blob: 094b3eeea26108dc3f2fc8ab1f4570a5f8c5f4ff [file] [log] [blame]
The Android Open Source Projectf53ebec2009-03-03 19:32:14 -08001/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ANDROID_SENSORS_INTERFACE_H
18#define ANDROID_SENSORS_INTERFACE_H
19
20#include <stdint.h>
21#include <sys/cdefs.h>
22#include <sys/types.h>
23
24#include <hardware/hardware.h>
25
26__BEGIN_DECLS
27
28/**
29 * The id of this module
30 */
31#define SENSORS_HARDWARE_MODULE_ID "sensors"
32
33/**
34 * Name of the sensors device to open
35 */
36#define SENSORS_HARDWARE_CONTROL "control"
37#define SENSORS_HARDWARE_DATA "data"
38
39/**
40 * Handles must be higher than SENSORS_HANDLE_BASE and must be unique.
41 * A Handle identifies a given sensors. The handle is used to activate
42 * and/or deactivate sensors.
43 * In this version of the API there can only be 256 handles.
44 */
45#define SENSORS_HANDLE_BASE 0
46#define SENSORS_HANDLE_BITS 8
47#define SENSORS_HANDLE_COUNT (1<<SENSORS_HANDLE_BITS)
48
49
50/**
51 * Sensor types
52 */
53#define SENSOR_TYPE_ACCELEROMETER 1
54#define SENSOR_TYPE_MAGNETIC_FIELD 2
55#define SENSOR_TYPE_ORIENTATION 3
56#define SENSOR_TYPE_GYROSCOPE 4
57#define SENSOR_TYPE_LIGHT 5
58#define SENSOR_TYPE_PRESSURE 6
59#define SENSOR_TYPE_TEMPERATURE 7
60#define SENSOR_TYPE_PROXIMITY 8
61
62/**
63 * Values returned by the accelerometer in various locations in the universe.
64 * all values are in SI units (m/s^2)
65 */
66
67#define GRAVITY_SUN (275.0f)
68#define GRAVITY_MERCURY (3.70f)
69#define GRAVITY_VENUS (8.87f)
70#define GRAVITY_EARTH (9.80665f)
71#define GRAVITY_MOON (1.6f)
72#define GRAVITY_MARS (3.71f)
73#define GRAVITY_JUPITER (23.12f)
74#define GRAVITY_SATURN (8.96f)
75#define GRAVITY_URANUS (8.69f)
76#define GRAVITY_NEPTUNE (11.0f)
77#define GRAVITY_PLUTO (0.6f)
78#define GRAVITY_DEATH_STAR_I (0.000000353036145f)
79#define GRAVITY_THE_ISLAND (4.815162342f)
80
81/** Maximum magnetic field on Earth's surface */
82#define MAGNETIC_FIELD_EARTH_MAX (60.0f)
83
84/** Minimum magnetic field on Earth's surface */
85#define MAGNETIC_FIELD_EARTH_MIN (30.0f)
86
87
88/**
89 * status of each sensor
90 */
91
92#define SENSOR_STATUS_UNRELIABLE 0
93#define SENSOR_STATUS_ACCURACY_LOW 1
94#define SENSOR_STATUS_ACCURACY_MEDIUM 2
95#define SENSOR_STATUS_ACCURACY_HIGH 3
96
97/**
98 * Definition of the axis
99 * ----------------------
100 *
101 * This API is relative to the screen of the device in its default orientation,
102 * that is, if the device can be used in portrait or landscape, this API
103 * is only relative to the NATURAL orientation of the screen. In other words,
104 * the axis are not swapped when the device's screen orientation changes.
105 * Higher level services /may/ perform this transformation.
