNELS
// supported sample formats
if (str_parms_has_key(query, AUDIO_PARAMETER_STREAM_SUP_FORMATS)) {
// Similarly for output channels count
//TODO(pmclean): this is wrong.
min = pcm_params_get_min(alsa_hw_params, PCM_PARAM_SAMPLE_BITS);
max = pcm_params_get_max(alsa_hw_params, PCM_PARAM_SAMPLE_BITS);
num_written = snprintf(buffer, buffer_size, "%d", min);
if (min != max) {
snprintf(buffer + num_written, buffer_size - num_written, "|%d", max);
}
str_parms_add_str(result, AUDIO_PARAMETER_STREAM_SUP_FORMATS, buffer);
} // AUDIO_PARAMETER_STREAM_SUP_FORMATS
result_str = str_parms_to_str(result);
// done with these...
str_parms_destroy(query);
str_parms_destroy(result);
return result_str;
}
static uint32_t out_get_latency(const struct audio_stream_out *stream)
{
struct stream_out *out = (struct stream_out *) stream;
//TODO(pmclean): Do we need a term here for the USB latency
// (as reported in the USB descriptors)?
uint32_t latency = (cached_output_hardware_config.period_size
* cached_output_hardware_config.period_count * 1000) / out_get_sample_rate(&stream->common);
return latency;
}
static int out_set_volume(struct audio_stream_out *stream, float left, float right)
{
return -ENOSYS;
}
/* must be called with hw device and output stream mutexes locked */
static int start_output_stream(struct stream_out *out)
{
struct audio_device *adev = out->dev;
int return_val = 0;
ALOGV("usb:audio_hw::out start_output_stream(card:%d device:%d)",
adev->out_card, adev->out_device);
out->pcm = pcm_open(adev->out_card, adev->out_device, PCM_OUT, &cached_output_hardware_config);
if (out->pcm == NULL) {
return -ENOMEM;
}
if (out->pcm && !pcm_is_ready(out->pcm)) {
ALOGE("audio_hw audio_hw pcm_open() failed: %s", pcm_get_error(out->pcm));
pcm_close(out->pcm);
return -ENOMEM;
}
return 0;
}
static ssize_t out_write(struct audio_stream_out *stream, const void* buffer, size_t bytes)
{
int ret;
struct stream_out *out = (struct stream_out *)stream;
pthread_mutex_lock(&out->dev->lock);
pthread_mutex_lock(&out->lock);
if (out->standby) {
ret = start_output_stream(out);
if (ret != 0) {
goto err;
}
out->standby = false;
}
// Setup conversion buffer
// compute maximum potential buffer size.
// * 2 for stereo -> quad conversion
// * 3/2 for 16bit -> 24 bit conversion
int required_conversion_buffer_size = (bytes * 3 * 2) / 2;
if (required_conversion_buffer_size > out->conversion_buffer_size) {
//TODO(pmclean) - remove this when AudioPolicyManger/AudioFlinger support arbitrary formats
// (and do these conversions themselves)
out->conversion_buffer_size = required_conversion_buffer_size;
out->conversion_buffer = realloc(out->conversion_buffer, out->conversion_buffer_size);
}
void * write_buff = buffer;
int num_write_buff_bytes = bytes;
/*
* Num Channels conversion
*/
int num_device_channels = cached_output_hardware_config.channels;
int num_req_channels = 2; /* always, for now */
if (num_device_channels != num_req_channels) {
num_write_buff_bytes =
expand_channels_16(write_buff, num_req_channels,
out->conversion_buffer, num_device_channels,
num_write_buff_bytes / sizeof(short));
write_buff = out->conversion_buffer;
}
/*
* 16 vs 24-bit logic here
*/
switch (cached_output_hardware_config.format) {
case PCM_FORMAT_S16_LE:
// the output format is the same as the input format, so just write it out
break;
case PCM_FORMAT_S24_3LE:
// 16-bit LE2 - 24-bit LE3
num_write_buff_bytes = convert_16_to_24_3(write_buff,
num_write_buff_bytes / sizeof(short),
out->conversion_buffer);
write_buff = out->conversion_buffer;
break;
default:
// hmmmmm.....
