blob: 950628c8e7c9972ef59b0d6660c306387d598ab3 [file] [log] [blame]
#define _LARGEFILE64_SOURCE
#define LOG_TAG "f2fs_sparseblock"
#include <cutils/log.h>
#include <errno.h>
#include <fcntl.h>
#include <f2fs_fs.h>
#include <linux/types.h>
#include <malloc.h>
#include <string.h>
#include <sys/stat.h>
#include "f2fs_sparseblock.h"
#define D_DISP_u32(ptr, member) \
do { \
SLOGD("%-30s" "\t\t[0x%#08x : %u]\n", \
#member, le32_to_cpu((ptr)->member), le32_to_cpu((ptr)->member) ); \
} while (0);
#define D_DISP_u64(ptr, member) \
do { \
SLOGD("%-30s" "\t\t[0x%#016llx : %llu]\n", \
#member, le64_to_cpu((ptr)->member), le64_to_cpu((ptr)->member) ); \
} while (0);
#define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
#define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
static void dbg_print_raw_sb_info(struct f2fs_super_block *sb)
{
SLOGD("\n");
SLOGD("+--------------------------------------------------------+\n");
SLOGD("| Super block |\n");
SLOGD("+--------------------------------------------------------+\n");
D_DISP_u32(sb, magic);
D_DISP_u32(sb, major_ver);
D_DISP_u32(sb, minor_ver);
D_DISP_u32(sb, log_sectorsize);
D_DISP_u32(sb, log_sectors_per_block);
D_DISP_u32(sb, log_blocksize);
D_DISP_u32(sb, log_blocks_per_seg);
D_DISP_u32(sb, segs_per_sec);
D_DISP_u32(sb, secs_per_zone);
D_DISP_u32(sb, checksum_offset);
D_DISP_u64(sb, block_count);
D_DISP_u32(sb, section_count);
D_DISP_u32(sb, segment_count);
D_DISP_u32(sb, segment_count_ckpt);
D_DISP_u32(sb, segment_count_sit);
D_DISP_u32(sb, segment_count_nat);
D_DISP_u32(sb, segment_count_ssa);
D_DISP_u32(sb, segment_count_main);
D_DISP_u32(sb, segment0_blkaddr);
D_DISP_u32(sb, cp_blkaddr);
D_DISP_u32(sb, sit_blkaddr);
D_DISP_u32(sb, nat_blkaddr);
D_DISP_u32(sb, ssa_blkaddr);
D_DISP_u32(sb, main_blkaddr);
D_DISP_u32(sb, root_ino);
D_DISP_u32(sb, node_ino);
D_DISP_u32(sb, meta_ino);
D_DISP_u32(sb, cp_payload);
SLOGD("\n");
}
static void dbg_print_raw_ckpt_struct(struct f2fs_checkpoint *cp)
{
SLOGD("\n");
SLOGD("+--------------------------------------------------------+\n");
SLOGD("| Checkpoint |\n");
SLOGD("+--------------------------------------------------------+\n");
D_DISP_u64(cp, checkpoint_ver);
D_DISP_u64(cp, user_block_count);
D_DISP_u64(cp, valid_block_count);
D_DISP_u32(cp, rsvd_segment_count);
D_DISP_u32(cp, overprov_segment_count);
D_DISP_u32(cp, free_segment_count);
D_DISP_u32(cp, alloc_type[CURSEG_HOT_NODE]);
D_DISP_u32(cp, alloc_type[CURSEG_WARM_NODE]);
D_DISP_u32(cp, alloc_type[CURSEG_COLD_NODE]);
D_DISP_u32(cp, cur_node_segno[0]);
D_DISP_u32(cp, cur_node_segno[1]);
D_DISP_u32(cp, cur_node_segno[2]);
D_DISP_u32(cp, cur_node_blkoff[0]);
D_DISP_u32(cp, cur_node_blkoff[1]);
D_DISP_u32(cp, cur_node_blkoff[2]);
D_DISP_u32(cp, alloc_type[CURSEG_HOT_DATA]);
D_DISP_u32(cp, alloc_type[CURSEG_WARM_DATA]);
D_DISP_u32(cp, alloc_type[CURSEG_COLD_DATA]);
D_DISP_u32(cp, cur_data_segno[0]);
D_DISP_u32(cp, cur_data_segno[1]);
D_DISP_u32(cp, cur_data_segno[2]);
D_DISP_u32(cp, cur_data_blkoff[0]);
D_DISP_u32(cp, cur_data_blkoff[1]);
D_DISP_u32(cp, cur_data_blkoff[2]);
D_DISP_u32(cp, ckpt_flags);
D_DISP_u32(cp, cp_pack_total_block_count);
D_DISP_u32(cp, cp_pack_start_sum);