106 *
107 * x<0 x>0
108 * ^
109 * |
110 * +-----------+--> y>0
111 * | |
112 * | |
113 * | |
114 * | | / z<0
115 * | | /
116 * | | /
117 * O-----------+/
118 * |[] [ ] []/
119 * +----------/+ y<0
120 * /
121 * /
122 * |/ z>0 (toward the sky)
123 *
124 * O: Origin (x=0,y=0,z=0)
125 *
126 *
127 * Orientation
128 * -----------
129 *
130 * All values are angles in degrees.
131 *
132 * azimuth: angle between the magnetic north direction and the Y axis, around
133 * the Z axis (0<=azimuth<360).
134 * 0=North, 90=East, 180=South, 270=West
135 *
136 * pitch: Rotation around X axis (-180<=pitch<=180), with positive values when
137 * the z-axis moves toward the y-axis.
138 *
139 * roll: Rotation around Y axis (-90<=roll<=90), with positive values when
140 * the z-axis moves AWAY from the x-axis.
141 *
142 * Note: This definition is different from yaw, pitch and roll used in aviation
143 * where the X axis is along the long side of the plane (tail to nose).
144 *
145 *
146 * Acceleration
147 * ------------
148 *
149 * All values are in SI units (m/s^2) and measure the acceleration of the
150 * device minus the force of gravity.
151 *
152 * x: Acceleration minus Gx on the x-axis
153 * y: Acceleration minus Gy on the y-axis
154 * z: Acceleration minus Gz on the z-axis
155 *
156 * Examples:
157 * When the device lies flat on a table and is pushed on its left side
158 * toward the right, the x acceleration value is positive.
159 *
160 * When the device lies flat on a table, the acceleration value is +9.81,
161 * which correspond to the acceleration of the device (0 m/s^2) minus the
162 * force of gravity (-9.81 m/s^2).
163 *
164 * When the device lies flat on a table and is pushed toward the sky, the
165 * acceleration value is greater than +9.81, which correspond to the
166 * acceleration of the device (+A m/s^2) minus the force of
167 * gravity (-9.81 m/s^2).
168 *
169 *
170 * Magnetic Field
171 * --------------
172 *
173 * All values are in micro-Tesla (uT) and measure the ambient magnetic
174 * field in the X, Y and Z axis.
175 *
176 */
177typedef struct {
178 union {
179 float v[3];
180 struct {
181 float x;
182 float y;
183 float z;
184 };
185 struct {
186 float azimuth;
187 float pitch;
188 float roll;
189 };
190 };
191 int8_t status;
192 uint8_t reserved[3];
193} sensors_vec_t;
194
195/**
196 * Union of the various types of sensor data
197 * that can be returned.
198 */
199typedef struct {
200 /* sensor identifier */
201 int sensor;
202
203 union {
204 /* x,y,z values of the given sensor */
205 sensors_vec_t vector;
206
207 /* orientation values are in degrees */
208 sensors_vec_t orientation;
209
210 /* acceleration values are in meter per second per second (m/s^2) */
211 sensors_vec_t acceleration;
212
213 /* magnetic vector values are in micro-Tesla (uT) */
214 sensors_vec_t magnetic;
215
216 /* temperature is in degrees centigrade (Celsius) */
217 float temperature;
218 };
219
220 /* time is in nanosecond */
221 int64_t time;
222
223 uint32_t reserved;
224} sensors_data_t;
225
226
227struct sensor_t;
228
229/**
230 * Every hardware module must have a data structure named HAL_MODULE_INFO_SYM
231 * and the fields of this data structure must begin with hw_module_t
232 * followed by module specific information.
233 */
234struct sensors_module_t {
235 struct hw_module_t common;
236
237 /**
238 * Enumerate all available sensors. The list is returned in "list".
239 * @return number of sensors in the list
240 */
241 int (*get_sensors_list)(struct sensors_module_t* module,
242 struct sensor_t const** list);
243};
244
245struct sensor_t {
246 /* name of this sensors */
247 const char* name;
248 /* vendor of the hardware part */
249 const char* vendor;
250 /* version of the hardware part + driver. The value of this field is
251 * left to the implementation and doesn't have to be monotonicaly
252 * increasing.