ALOGV("usb:Unknown Format!!!");
break;
}
if (write_buff != NULL && num_write_buff_bytes != 0) {
pcm_write(out->pcm, write_buff, num_write_buff_bytes);
}
pthread_mutex_unlock(&out->lock);
pthread_mutex_unlock(&out->dev->lock);
return bytes;
err:
pthread_mutex_unlock(&out->lock);
pthread_mutex_unlock(&out->dev->lock);
if (ret != 0) {
usleep(bytes * 1000000 / audio_stream_frame_size(&stream->common) /
out_get_sample_rate(&stream->common));
}
return bytes;
}
static int out_get_render_position(const struct audio_stream_out *stream, uint32_t *dsp_frames)
{
return -EINVAL;
}
static int out_add_audio_effect(const struct audio_stream *stream, effect_handle_t effect)
{
return 0;
}
static int out_remove_audio_effect(const struct audio_stream *stream, effect_handle_t effect)
{
return 0;
}
static int out_get_next_write_timestamp(const struct audio_stream_out *stream, int64_t *timestamp)
{
return -EINVAL;
}
static int adev_open_output_stream(struct audio_hw_device *dev,
audio_io_handle_t handle,
audio_devices_t devices,
audio_output_flags_t flags,
struct audio_config *config,
struct audio_stream_out **stream_out)
{
ALOGV("usb:audio_hw::out adev_open_output_stream() handle:0x%X, device:0x%X, flags:0x%X",
handle, devices, flags);
struct audio_device *adev = (struct audio_device *)dev;
struct stream_out *out;
out = (struct stream_out *)calloc(1, sizeof(struct stream_out));
if (!out)
return -ENOMEM;
// setup function pointers
out->stream.common.get_sample_rate = out_get_sample_rate;
out->stream.common.set_sample_rate = out_set_sample_rate;
out->stream.common.get_buffer_size = out_get_buffer_size;
out->stream.common.get_channels = out_get_channels;
out->stream.common.get_format = out_get_format;
out->stream.common.set_format = out_set_format;
out->stream.common.standby = out_standby;
out->stream.common.dump = out_dump;
out->stream.common.set_parameters = out_set_parameters;
out->stream.common.get_parameters = out_get_parameters;
out->stream.common.add_audio_effect = out_add_audio_effect;
out->stream.common.remove_audio_effect = out_remove_audio_effect;
out->stream.get_latency = out_get_latency;
out->stream.set_volume = out_set_volume;
out->stream.write = out_write;
out->stream.get_render_position = out_get_render_position;
out->stream.get_next_write_timestamp = out_get_next_write_timestamp;
out->dev = adev;
if (output_hardware_config_is_cached) {
config->sample_rate = cached_output_hardware_config.rate;
config->format = alsa_to_fw_format_id(cached_output_hardware_config.format);
if (config->format != AUDIO_FORMAT_PCM_16_BIT) {
// Always report PCM16 for now. AudioPolicyManagerBase/AudioFlinger dont' understand
// formats with more other format, so we won't get chosen (say with a 24bit DAC).
//TODO(pmclean) remove this when the above restriction is removed.
config->format = AUDIO_FORMAT_PCM_16_BIT;
}
config->channel_mask =
audio_channel_out_mask_from_count(cached_output_hardware_config.channels);
if (config->channel_mask != AUDIO_CHANNEL_OUT_STEREO) {
// Always report STEREO for now. AudioPolicyManagerBase/AudioFlinger dont' understand
// formats with more channels, so we won't get chosen (say with a 4-channel DAC).
//TODO(pmclean) remove this when the above restriction is removed.
