Christopher Ferris | 82ac1af | 2013-02-15 12:27:58 -0800 | [diff] [blame^] | 1 | /* |
| 2 | ** Copyright 2010 The Android Open Source Project |
| 3 | ** |
| 4 | ** Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | ** you may not use this file except in compliance with the License. |
| 6 | ** You may obtain a copy of the License at |
| 7 | ** |
| 8 | ** http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | ** |
| 10 | ** Unless required by applicable law or agreed to in writing, software |
| 11 | ** distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | ** See the License for the specific language governing permissions and |
| 14 | ** limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | /* |
| 18 | * Micro-benchmarking of sleep/cpu speed/memcpy/memset/memory reads. |
| 19 | */ |
| 20 | |
| 21 | #include <stdio.h> |
| 22 | #include <stdlib.h> |
| 23 | #include <ctype.h> |
| 24 | #include <math.h> |
| 25 | #include <sched.h> |
| 26 | #include <sys/resource.h> |
| 27 | #include <time.h> |
| 28 | #include <unistd.h> |
| 29 | |
| 30 | // The default size of data that will be manipulated in each iteration of |
| 31 | // a memory benchmark. Can be modified with the --data_size option. |
| 32 | #define DEFAULT_DATA_SIZE 1000000000 |
| 33 | |
| 34 | // Number of nanoseconds in a second. |
| 35 | #define NS_PER_SEC 1000000000 |
| 36 | |
| 37 | // The maximum number of arguments that a benchmark will accept. |
| 38 | #define MAX_ARGS 2 |
| 39 | |
| 40 | // Use macros to compute values to try and avoid disturbing memory as much |
| 41 | // as possible after each iteration. |
| 42 | #define COMPUTE_AVERAGE_KB(avg_kb, bytes, time_ns) \ |
| 43 | avg_kb = ((bytes) / 1024.0) / ((double)(time_ns) / NS_PER_SEC); |
| 44 | |
| 45 | #define COMPUTE_RUNNING(avg, running_avg, square_avg, cur_idx) \ |
| 46 | running_avg = ((running_avg) / ((cur_idx) + 1)) * (cur_idx) + (avg) / ((cur_idx) + 1); \ |
| 47 | square_avg = ((square_avg) / ((cur_idx) + 1)) * (cur_idx) + ((avg) / ((cur_idx) + 1)) * (avg); |
| 48 | |
| 49 | #define GET_STD_DEV(running_avg, square_avg) \ |
| 50 | sqrt((square_avg) - (running_avg) * (running_avg)) |
| 51 | |
| 52 | // Contains information about benchmark options. |
| 53 | typedef struct { |
| 54 | bool print_average; |
| 55 | bool print_each_iter; |
| 56 | |
| 57 | int dst_align; |
| 58 | int src_align; |
| 59 | |
| 60 | int cpu_to_lock; |
| 61 | |
| 62 | int data_size; |
| 63 | |
| 64 | int args[MAX_ARGS]; |
| 65 | int num_args; |
| 66 | } command_data_t; |
| 67 | |
| 68 | // Struct that contains a mapping of benchmark name to benchmark function. |
| 69 | typedef struct { |
| 70 | const char *name; |
| 71 | int (*ptr)(const command_data_t &cmd_data); |
| 72 | } function_t; |
| 73 | |
| 74 | // Get the current time in nanoseconds. |
| 75 | uint64_t nanoTime() { |
| 76 | struct timespec t; |
| 77 | |
| 78 | t.tv_sec = t.tv_nsec = 0; |
| 79 | clock_gettime(CLOCK_MONOTONIC, &t); |
| 80 | return static_cast<uint64_t>(t.tv_sec) * NS_PER_SEC + t.tv_nsec; |
| 81 | } |
| 82 | |
| 83 | // Allocate memory with a specific alignment and return that pointer. |
| 84 | // This function assumes an alignment value that is a power of 2. |
| 85 | // If the alignment is 0, then use the pointer returned by malloc. |
| 86 | uint8_t *allocateAlignedMemory(size_t size, int alignment) { |
