| /* |
| * Copyright (C) 2010 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <sys/stat.h> |
| #include <string.h> |
| #include <stdio.h> |
| |
| #ifdef HAVE_ANDROID_OS |
| #include <linux/capability.h> |
| #else |
| #include <private/android_filesystem_capability.h> |
| #endif |
| |
| #define XATTR_SELINUX_SUFFIX "selinux" |
| #define XATTR_CAPS_SUFFIX "capability" |
| |
| #include "ext4_utils.h" |
| #include "ext4.h" |
| #include "make_ext4fs.h" |
| #include "allocate.h" |
| #include "contents.h" |
| #include "extent.h" |
| #include "indirect.h" |
| #include "xattr.h" |
| |
| #ifdef USE_MINGW |
| #define S_IFLNK 0 /* used by make_link, not needed under mingw */ |
| #endif |
| |
| static u32 dentry_size(u32 entries, struct dentry *dentries) |
| { |
| u32 len = 24; |
| unsigned int i; |
| unsigned int dentry_len; |
| |
| for (i = 0; i < entries; i++) { |
| dentry_len = 8 + ALIGN(strlen(dentries[i].filename), 4); |
| if (len % info.block_size + dentry_len > info.block_size) |
| len += info.block_size - (len % info.block_size); |
| len += dentry_len; |
| } |
| |
| return len; |
| } |
| |
| static struct ext4_dir_entry_2 *add_dentry(u8 *data, u32 *offset, |
| struct ext4_dir_entry_2 *prev, u32 inode, const char *name, |
| u8 file_type) |
| { |
| u8 name_len = strlen(name); |
| u16 rec_len = 8 + ALIGN(name_len, 4); |
| struct ext4_dir_entry_2 *dentry; |
| |
| u32 start_block = *offset / info.block_size; |
| u32 end_block = (*offset + rec_len - 1) / info.block_size; |
| if (start_block != end_block) { |
| /* Adding this dentry will cross a block boundary, so pad the previous |
| dentry to the block boundary */ |
| if (!prev) |
| critical_error("no prev"); |
| prev->rec_len += end_block * info.block_size - *offset; |
| *offset = end_block * info.block_size; |
| } |
| |
| dentry = (struct ext4_dir_entry_2 *)(data + *offset); |
| dentry->inode = inode; |
| dentry->rec_len = rec_len; |
| dentry->name_len = name_len; |
| dentry->file_type = file_type; |
| memcpy(dentry->name, name, name_len); |
| |
| *offset += rec_len; |
| return dentry; |
| } |
| |
| /* Creates a directory structure for an array of directory entries, dentries, |
| and stores the location of the structure in an inode. The new inode's |
| .. link is set to dir_inode_num. Stores the location of the inode number |
| of each directory entry into dentries[i].inode, to be filled in later |
| when the inode for the entry is allocated. Returns the inode number of the |
| new directory */ |
| u32 make_directory(u32 dir_inode_num, u32 entries, struct dentry *dentries, |
| u32 dirs) |
| { |
| struct ext4_inode *inode; |
| u32 blocks; |
| u32 len; |
| u32 offset = 0; |
| u32 inode_num; |
| u8 *data; |
| unsigned int i; |
| struct ext4_dir_entry_2 *dentry; |
| |
| blocks = DIV_ROUND_UP(dentry_size(entries, dentries), info.block_size); |
| len = blocks * info.block_size; |
| |
| if (dir_inode_num) { |
| inode_num = allocate_inode(info); |
| } else { |
| dir_inode_num = EXT4_ROOT_INO; |
| inode_num = EXT4_ROOT_INO; |
| } |
| |
| if (inode_num == EXT4_ALLOCATE_FAILED) { |
| error("failed to allocate inode\n"); |
| return EXT4_ALLOCATE_FAILED; |
| } |
| |
| add_directory(inode_num); |
| |
| inode = get_inode(inode_num); |
| if (inode == NULL) { |
| error("failed to get inode %u", inode_num); |
| return EXT4_ALLOCATE_FAILED; |
| } |
| |
| data = inode_allocate_data_extents(inode, len, len); |
| if (data == NULL) { |
| error("failed to allocate %u extents", len); |