config->channel_mask = AUDIO_CHANNEL_OUT_STEREO;
}
} else {
cached_output_hardware_config = default_alsa_out_config;
config->format = out_get_format(&out->stream.common);
config->channel_mask = out_get_channels(&out->stream.common);
config->sample_rate = out_get_sample_rate(&out->stream.common);
}
out->conversion_buffer = NULL;
out->conversion_buffer_size = 0;
out->standby = true;
*stream_out = &out->stream;
return 0;
err_open:
free(out);
*stream_out = NULL;
return -ENOSYS;
}
static void adev_close_output_stream(struct audio_hw_device *dev,
struct audio_stream_out *stream)
{
ALOGV("usb:audio_hw::out adev_close_output_stream()");
struct stream_out *out = (struct stream_out *)stream;
//TODO(pmclean) why are we doing this when stream get's freed at the end
// because it closes the pcm device
out_standby(&stream->common);
free(out->conversion_buffer);
out->conversion_buffer = NULL;
out->conversion_buffer_size = 0;
free(stream);
}
static int adev_set_parameters(struct audio_hw_device *dev, const char *kvpairs)
{
return 0;
}
static char * adev_get_parameters(const struct audio_hw_device *dev, const char *keys)
{
return strdup("");
}
static int adev_init_check(const struct audio_hw_device *dev)
{
return 0;
}
static int adev_set_voice_volume(struct audio_hw_device *dev, float volume)
{
return -ENOSYS;
}
static int adev_set_master_volume(struct audio_hw_device *dev, float volume)
{
return -ENOSYS;
}
static int adev_set_mode(struct audio_hw_device *dev, audio_mode_t mode)
{
return 0;
}
static int adev_set_mic_mute(struct audio_hw_device *dev, bool state)
{
return -ENOSYS;
}
static int adev_get_mic_mute(const struct audio_hw_device *dev, bool *state)
{
return -ENOSYS;
}
static size_t adev_get_input_buffer_size(const struct audio_hw_device *dev,
const struct audio_config *config)
{
return 0;
}
/* Helper functions */
static uint32_t in_get_sample_rate(const struct audio_stream *stream)
{
return cached_input_hardware_config.rate;
}
static int in_set_sample_rate(struct audio_stream *stream, uint32_t rate)
{
return -ENOSYS;
}
static size_t in_get_buffer_size(const struct audio_stream *stream)
{
ALOGV("usb: in_get_buffer_size() = %d",
cached_input_hardware_config.period_size * audio_stream_frame_size(stream));
return cached_input_hardware_config.period_size * audio_stream_frame_size(stream);
}
static uint32_t in_get_channels(const struct audio_stream *stream)
{
// just report stereo for now
return AUDIO_CHANNEL_IN_STEREO;
}
static audio_format_t in_get_format(const struct audio_stream *stream)
{
// just report 16-bit, pcm for now.
return AUDIO_FORMAT_PCM_16_BIT;
}
static int in_set_format(struct audio_stream *stream, audio_format_t format)
{
return -ENOSYS;
}
static int in_standby(struct audio_stream *stream)
{
struct stream_in *in = (struct stream_in *) stream;
pthread_mutex_lock(&in->dev->lock);
pthread_mutex_lock(&in->lock);
if (!in->standby) {
pcm_close(in->pcm);
in->pcm = NULL;
in->standby = true;
}
pthread_mutex_unlock(&in->lock);
pthread_mutex_unlock(&in->dev->lock);
return 0;
}
static int in_dump(const struct audio_stream *stream, int fd)
{
return 0;
}
static int in_set_parameters(struct audio_stream *stream, const char *kvpairs)
{
ALOGV("usb: audio_hw::in in_set_parameters() keys:%s", kvpairs);
struct stream_in *in = (struct stream_in *)stream;
struct audio_device *adev = in->dev;
struct str_parms *parms;
char value[32];
int param_val;
int routing = 0;
int ret_value = 0;
parms = str_parms_create_str(kvpairs);
pthread_mutex_lock(&adev->lock);
bool recache_device_params = false;
// Card/Device
param_val = str_parms_get_str(parms, "card", value, sizeof(value));
if (param_val >= 0) {
adev->in_card = atoi(value);
recache_device_params = true;
}
param_val = str_parms_get_str(parms, "device", value, sizeof(value));
if (param_val >= 0) {
adev->in_device = atoi(value);
recache_device_params = true;
}
if (recache_device_params && adev->in_card >= 0 && adev->in_device >= 0) {
ret_value = read_alsa_device_config(adev->in_card, adev->in_device,
PCM_IN, &(cached_input_hardware_config));
input_hardware_config_is_cached = (ret_value == 0);
}
pthread_mutex_unlock(&adev->lock);
str_parms_destroy(parms);
return ret_value;
}
//TODO(pmclean) it seems like both out_get_parameters() and in_get_parameters()
// could be written in terms of a get_device_parameters(io_type)
static char * in_get_parameters(const struct audio_stream *stream, const char *keys) {
ALOGV("usb:audio_hw::in in_get_parameters() keys:%s", keys);
struct stream_in *in = (struct stream_in *)stream;
struct audio_device *adev = in->dev;
if (adev->in_card < 0 || adev->in_device < 0)
return strdup("");
struct pcm_params * alsa_hw_params = pcm_params_get(adev->in_card, adev->in_device, PCM_IN);
if (alsa_hw_params == NULL)
return strdup("");
struct str_parms *query = str_parms_create_str(keys);
struct str_parms *result = str_parms_create();
int num_written = 0;
char buffer[256];
int buffer_size = sizeof(buffer) / sizeof(buffer[0]);
char* result_str = NULL;
unsigned min, max;
// These keys are from hardware/libhardware/include/audio.h
// supported sample rates
if (str_parms_has_key(query, AUDIO_PARAMETER_STREAM_SUP_SAMPLING_RATES)) {
// pcm_hw_params doesn't have a list of supported samples rates, just a min and a max, so
// if they are different, return a list containing those two values, otherwise just the one.