253 */
254 int version;
255 /* handle that identifies this sensors. This handle is used to activate
256 * and deactivate this sensor. The value of the handle must be 8 bits
257 * in this version of the API.
258 */
259 int handle;
260 /* this sensor's type. */
261 int type;
262 /* maximaum range of this sensor's value in SI units */
263 float maxRange;
264 /* smallest difference between two values reported by this sensor */
265 float resolution;
266 /* rough estimate of this sensor's power consumption in mA */
267 float power;
268 /* reserved fields, must be zero */
269 void* reserved[9];
270};
271
272
273/**
274 * Every device data structure must begin with hw_device_t
275 * followed by module specific public methods and attributes.
276 */
277struct sensors_control_device_t {
278 struct hw_device_t common;
279
280 /**
281 * Returns the fd which will be the parameter to
282 * sensors_data_device_t::open_data().
283 * The caller takes ownership of this fd. This is intended to be
284 * passed cross processes.
285 *
286 * @return a fd if successful, < 0 on error
287 */
288 int (*open_data_source)(struct sensors_control_device_t *dev);
289
290 /** Activate/deactivate one sensor.
291 *
292 * @param handle is the handle of the sensor to change.
293 * @param enabled set to 1 to enable, or 0 to disable the sensor.
294 *
295 * @return 0 on success, negative errno code otherwise
296 */
297 int (*activate)(struct sensors_control_device_t *dev,
298 int handle, int enabled);
299
300 /**
301 * Set the delay between sensor events in ms
302 *
303 * @return 0 if successful, < 0 on error
304 */
305 int (*set_delay)(struct sensors_control_device_t *dev, int32_t ms);
306
307 /**
308 * Causes sensors_data_device_t.poll() to return -EWOULDBLOCK immediately.
309 */
310 int (*wake)(struct sensors_control_device_t *dev);
311};
312
313struct sensors_data_device_t {
314 struct hw_device_t common;
315
316 /**
317 * Prepare to read sensor data.
318 *
319 * This routine does NOT take ownership of the fd
320 * and must not close it. Typically this routine would
321 * use a duplicate of the fd parameter.
322 *
323 * @param fd from sensors_control_open.
324 *
325 * @return 0 if successful, < 0 on error
326 */
327 int (*data_open)(struct sensors_data_device_t *dev, int fd);
328
329 /**
330 * Caller has completed using the sensor data.
331 * The caller will not be blocked in sensors_data_poll
332 * when this routine is called.
333 *
334 * @return 0 if successful, < 0 on error
335 */
336 int (*data_close)(struct sensors_data_device_t *dev);
337
338 /**
339 * Return sensor data for one of the enabled sensors.
340 *
341 * @return sensor handle for the returned data, 0x7FFFFFFF when
342 * sensors_control_device_t.wake() is called and -errno on error
343 *
344 */
345 int (*poll)(struct sensors_data_device_t *dev,
346 sensors_data_t* data);
347};
348
349
350/** convenience API for opening and closing a device */
351
352static inline int sensors_control_open(const struct hw_module_t* module,
353 struct sensors_control_device_t** device) {
354 return module->methods->open(module,
355 SENSORS_HARDWARE_CONTROL, (struct hw_device_t**)device);
356}
357
358static inline int sensors_control_close(struct sensors_control_device_t* device) {
359 return device->common.close(&device->common);
360}
361
362static inline int sensors_data_open(const struct hw_module_t* module,
363 struct sensors_data_device_t** device) {
364 return module->methods->open(module,
365 SENSORS_HARDWARE_DATA, (struct hw_device_t**)device);
366}
367
368static inline int sensors_data_close(struct sensors_data_device_t* device) {
369 return device->common.close(&device->common);
370}
371
372
373__END_DECLS
374
375#endif // ANDROID_SENSORS_INTERFACE_H