D_DISP_u32(cp, valid_node_count);
D_DISP_u32(cp, valid_inode_count);
D_DISP_u32(cp, next_free_nid);
D_DISP_u32(cp, sit_ver_bitmap_bytesize);
D_DISP_u32(cp, nat_ver_bitmap_bytesize);
D_DISP_u32(cp, checksum_offset);
D_DISP_u64(cp, elapsed_time);
D_DISP_u32(cp, sit_nat_version_bitmap[0]);
SLOGD("\n\n");
}
static void dbg_print_info_struct(struct f2fs_info *info)
{
SLOGD("\n");
SLOGD("+--------------------------------------------------------+\n");
SLOGD("| F2FS_INFO |\n");
SLOGD("+--------------------------------------------------------+\n");
SLOGD("blocks_per_segment: %"PRIu64, info->blocks_per_segment);
SLOGD("block_size: %d", info->block_size);
SLOGD("sit_bmp loc: %p", info->sit_bmp);
SLOGD("sit_bmp_size: %d", info->sit_bmp_size);
SLOGD("blocks_per_sit: %"PRIu64, info->blocks_per_sit);
SLOGD("sit_blocks loc: %p", info->sit_blocks);
SLOGD("sit_sums loc: %p", info->sit_sums);
SLOGD("sit_sums num: %d", le16_to_cpu(info->sit_sums->n_sits));
unsigned int i;
for(i = 0; i < (le16_to_cpu(info->sit_sums->n_sits)); i++) {
SLOGD("entry %d in journal entries is for segment %d",i, le32_to_cpu(segno_in_journal(info->sit_sums, i)));
}
SLOGD("cp_blkaddr: %"PRIu64, info->cp_blkaddr);
SLOGD("cp_valid_cp_blkaddr: %"PRIu64, info->cp_valid_cp_blkaddr);
SLOGD("sit_blkaddr: %"PRIu64, info->sit_blkaddr);
SLOGD("nat_blkaddr: %"PRIu64, info->nat_blkaddr);
SLOGD("ssa_blkaddr: %"PRIu64, info->ssa_blkaddr);
SLOGD("main_blkaddr: %"PRIu64, info->main_blkaddr);
SLOGD("total_user_used: %"PRIu64, info->total_user_used);
SLOGD("total_blocks: %"PRIu64, info->total_blocks);
SLOGD("\n\n");
}
/* read blocks */
static int read_structure(int fd, unsigned long long start, void *buf, ssize_t len)
{
off64_t ret;
ret = lseek64(fd, start, SEEK_SET);
if (ret < 0) {
SLOGE("failed to seek\n");
return ret;
}
ret = read(fd, buf, len);
if (ret < 0) {
SLOGE("failed to read\n");
return ret;
}
if (ret != len) {
SLOGE("failed to read all\n");
return -1;
}
return 0;
}
static int read_structure_blk(int fd, unsigned long long start_blk, void *buf, size_t len)
{
return read_structure(fd, F2FS_BLKSIZE*start_blk, buf, F2FS_BLKSIZE * len);
}
static int read_f2fs_sb(int fd, struct f2fs_super_block *sb)
{
int rc;
rc = read_structure(fd, F2FS_SUPER_OFFSET, sb, sizeof(*sb));
if (le32_to_cpu(sb->magic) != F2FS_SUPER_MAGIC) {
SLOGE("Not a valid F2FS super block. Magic:%#08x != %#08x",
le32_to_cpu(sb->magic), F2FS_SUPER_MAGIC);
return -1;
}
return 0;
}
unsigned int get_f2fs_filesystem_size_sec(char *dev)
{
int fd;
if ((fd = open(dev, O_RDONLY)) < 0) {
SLOGE("Cannot open device to get filesystem size ");
return 0;
}
struct f2fs_super_block sb;
if(read_f2fs_sb(fd, &sb))
return 0;
return (unsigned int)(le64_to_cpu(sb.block_count)*F2FS_BLKSIZE/DEFAULT_SECTOR_SIZE);
}
static struct f2fs_checkpoint *validate_checkpoint(block_t cp_addr,
unsigned long long *version, int fd)
{
unsigned char *cp_block_1, *cp_block_2;
struct f2fs_checkpoint *cp_block, *cp_ret;
u64 cp1_version = 0, cp2_version = 0;
cp_block_1 = malloc(F2FS_BLKSIZE);
if (!cp_block_1)
return NULL;
/* Read the 1st cp block in this CP pack */
if (read_structure_blk(fd, cp_addr, cp_block_1, 1))
goto invalid_cp1;