min = pcm_params_get_min(alsa_hw_params, PCM_PARAM_RATE);
max = pcm_params_get_max(alsa_hw_params, PCM_PARAM_RATE);
num_written = snprintf(buffer, buffer_size, "%d", min);
if (min != max) {
snprintf(buffer + num_written, buffer_size - num_written, "|%d", max);
}
str_parms_add_str(result, AUDIO_PARAMETER_STREAM_SAMPLING_RATE, buffer);
} // AUDIO_PARAMETER_STREAM_SUP_SAMPLING_RATES
// supported channel counts
if (str_parms_has_key(query, AUDIO_PARAMETER_STREAM_SUP_CHANNELS)) {
// Similarly for output channels count
min = pcm_params_get_min(alsa_hw_params, PCM_PARAM_CHANNELS);
max = pcm_params_get_max(alsa_hw_params, PCM_PARAM_CHANNELS);
num_written = snprintf(buffer, buffer_size, "%d", min);
if (min != max) {
snprintf(buffer + num_written, buffer_size - num_written, "|%d", max);
}
str_parms_add_str(result, AUDIO_PARAMETER_STREAM_CHANNELS, buffer);
} // AUDIO_PARAMETER_STREAM_SUP_CHANNELS
// supported sample formats
if (str_parms_has_key(query, AUDIO_PARAMETER_STREAM_SUP_FORMATS)) {
//TODO(pmclean): this is wrong.
min = pcm_params_get_min(alsa_hw_params, PCM_PARAM_SAMPLE_BITS);
max = pcm_params_get_max(alsa_hw_params, PCM_PARAM_SAMPLE_BITS);
num_written = snprintf(buffer, buffer_size, "%d", min);
if (min != max) {
snprintf(buffer + num_written, buffer_size - num_written, "|%d", max);
}
str_parms_add_str(result, AUDIO_PARAMETER_STREAM_SUP_FORMATS, buffer);
} // AUDIO_PARAMETER_STREAM_SUP_FORMATS
result_str = str_parms_to_str(result);
// done with these...
str_parms_destroy(query);
str_parms_destroy(result);
return result_str;
}
static int in_add_audio_effect(const struct audio_stream *stream, effect_handle_t effect)
{
return 0;
}
static int in_remove_audio_effect(const struct audio_stream *stream, effect_handle_t effect)
{
return 0;
}
static int in_set_gain(struct audio_stream_in *stream, float gain)
{
return 0;
}
/* must be called with hw device and output stream mutexes locked */
static int start_input_stream(struct stream_in *in) {
struct audio_device *adev = in->dev;
int return_val = 0;
ALOGV("usb:audio_hw::start_input_stream(card:%d device:%d)",
adev->in_card, adev->in_device);
in->pcm = pcm_open(adev->in_card, adev->in_device, PCM_IN, &cached_input_hardware_config);
if (in->pcm == NULL) {
ALOGE("usb:audio_hw pcm_open() in->pcm == NULL");
return -ENOMEM;
}
if (in->pcm && !pcm_is_ready(in->pcm)) {
ALOGE("usb:audio_hw audio_hw pcm_open() failed: %s", pcm_get_error(in->pcm));
pcm_close(in->pcm);
return -ENOMEM;
}
return 0;
}
//TODO(pmclean) mutex stuff here (see out_write)
static ssize_t in_read(struct audio_stream_in *stream, void* buffer, size_t bytes)
{
int num_read_buff_bytes = 0;
void * read_buff = buffer;
void * out_buff = buffer;
struct stream_in * in = (struct stream_in *) stream;
pthread_mutex_lock(&in->dev->lock);
pthread_mutex_lock(&in->lock);
if (in->standby) {
if (start_input_stream(in) != 0) {
goto err;
}
in->standby = false;
}
// OK, we need to figure out how much data to read to be able to output the requested
// number of bytes in the HAL format (16-bit, stereo).