| return EXT4_ALLOCATE_FAILED; |
| } |
| |
| inode->i_mode = S_IFDIR; |
| inode->i_links_count = dirs + 2; |
| inode->i_flags |= aux_info.default_i_flags; |
| |
| dentry = NULL; |
| |
| dentry = add_dentry(data, &offset, NULL, inode_num, ".", EXT4_FT_DIR); |
| if (!dentry) { |
| error("failed to add . directory"); |
| return EXT4_ALLOCATE_FAILED; |
| } |
| |
| dentry = add_dentry(data, &offset, dentry, dir_inode_num, "..", EXT4_FT_DIR); |
| if (!dentry) { |
| error("failed to add .. directory"); |
| return EXT4_ALLOCATE_FAILED; |
| } |
| |
| for (i = 0; i < entries; i++) { |
| dentry = add_dentry(data, &offset, dentry, 0, |
| dentries[i].filename, dentries[i].file_type); |
| if (offset > len || (offset == len && i != entries - 1)) |
| critical_error("internal error: dentry for %s ends at %d, past %d\n", |
| dentries[i].filename, offset, len); |
| dentries[i].inode = &dentry->inode; |
| if (!dentry) { |
| error("failed to add directory"); |
| return EXT4_ALLOCATE_FAILED; |
| } |
| } |
| |
| /* pad the last dentry out to the end of the block */ |
| dentry->rec_len += len - offset; |
| |
| return inode_num; |
| } |
| |
| /* Creates a file on disk. Returns the inode number of the new file */ |
| u32 make_file(const char *filename, u64 len) |
| { |
| struct ext4_inode *inode; |
| u32 inode_num; |
| |
| inode_num = allocate_inode(info); |
| if (inode_num == EXT4_ALLOCATE_FAILED) { |
| error("failed to allocate inode\n"); |
| return EXT4_ALLOCATE_FAILED; |
| } |
| |
| inode = get_inode(inode_num); |
| if (inode == NULL) { |
| error("failed to get inode %u", inode_num); |
| return EXT4_ALLOCATE_FAILED; |
| } |
| |
| if (len > 0) |
| inode_allocate_file_extents(inode, len, filename); |
| |
| inode->i_mode = S_IFREG; |
| inode->i_links_count = 1; |
| inode->i_flags |= aux_info.default_i_flags; |
| |
| return inode_num; |
| } |
| |
| /* Creates a file on disk. Returns the inode number of the new file */ |
| u32 make_link(const char *link) |
| { |
| struct ext4_inode *inode; |
| u32 inode_num; |
| u32 len = strlen(link); |
| |
| inode_num = allocate_inode(info); |
| if (inode_num == EXT4_ALLOCATE_FAILED) { |
| error("failed to allocate inode\n"); |
| return EXT4_ALLOCATE_FAILED; |
| } |
| |
| inode = get_inode(inode_num); |
| if (inode == NULL) { |
| error("failed to get inode %u", inode_num); |
| return EXT4_ALLOCATE_FAILED; |
| } |
| |
| inode->i_mode = S_IFLNK; |
| inode->i_links_count = 1; |
| inode->i_flags |= aux_info.default_i_flags; |
| inode->i_size_lo = len; |
| |
| if (len + 1 <= sizeof(inode->i_block)) { |
| /* Fast symlink */ |
| memcpy((char*)inode->i_block, link, len); |
| } else { |
| u8 *data = inode_allocate_data_indirect(inode, info.block_size, info.block_size); |
| memcpy(data, link, len); |
| inode->i_blocks_lo = info.block_size / 512; |
| } |
| |
| return inode_num; |
| } |
| |
| int inode_set_permissions(u32 inode_num, u16 mode, u16 uid, u16 gid, u32 mtime) |
| { |
| struct ext4_inode *inode = get_inode(inode_num); |
| |
| if (!inode) |
| return -1; |
| |
| inode->i_mode |= mode; |
| inode->i_uid = uid; |
| inode->i_gid = gid; |
| inode->i_mtime = mtime; |
| inode->i_atime = mtime; |
| inode->i_ctime = mtime; |
| |
| return 0; |
| } |
| |
| /* |
| * Returns the amount of free space available in the specified |
| * xattr region |
| */ |
| static size_t xattr_free_space(struct ext4_xattr_entry *entry, char *end) |
| { |
| while(!IS_LAST_ENTRY(entry) && (((char *) entry) < end)) { |
