blob: a451d5c066b3c35c964df7ab1293b9e89a63d15e [file] [log] [blame]
/*
* Copyright 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "memtrack.h"
#include <ctype.h>
#include <dirent.h>
#include <fcntl.h>
#include <limits.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <cutils/log.h>
#include <algorithm>
#include <vector>
#ifdef LOG_TAG
#undef LOG_TAG
#endif
#define LOG_TAG "MemTracker"
FileData::FileData(char *filename, char *buffer, size_t buffer_len)
: data_(buffer), max_(buffer_len), cur_idx_(0), len_(0),
read_complete_(false) {
fd_ = open(filename, O_RDONLY);
if (fd_ < 0) {
read_complete_ = true;
}
}
FileData::~FileData() {
if (fd_ >= 0) {
close(fd_);
}
}
bool FileData::isAvail(size_t bytes_needed) {
if (cur_idx_ + bytes_needed < len_) {
return true;
}
if (read_complete_) {
return false;
}
if (cur_idx_ != len_) {
// Copy the leftover to the front of the buffer.
len_ = len_ - cur_idx_;
memcpy(data_, data_ + cur_idx_, len_);
}
ssize_t bytes;
cur_idx_ = 0;
while (cur_idx_ + bytes_needed >= len_) {
bytes = read(fd_, data_ + len_, max_ - len_);
if (bytes == 0 || bytes == -1) {
read_complete_;
break;
}
len_ += bytes;
}
return cur_idx_ + bytes_needed < len_;
}
bool FileData::getPss(size_t *pss) {
size_t value;
while (true) {
if (!isAvail(4)) {
return false;
}
if (data_[cur_idx_] != 'P' || data_[cur_idx_+1] != 's' ||
data_[cur_idx_+2] != 's' || data_[cur_idx_+3] != ':') {
// Consume the rest of the line.
while (isAvail(1) && data_[cur_idx_++] != '\n');
} else {
cur_idx_ += 4;
while (isAvail(1) && isspace(data_[cur_idx_])) {
cur_idx_++;
}
value = 0;
while (isAvail(1) && isdigit(data_[cur_idx_])) {
value = value * 10 + data_[cur_idx_] - '0';
cur_idx_++;
}
*pss = value;
// Consume the rest of the line.
while (isAvail(1) && data_[cur_idx_++] != '\n');
return true;
}
}
}
const char *ProcessInfo::kProc = "/proc/";
const char *ProcessInfo::kCmdline = "/cmdline";
const char *ProcessInfo::kSmaps = "/smaps";
ProcessInfo::ProcessInfo() {
memcpy(proc_file_, kProc, kProcLen);
}
ProcessInfo::~ProcessInfo() {
}
bool ProcessInfo::getInformation(int pid, char *pid_str, size_t pid_str_len) {
memcpy(proc_file_ + kProcLen, pid_str, pid_str_len);
memcpy(proc_file_ + kProcLen + pid_str_len, kCmdline, kCmdlineLen);
// Read the cmdline for the process.
int fd = open(proc_file_, O_RDONLY);
if (fd < 0) {
return false;
}
ssize_t bytes = read(fd, cmd_name_, sizeof(cmd_name_));
close(fd);
if (bytes == -1 || bytes == 0) {
return false;
}
memcpy(proc_file_ + kProcLen + pid_str_len, kSmaps, kSmapsLen);
FileData smaps(proc_file_, buffer_, sizeof(buffer_));
cur_process_info_t process_info;
size_t pss_kb;
process_info.pss_kb = 0;
while (smaps.getPss(&pss_kb)) {
process_info.pss_kb += pss_kb;
}
if (cur_.count(cmd_name_) == 0) {
cur_[cmd_name_] = process_info;
} else {
cur_[cmd_name_].pss_kb += process_info.pss_kb;
}
cur_[cmd_name_].pids.push_back(pid);
return true;
}
void ProcessInfo::scan() {
DIR *proc_dir = opendir(kProc);
if (proc_dir == NULL) {
perror("Cannot open directory.\n");
exit(1);
}
// Clear any current pids.
for (processes_t::iterator it = all_.begin(); it != all_.end(); ++it) {
it->second.pids.clear();
}
struct dirent *dir_data;
int len;
bool is_pid;
size_t pid;
cur_.clear();
while ((dir_data = readdir(proc_dir))) {
// Check if the directory entry represents a pid.
len = strlen(dir_data->d_name);
is_pid = true;
pid = 0;
for (int i = 0; i < len; i++) {
if (!isdigit(dir_data->d_name[i])) {
is_pid = false;
break;
}
pid = pid * 10 + dir_data->d_name[i] - '0';
}
if (is_pid) {
getInformation(pid, dir_data->d_name, len);
}
}
closedir(proc_dir);
// Loop through the current processes and add them into our real list.
for (cur_processes_t::const_iterator it = cur_.begin();
it != cur_.end(); ++it) {
if (all_.count(it->first) == 0) {
// Initialize all of the variables.