num_read_buff_bytes = bytes;
int num_device_channels = cached_input_hardware_config.channels;
int num_req_channels = 2; /* always, for now */
if (num_device_channels != num_req_channels) {
num_read_buff_bytes *= num_device_channels/num_req_channels;
}
if (cached_output_hardware_config.format == PCM_FORMAT_S24_3LE) {
num_read_buff_bytes = (3 * num_read_buff_bytes) / 2;
}
// Setup/Realloc the conversion buffer (if necessary).
if (num_read_buff_bytes != bytes) {
if (num_read_buff_bytes > in->conversion_buffer_size) {
//TODO(pmclean) - remove this when AudioPolicyManger/AudioFlinger support arbitrary formats
// (and do these conversions themselves)
in->conversion_buffer_size = num_read_buff_bytes;
in->conversion_buffer = realloc(in->conversion_buffer, in->conversion_buffer_size);
}
read_buff = in->conversion_buffer;
}
if (pcm_read(in->pcm, read_buff, num_read_buff_bytes) == 0) {
/*
* Do any conversions necessary to send the data in the format specified to/by the HAL
* (but different from the ALSA format), such as 24bit ->16bit, or 4chan -> 2chan.
*/
if (cached_output_hardware_config.format == PCM_FORMAT_S24_3LE) {
if (num_device_channels != num_req_channels) {
out_buff = read_buff;
}
/* Bit Format Conversion */
num_read_buff_bytes =
convert_24_3_to_16(read_buff, num_read_buff_bytes / 3, out_buff);
}
if (num_device_channels != num_req_channels) {
out_buff = buffer;
/* Num Channels conversion */
num_read_buff_bytes =
contract_channels_16(read_buff, num_device_channels,
out_buff, num_req_channels,
num_read_buff_bytes / sizeof(short));
}
}
err:
pthread_mutex_unlock(&in->lock);
pthread_mutex_unlock(&in->dev->lock);
return num_read_buff_bytes;
}
static uint32_t in_get_input_frames_lost(struct audio_stream_in *stream)
{
return 0;
}
static int adev_open_input_stream(struct audio_hw_device *dev,
audio_io_handle_t handle,
audio_devices_t devices,
struct audio_config *config,
struct audio_stream_in **stream_in)
{
ALOGV("usb: in adev_open_input_stream() rate:%d, chanMask:0x%X, fmt:%d",
config->sample_rate, config->channel_mask, config->format);
struct stream_in *in = (struct stream_in *)calloc(1, sizeof(struct stream_in));
if (in == NULL)
return -ENOMEM;
// setup function pointers
in->stream.common.get_sample_rate = in_get_sample_rate;
in->stream.common.set_sample_rate = in_set_sample_rate;
in->stream.common.get_buffer_size = in_get_buffer_size;
in->stream.common.get_channels = in_get_channels;
in->stream.common.get_format = in_get_format;
in->stream.common.set_format = in_set_format;
in->stream.common.standby = in_standby;
in->stream.common.dump = in_dump;
in->stream.common.set_parameters = in_set_parameters;
in->stream.common.get_parameters = in_get_parameters;
in->stream.common.add_audio_effect = in_add_audio_effect;
in->stream.common.remove_audio_effect = in_remove_audio_effect;
in->stream.set_gain = in_set_gain;
in->stream.read = in_read;
in->stream.get_input_frames_lost = in_get_input_frames_lost;
in->dev = (struct audio_device *)dev;
if (output_hardware_config_is_cached) {
config->sample_rate = cached_output_hardware_config.rate;
config->format = alsa_to_fw_format_id(cached_output_hardware_config.format);
if (config->format != AUDIO_FORMAT_PCM_16_BIT) {
// Always report PCM16 for now. AudioPolicyManagerBase/AudioFlinger dont' understand
// formats with more other format, so we won't get chosen (say with a 24bit DAC).