| end -= EXT4_XATTR_SIZE(le32_to_cpu(entry->e_value_size)); |
| entry = EXT4_XATTR_NEXT(entry); |
| } |
| |
| if (((char *) entry) > end) { |
| error("unexpected read beyond end of xattr space"); |
| return 0; |
| } |
| |
| return end - ((char *) entry); |
| } |
| |
| /* |
| * Returns a pointer to the free space immediately after the |
| * last xattr element |
| */ |
| static struct ext4_xattr_entry* xattr_get_last(struct ext4_xattr_entry *entry) |
| { |
| for (; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) { |
| // skip entry |
| } |
| return entry; |
| } |
| |
| /* |
| * assert that the elements in the ext4 xattr section are in sorted order |
| * |
| * The ext4 filesystem requires extended attributes to be sorted when |
| * they're not stored in the inode. The kernel ext4 code uses the following |
| * sorting algorithm: |
| * |
| * 1) First sort extended attributes by their name_index. For example, |
| * EXT4_XATTR_INDEX_USER (1) comes before EXT4_XATTR_INDEX_SECURITY (6). |
| * 2) If the name_indexes are equal, then sorting is based on the length |
| * of the name. For example, XATTR_SELINUX_SUFFIX ("selinux") comes before |
| * XATTR_CAPS_SUFFIX ("capability") because "selinux" is shorter than "capability" |
| * 3) If the name_index and name_length are equal, then memcmp() is used to determine |
| * which name comes first. For example, "selinux" would come before "yelinux". |
| * |
| * This method is intended to implement the sorting function defined in |
| * the Linux kernel file fs/ext4/xattr.c function ext4_xattr_find_entry(). |
| */ |
| static void xattr_assert_sane(struct ext4_xattr_entry *entry) |
| { |
| for( ; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) { |
| struct ext4_xattr_entry *next = EXT4_XATTR_NEXT(entry); |
| if (IS_LAST_ENTRY(next)) { |
| return; |
| } |
| |
| int cmp = next->e_name_index - entry->e_name_index; |
| if (cmp == 0) |
| cmp = next->e_name_len - entry->e_name_len; |
| if (cmp == 0) |
| cmp = memcmp(next->e_name, entry->e_name, next->e_name_len); |
| if (cmp < 0) { |
| error("BUG: extended attributes are not sorted\n"); |
| return; |
| } |
| if (cmp == 0) { |
| error("BUG: duplicate extended attributes detected\n"); |
| return; |
| } |
| } |
| } |
| |
| #define NAME_HASH_SHIFT 5 |
| #define VALUE_HASH_SHIFT 16 |
| |
| static void ext4_xattr_hash_entry(struct ext4_xattr_header *header, |
| struct ext4_xattr_entry *entry) |
| { |
| __u32 hash = 0; |
| char *name = entry->e_name; |
| int n; |
| |
| for (n = 0; n < entry->e_name_len; n++) { |
| hash = (hash << NAME_HASH_SHIFT) ^ |
| (hash >> (8*sizeof(hash) - NAME_HASH_SHIFT)) ^ |
| *name++; |
| } |
| |
| if (entry->e_value_block == 0 && entry->e_value_size != 0) { |
| __le32 *value = (__le32 *)((char *)header + |
| le16_to_cpu(entry->e_value_offs)); |
| for (n = (le32_to_cpu(entry->e_value_size) + |
| EXT4_XATTR_ROUND) >> EXT4_XATTR_PAD_BITS; n; n--) { |
| hash = (hash << VALUE_HASH_SHIFT) ^ |
| (hash >> (8*sizeof(hash) - VALUE_HASH_SHIFT)) ^ |
| le32_to_cpu(*value++); |
| } |
| } |
| entry->e_hash = cpu_to_le32(hash); |
| } |
| |
| #undef NAME_HASH_SHIFT |
| #undef VALUE_HASH_SHIFT |
| |
| static struct ext4_xattr_entry* xattr_addto_range( |
| void *block_start, |
| void *block_end, |
| struct ext4_xattr_entry *first, |
| int name_index, |
| const char *name, |
| const void *value, |
| size_t value_len) |
| { |
| size_t name_len = strlen(name); |
| if (name_len > 255) |
| return NULL; |
| |
| size_t available_size = xattr_free_space(first, block_end); |