all_[it->first].num_samples = 0;
all_[it->first].name = it->first;
all_[it->first].avg_pss_kb = 0;
all_[it->first].min_pss_kb = 0;
all_[it->first].max_pss_kb = 0;
}
if (it->second.pids.size() > all_[it->first].max_num_pids) {
all_[it->first].max_num_pids = it->second.pids.size();
}
all_[it->first].pids = it->second.pids;
if (it->second.pss_kb > all_[it->first].max_pss_kb) {
all_[it->first].max_pss_kb = it->second.pss_kb;
}
if (all_[it->first].min_pss_kb == 0 ||
it->second.pss_kb < all_[it->first].min_pss_kb) {
all_[it->first].min_pss_kb = it->second.pss_kb;
}
all_[it->first].last_pss_kb = it->second.pss_kb;
computeAvg(&all_[it->first].avg_pss_kb, it->second.pss_kb,
all_[it->first].num_samples);
all_[it->first].num_samples++;
}
}
bool comparePss(const process_info_t *first, const process_info_t *second) {
return first->max_pss_kb > second->max_pss_kb;
}
void ProcessInfo::dumpToLog() {
list_.clear();
for (processes_t::const_iterator it = all_.begin(); it != all_.end(); ++it) {
list_.push_back(&it->second);
}
// Now sort the list.
std::sort(list_.begin(), list_.end(), comparePss);
ALOGI("Dumping process list");
for (std::vector<const process_info_t *>::const_iterator it = list_.begin();
it != list_.end(); ++it) {
ALOGI(" Name: %s", (*it)->name.c_str());
ALOGI(" Max running processes: %d", (*it)->max_num_pids);
if ((*it)->pids.size() > 0) {
ALOGI(" Currently running pids:");
for (std::vector<int>::const_iterator pid_it = (*it)->pids.begin();
pid_it != (*it)->pids.end(); ++pid_it) {
ALOGI(" %d", *pid_it);
}
}
ALOGI(" Min PSS %0.4fM", (*it)->min_pss_kb/1024.0);
ALOGI(" Avg PSS %0.4fM", (*it)->avg_pss_kb/1024.0);
ALOGI(" Max PSS %0.4fM", (*it)->max_pss_kb/1024.0);
ALOGI(" Last PSS %0.4fM", (*it)->last_pss_kb/1024.0);
}
}
void usage() {
printf("Usage: memtrack [--verbose | --quiet] [--scan_delay TIME_SECS]\n");
printf(" --scan_delay TIME_SECS\n");
printf(" The amount of delay in seconds between scans.\n");
printf(" --verbose\n");
printf(" Print information about the scans to stdout only.\n");
printf(" --quiet\n");
printf(" Nothing will be printed to stdout.\n");
printf(" All scan data is dumped to the android log using the tag %s\n",
LOG_TAG);
}
int SignalReceived = 0;
int SignalsToHandle[] = {
SIGTSTP,
SIGINT,
SIGHUP,
SIGPIPE,
SIGUSR1,
};
void handleSignal(int signo) {
if (SignalReceived == 0) {
SignalReceived = signo;
}
}
int main(int argc, char **argv) {
if (geteuid() != 0) {
printf("Must be run as root.\n");
exit(1);
}
bool verbose = false;
bool quiet = false;
unsigned int scan_delay_sec = DEFAULT_SLEEP_DELAY_SECONDS;
for (int i = 1; i < argc; i++) {
if (strcmp(argv[i], "--verbose") == 0) {
verbose = true;
} else if (strcmp(argv[i], "--quiet") == 0) {
quiet = true;
} else if (strcmp(argv[i], "--scan_delay") == 0) {
if (i+1 == argc) {
printf("The %s options requires a single argument.\n", argv[i]);
usage();
exit(1);
}
scan_delay_sec = atoi(argv[++i]);
} else {
printf("Unknown option %s\n", argv[i]);
usage();
exit(1);
}
}
if (quiet && verbose) {
printf("Both --quiet and --verbose cannot be specified.\n");
usage();
exit(1);
}
// Set up the signal handlers.
for (size_t i = 0; i < sizeof(SignalsToHandle)/sizeof(int); i++) {
if (signal(SignalsToHandle[i], handleSignal) == SIG_ERR) {
printf("Unable to handle signal %d\n", SignalsToHandle[i]);
exit(1);
}
}
ProcessInfo proc_info;
if (!quiet) {
printf("Hit Ctrl-Z or send SIGUSR1 to pid %d to print the current list of\n",
getpid());
printf("processes.\n");
printf("Hit Ctrl-C to print the list of processes and terminate.\n");
}
struct timespec t;
unsigned long long nsecs;
while (true) {
if (verbose) {
memset(&t, 0, sizeof(t));
clock_gettime(CLOCK_MONOTONIC, &t);
nsecs = (unsigned long long)t.tv_sec*NS_PER_SEC + t.tv_nsec;
}
proc_info.scan();
if (verbose) {
memset(&t, 0, sizeof(t));
clock_gettime(CLOCK_MONOTONIC, &t);
nsecs = ((unsigned long long)t.tv_sec*NS_PER_SEC + t.tv_nsec) - nsecs;
printf("Scan Time %0.4f\n", ((double)nsecs)/NS_PER_SEC);
}
if (SignalReceived != 0) {
proc_info.dumpToLog();
if (SignalReceived != SIGUSR1 && SignalReceived != SIGTSTP) {
if (!quiet) {
printf("Terminating...\n");
}
exit(1);
}
SignalReceived = 0;
}
sleep(scan_delay_sec);
}
}