//TODO(pmclean) remove this when the above restriction is removed.
config->format = AUDIO_FORMAT_PCM_16_BIT;
}
config->channel_mask = audio_channel_out_mask_from_count(
cached_output_hardware_config.channels);
if (config->channel_mask != AUDIO_CHANNEL_OUT_STEREO) {
// Always report STEREO for now. AudioPolicyManagerBase/AudioFlinger dont' understand
// formats with more channels, so we won't get chosen (say with a 4-channel DAC).
//TODO(pmclean) remove this when the above restriction is removed.
config->channel_mask = AUDIO_CHANNEL_OUT_STEREO;
}
} else {
cached_input_hardware_config = default_alsa_in_config;
config->format = out_get_format(&in->stream.common);
config->channel_mask = out_get_channels(&in->stream.common);
config->sample_rate = out_get_sample_rate(&in->stream.common);
}
in->standby = true;
in->conversion_buffer = NULL;
in->conversion_buffer_size = 0;
*stream_in = &in->stream;
return 0;
}
static void adev_close_input_stream(struct audio_hw_device *dev, struct audio_stream_in *stream)
{
struct stream_in *in = (struct stream_in *)stream;
//TODO(pmclean) why are we doing this when stream get's freed at the end
// because it closes the pcm device
in_standby(&stream->common);
free(in->conversion_buffer);
free(stream);
}
static int adev_dump(const audio_hw_device_t *device, int fd)
{
return 0;
}
static int adev_close(hw_device_t *device)
{
struct audio_device *adev = (struct audio_device *)device;
free(device);
output_hardware_config_is_cached = false;
input_hardware_config_is_cached = false;
return 0;
}
static int adev_open(const hw_module_t* module, const char* name, hw_device_t** device)
{
if (strcmp(name, AUDIO_HARDWARE_INTERFACE) != 0)
return -EINVAL;
struct audio_device *adev = calloc(1, sizeof(struct audio_device));
if (!adev)
return -ENOMEM;
adev->hw_device.common.tag = HARDWARE_DEVICE_TAG;
adev->hw_device.common.version = AUDIO_DEVICE_API_VERSION_2_0;
adev->hw_device.common.module = (struct hw_module_t *) module;
adev->hw_device.common.close = adev_close;
adev->hw_device.init_check = adev_init_check;
adev->hw_device.set_voice_volume = adev_set_voice_volume;
adev->hw_device.set_master_volume = adev_set_master_volume;
adev->hw_device.set_mode = adev_set_mode;
adev->hw_device.set_mic_mute = adev_set_mic_mute;
adev->hw_device.get_mic_mute = adev_get_mic_mute;
adev->hw_device.set_parameters = adev_set_parameters;
adev->hw_device.get_parameters = adev_get_parameters;
adev->hw_device.get_input_buffer_size = adev_get_input_buffer_size;
adev->hw_device.open_output_stream = adev_open_output_stream;
adev->hw_device.close_output_stream = adev_close_output_stream;
adev->hw_device.open_input_stream = adev_open_input_stream;
adev->hw_device.close_input_stream = adev_close_input_stream;
adev->hw_device.dump = adev_dump;
*device = &adev->hw_device.common;
return 0;
}
static struct hw_module_methods_t hal_module_methods = {
.open = adev_open,
};
struct audio_module HAL_MODULE_INFO_SYM = {
.common = {
.tag = HARDWARE_MODULE_TAG,
.module_api_version = AUDIO_MODULE_API_VERSION_0_1,
.hal_api_version = HARDWARE_HAL_API_VERSION,
.id = AUDIO_HARDWARE_MODULE_ID,
.name = "USB audio HW HAL",
.author = "The Android Open Source Project",
.methods = &hal_module_methods,
},
};