| size_t needed_size = EXT4_XATTR_LEN(name_len) + EXT4_XATTR_SIZE(value_len); |
| |
| if (needed_size > available_size) |
| return NULL; |
| |
| struct ext4_xattr_entry *new_entry = xattr_get_last(first); |
| memset(new_entry, 0, EXT4_XATTR_LEN(name_len)); |
| |
| new_entry->e_name_len = name_len; |
| new_entry->e_name_index = name_index; |
| memcpy(new_entry->e_name, name, name_len); |
| new_entry->e_value_block = 0; |
| new_entry->e_value_size = cpu_to_le32(value_len); |
| |
| char *val = (char *) new_entry + available_size - EXT4_XATTR_SIZE(value_len); |
| size_t e_value_offs = val - (char *) block_start; |
| |
| new_entry->e_value_offs = cpu_to_le16(e_value_offs); |
| memset(val, 0, EXT4_XATTR_SIZE(value_len)); |
| memcpy(val, value, value_len); |
| |
| xattr_assert_sane(first); |
| return new_entry; |
| } |
| |
| static int xattr_addto_inode(struct ext4_inode *inode, int name_index, |
| const char *name, const void *value, size_t value_len) |
| { |
| struct ext4_xattr_ibody_header *hdr = (struct ext4_xattr_ibody_header *) (inode + 1); |
| struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (hdr + 1); |
| char *block_end = ((char *) inode) + info.inode_size; |
| |
| struct ext4_xattr_entry *result = |
| xattr_addto_range(first, block_end, first, name_index, name, value, value_len); |
| |
| if (result == NULL) |
| return -1; |
| |
| hdr->h_magic = cpu_to_le32(EXT4_XATTR_MAGIC); |
| inode->i_extra_isize = cpu_to_le16(sizeof(struct ext4_inode) - EXT4_GOOD_OLD_INODE_SIZE); |
| |
| return 0; |
| } |
| |
| static int xattr_addto_block(struct ext4_inode *inode, int name_index, |
| const char *name, const void *value, size_t value_len) |
| { |
| struct ext4_xattr_header *header = get_xattr_block_for_inode(inode); |
| if (!header) |
| return -1; |
| |
| struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (header + 1); |
| char *block_end = ((char *) header) + info.block_size; |
| |
| struct ext4_xattr_entry *result = |
| xattr_addto_range(header, block_end, first, name_index, name, value, value_len); |
| |
| if (result == NULL) |
| return -1; |
| |
| ext4_xattr_hash_entry(header, result); |
| return 0; |
| } |
| |
| |
| static int xattr_add(u32 inode_num, int name_index, const char *name, |
| const void *value, size_t value_len) |
| { |
| if (!value) |
| return 0; |
| |
| struct ext4_inode *inode = get_inode(inode_num); |
| |
| if (!inode) |
| return -1; |
| |
| int result = xattr_addto_inode(inode, name_index, name, value, value_len); |
| if (result != 0) { |
| result = xattr_addto_block(inode, name_index, name, value, value_len); |
| } |
| return result; |
| } |
| |
| int inode_set_selinux(u32 inode_num, const char *secon) |
| { |
| if (!secon) |
| return 0; |
| |
| return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY, |
| XATTR_SELINUX_SUFFIX, secon, strlen(secon) + 1); |
| } |
| |
| int inode_set_capabilities(u32 inode_num, uint64_t capabilities) { |
| if (capabilities == 0) |
| return 0; |
| |
| struct vfs_cap_data cap_data; |
| memset(&cap_data, 0, sizeof(cap_data)); |
| |
| cap_data.magic_etc = VFS_CAP_REVISION | VFS_CAP_FLAGS_EFFECTIVE; |
| cap_data.data[0].permitted = (uint32_t) (capabilities & 0xffffffff); |
| cap_data.data[0].inheritable = 0; |
| cap_data.data[1].permitted = (uint32_t) (capabilities >> 32); |
| cap_data.data[1].inheritable = 0; |
| |
| return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY, |
| XATTR_CAPS_SUFFIX, &cap_data, sizeof(cap_data)); |
| } |
| |