/* get the version number */
cp_block = (struct f2fs_checkpoint *)cp_block_1;
cp1_version = le64_to_cpu(cp_block->checkpoint_ver);
cp_block_2 = malloc(F2FS_BLKSIZE);
if (!cp_block_2) {
goto invalid_cp1;
}
/* Read the 2nd cp block in this CP pack */
cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
if (read_structure_blk(fd, cp_addr, cp_block_2, 1)) {
goto invalid_cp2;
}
cp_block = (struct f2fs_checkpoint *)cp_block_2;
cp2_version = le64_to_cpu(cp_block->checkpoint_ver);
if (cp2_version == cp1_version) {
*version = cp2_version;
free(cp_block_2);
return (struct f2fs_checkpoint *)cp_block_1;
}
/* There must be something wrong with this checkpoint */
invalid_cp2:
free(cp_block_2);
invalid_cp1:
free(cp_block_1);
return NULL;
}
int get_valid_checkpoint_info(int fd, struct f2fs_super_block *sb, struct f2fs_checkpoint **cp, struct f2fs_info *info)
{
struct f2fs_checkpoint *cp_block;
struct f2fs_checkpoint *cp1, *cp2, *cur_cp;
int cur_cp_no;
unsigned long blk_size;// = 1<<le32_to_cpu(info->sb->log_blocksize);
unsigned long long cp1_version = 0, cp2_version = 0;
unsigned long long cp1_start_blk_no;
unsigned long long cp2_start_blk_no;
u32 bmp_size;
blk_size = 1U<<le32_to_cpu(sb->log_blocksize);
/*
* Find valid cp by reading both packs and finding most recent one.
*/
cp1_start_blk_no = le32_to_cpu(sb->cp_blkaddr);
cp1 = validate_checkpoint(cp1_start_blk_no, &cp1_version, fd);
/* The second checkpoint pack should start at the next segment */
cp2_start_blk_no = cp1_start_blk_no + (1 << le32_to_cpu(sb->log_blocks_per_seg));
cp2 = validate_checkpoint(cp2_start_blk_no, &cp2_version, fd);
if (cp1 && cp2) {
if (ver_after(cp2_version, cp1_version)) {
cur_cp = cp2;
info->cp_valid_cp_blkaddr = cp2_start_blk_no;
free(cp1);
} else {
cur_cp = cp1;
info->cp_valid_cp_blkaddr = cp1_start_blk_no;
free(cp2);
}
} else if (cp1) {
cur_cp = cp1;
info->cp_valid_cp_blkaddr = cp1_start_blk_no;
} else if (cp2) {
cur_cp = cp2;
info->cp_valid_cp_blkaddr = cp2_start_blk_no;
} else {
goto fail_no_cp;
}
*cp = cur_cp;
return 0;
fail_no_cp:
SLOGE("Valid Checkpoint not found!!");
return -EINVAL;
}
static int gather_sit_info(int fd, struct f2fs_info *info)
{
u64 num_segments = (info->total_blocks - info->main_blkaddr
+ info->blocks_per_segment - 1) / info->blocks_per_segment;
u64 num_sit_blocks = (num_segments + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK;
u64 sit_block;
info->sit_blocks = malloc(num_sit_blocks * sizeof(struct f2fs_sit_block));
if (!info->sit_blocks)
return -1;
for(sit_block = 0; sit_block<num_sit_blocks; sit_block++) {
off64_t address = info->sit_blkaddr + sit_block;
if (f2fs_test_bit(sit_block, info->sit_bmp))
address += info->blocks_per_sit;
SLOGD("Reading cache block starting at block %"PRIu64, address);
if (read_structure(fd, address * F2FS_BLKSIZE, &info->sit_blocks[sit_block], sizeof(struct f2fs_sit_block))) {
SLOGE("Could not read sit block at block %"PRIu64, address);
free(info->sit_blocks);
return -1;
}
}
return 0;
}
static inline int is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
return !!(ckpt_flags & f);
}
static inline u64 sum_blk_addr(struct f2fs_checkpoint *cp, struct f2fs_info *info, int base, int type)
{
return info->cp_valid_cp_blkaddr + le32_to_cpu(cp->cp_pack_total_block_count)
- (base + 1) + type;
}
static int get_sit_summary(int fd, struct f2fs_info *info, struct f2fs_checkpoint *cp)
{
char buffer[F2FS_BLKSIZE];
info->sit_sums = calloc(1, sizeof(struct f2fs_summary_block));
if (!info->sit_sums)
return -1;
/* CURSEG_COLD_DATA where the journaled SIT entries are. */
if (is_set_ckpt_flags(cp, CP_COMPACT_SUM_FLAG)) {
if (read_structure_blk(fd, info->cp_valid_cp_blkaddr + le32_to_cpu(cp->cp_pack_start_sum), buffer, 1))
return -1;
memcpy(&info->sit_sums->n_sits, &buffer[SUM_JOURNAL_SIZE], SUM_JOURNAL_SIZE);
} else {
u64 blk_addr;
if (is_set_ckpt_flags(cp, CP_UMOUNT_FLAG))
blk_addr = sum_blk_addr(cp, info, NR_CURSEG_TYPE, CURSEG_COLD_DATA);
else
blk_addr = sum_blk_addr(cp, info, NR_CURSEG_DATA_TYPE, CURSEG_COLD_DATA);
if (read_structure_blk(fd, blk_addr, buffer, 1))
return -1;
memcpy(info->sit_sums, buffer, sizeof(struct f2fs_summary_block));
}
return 0;
}
struct f2fs_info *generate_f2fs_info(int fd)
{
struct f2fs_super_block *sb = NULL;
struct f2fs_checkpoint *cp = NULL;
struct f2fs_info *info;
info = calloc(1, sizeof(*info));
if (!info) {
SLOGE("Out of memory!");
return NULL;
}
sb = malloc(sizeof(*sb));
if(!sb) {
SLOGE("Out of memory!");
free(info);
return NULL;
}
if (read_f2fs_sb(fd, sb)) {
SLOGE("Failed to read superblock");
free(info);
free(sb);
return NULL;
}
dbg_print_raw_sb_info(sb);
info->cp_blkaddr = le32_to_cpu(sb->cp_blkaddr);
info->sit_blkaddr = le32_to_cpu(sb->sit_blkaddr);
info->nat_blkaddr = le32_to_cpu(sb->nat_blkaddr);
info->ssa_blkaddr = le32_to_cpu(sb->ssa_blkaddr);
info->main_blkaddr = le32_to_cpu(sb->main_blkaddr);
info->block_size = F2FS_BLKSIZE;
info->total_blocks = sb->block_count;
info->blocks_per_sit = (le32_to_cpu(sb->segment_count_sit) >> 1) << le32_to_cpu(sb->log_blocks_per_seg);
info->blocks_per_segment = 1U << le32_to_cpu(sb->log_blocks_per_seg);
if (get_valid_checkpoint_info(fd, sb, &cp, info))
goto error;
dbg_print_raw_ckpt_struct(cp);
info->total_user_used = le32_to_cpu(cp->valid_block_count);
u32 bmp_size = le32_to_cpu(cp->sit_ver_bitmap_bytesize);
/* get sit validity bitmap */
info->sit_bmp = malloc(bmp_size);
if(!info->sit_bmp) {
SLOGE("Out of memory!");
goto error;
}
info->sit_bmp_size = bmp_size;
if (read_structure(fd, info->cp_valid_cp_blkaddr * F2FS_BLKSIZE
+ offsetof(struct f2fs_checkpoint, sit_nat_version_bitmap),
info->sit_bmp, bmp_size)) {
SLOGE("Error getting SIT validity bitmap");
goto error;
}
if (gather_sit_info(fd , info)) {
SLOGE("Error getting SIT information");
goto error;
}
if (get_sit_summary(fd, info, cp)) {
SLOGE("Error getting SIT entries in summary area");
goto error;
}
dbg_print_info_struct(info);
return info;
error:
free(sb);
free(cp);
free_f2fs_info(info);
return NULL;
}
void free_f2fs_info(struct f2fs_info *info)
{
if (info) {
free(info->sit_blocks);
info->sit_blocks = NULL;
free(info->sit_bmp);
info->sit_bmp = NULL;
free(info->sit_sums);
info->sit_sums = NULL;
}
free(info);
}
u64 get_num_blocks_used(struct f2fs_info *info)
{
return info->main_blkaddr + info->total_user_used;
}
int f2fs_test_bit(unsigned int nr, const char *p)
{
int mask;
char *addr = (char *)p;
addr += (nr >> 3);
mask = 1 << (7 - (nr & 0x07));
return (mask & *addr) != 0;
}
int run_on_used_blocks(u64 startblock, struct f2fs_info *info, int (*func)(u64 pos, void *data), void *data) {
struct f2fs_sit_block sit_block_cache;
struct f2fs_sit_entry * sit_entry;
u64 sit_block_num_cur = 0, segnum = 0, block_offset;
u64 block;
unsigned int used, found, started = 0, i;
for (block=startblock; block<info->total_blocks; block++) {
/* TODO: Save only relevant portions of metadata */
if (block < info->main_blkaddr) {
if (func(block, data)) {
SLOGI("func error");
return -1;
}
} else {
/* Main Section */
segnum = (block - info->main_blkaddr)/info->blocks_per_segment;
/* check the SIT entries in the journal */
found = 0;
for(i = 0; i < le16_to_cpu(info->sit_sums->n_sits); i++) {
if (le32_to_cpu(segno_in_journal(info->sit_sums, i)) == segnum) {
sit_entry = &sit_in_journal(info->sit_sums, i);
found = 1;
break;
}
}
/* get SIT entry from SIT section */
if (!found) {
sit_block_num_cur = segnum/SIT_ENTRY_PER_BLOCK;
sit_entry = &info->sit_blocks[sit_block_num_cur].entries[segnum % SIT_ENTRY_PER_BLOCK];
}
block_offset = (block - info->main_blkaddr) % info->blocks_per_segment;
used = f2fs_test_bit(block_offset, (char *)sit_entry->valid_map);
if(used)
if (func(block, data))
return -1;
}
}
return 0;
}
struct privdata
{
int count;
int infd;
int outfd;
char* buf;
char *zbuf;
int done;
struct f2fs_info *info;
};
/*
* This is a simple test program. It performs a block to block copy of a
* filesystem, replacing blocks identified as unused with 0's.
*/
int copy_used(u64 pos, void *data)
{
struct privdata *d = data;
char *buf;
int pdone = (pos*100)/d->info->total_blocks;
if (pdone > d->done) {
d->done = pdone;
printf("Done with %d percent\n", d->done);
}
d->count++;
buf = d->buf;
if(read_structure_blk(d->infd, (unsigned long long)pos, d->buf, 1)) {
printf("Error reading!!!\n");
return -1;
}
off64_t ret;
ret = lseek64(d->outfd, pos*F2FS_BLKSIZE, SEEK_SET);
if (ret < 0) {
SLOGE("failed to seek\n");
return ret;
}
ret = write(d->outfd, d->buf, F2FS_BLKSIZE);
if (ret < 0) {
SLOGE("failed to write\n");
return ret;
}
if (ret != F2FS_BLKSIZE) {
SLOGE("failed to read all\n");
return -1;
}
return 0;
}
int main(int argc, char **argv)
{
if (argc != 3)
printf("Usage: %s fs_file_in fs_file_out\n", argv[0]);
char *in = argv[1];
char *out = argv[2];
int infd, outfd;
if ((infd = open(in, O_RDONLY)) < 0) {
SLOGE("Cannot open device");
return 0;
}
if ((outfd = open(out, O_WRONLY|O_CREAT, S_IRUSR | S_IWUSR)) < 0) {
SLOGE("Cannot open output");
return 0;
}
struct privdata d;
d.infd = infd;
d.outfd = outfd;
d.count = 0;
struct f2fs_info *info = generate_f2fs_info(infd);
if (!info) {
printf("Failed to generate info!");
return -1;
}
char *buf = malloc(F2FS_BLKSIZE);
char *zbuf = calloc(1, F2FS_BLKSIZE);
d.buf = buf;
d.zbuf = zbuf;
d.done = 0;
d.info = info;
int expected_count = get_num_blocks_used(info);
run_on_used_blocks(0, info, &copy_used, &d);
printf("Copied %d blocks. Expected to copy %d\n", d.count, expected_count);
ftruncate64(outfd, info->total_blocks * F2FS_BLKSIZE);
free_f2fs_info(info);
free(buf);
free(zbuf);
close(infd);
close(outfd);
return 0;
}