| 87 | uint64_t ptr = reinterpret_cast<uint64_t>(malloc(size + 2 * alignment)); |
| 88 | if (!ptr) |
| 89 | return NULL; |
| 90 | if (alignment > 0) { |
| 91 | // When setting the alignment, set it to exactly the alignment chosen. |
| 92 | // The pointer returned will be guaranteed not to be aligned to anything |
| 93 | // more than that. |
| 94 | ptr += alignment - (ptr & (alignment - 1)); |
| 95 | ptr |= alignment; |
| 96 | } |
| 97 | |
| 98 | return reinterpret_cast<uint8_t*>(ptr); |
| 99 | } |
| 100 | |
| 101 | int benchmarkSleep(const command_data_t &cmd_data) { |
| 102 | uint64_t time_ns; |
| 103 | |
| 104 | int delay = cmd_data.args[0]; |
| 105 | int iters = cmd_data.args[1]; |
| 106 | bool print_each_iter = cmd_data.print_each_iter; |
| 107 | bool print_average = cmd_data.print_average; |
| 108 | double avg, running_avg = 0.0, square_avg = 0.0; |
| 109 | for (int i = 0; iters == -1 || i < iters; i++) { |
| 110 | time_ns = nanoTime(); |
| 111 | sleep(delay); |
| 112 | time_ns = nanoTime() - time_ns; |
| 113 | |
| 114 | avg = (double)time_ns / NS_PER_SEC; |
| 115 | |
| 116 | if (print_average) { |
| 117 | COMPUTE_RUNNING(avg, running_avg, square_avg, i); |
| 118 | } |
| 119 | |
| 120 | if (print_each_iter) { |
| 121 | printf("sleep(%d) took %.06f seconds\n", delay, avg); |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | if (print_average) { |
| 126 | printf(" sleep(%d) average %.06f seconds std dev %f\n", delay, |
| 127 | running_avg, GET_STD_DEV(running_avg, square_avg)); |
| 128 | } |
| 129 | |
| 130 | return 0; |
| 131 | } |
| 132 | |
| 133 | int benchmarkCpu(const command_data_t &cmd_data) { |
| 134 | // Use volatile so that the loop is not optimized away by the compiler. |
| 135 | volatile int cpu_foo; |
| 136 | |
| 137 | uint64_t time_ns; |
| 138 | int iters = cmd_data.args[1]; |
| 139 | bool print_each_iter = cmd_data.print_each_iter; |
| 140 | bool print_average = cmd_data.print_average; |
| 141 | double avg, running_avg = 0.0, square_avg = 0.0; |
| 142 | for (int i = 0; iters == -1 || i < iters; i++) { |
| 143 | time_ns = nanoTime(); |
| 144 | for (cpu_foo = 0; cpu_foo < 100000000; cpu_foo++); |
| 145 | time_ns = nanoTime() - time_ns; |
| 146 | |
| 147 | avg = (double)time_ns / NS_PER_SEC; |
| 148 | |
| 149 | if (print_average) { |
| 150 | COMPUTE_RUNNING(avg, running_avg, square_avg, i); |
| 151 | } |
| 152 | |
| 153 | if (print_each_iter) { |
| 154 | printf("cpu took %.06f seconds\n", avg); |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | if (print_average) { |
| 159 | printf(" cpu average %.06f seconds std dev %f\n", |
| 160 | running_avg, GET_STD_DEV(running_avg, square_avg)); |
| 161 | } |
| 162 | |
| 163 | return 0; |
| 164 | } |
| 165 | |
| 166 | int benchmarkMemset(const command_data_t &cmd_data) { |
| 167 | int size = cmd_data.args[0]; |
| 168 | int iters = cmd_data.args[1]; |
| 169 | |
| 170 | uint8_t *dst = allocateAlignedMemory(size, cmd_data.dst_align); |
| 171 | if (!dst) |
| 172 | return -1; |
| 173 | |
| 174 | double avg_kb, running_avg_kb = 0.0, square_avg_kb = 0.0; |
| 175 | uint64_t time_ns; |
| 176 | int j; |
| 177 | bool print_average = cmd_data.print_average; |
| 178 | bool print_each_iter = cmd_data.print_each_iter; |
| 179 | int copies = cmd_data.data_size/size; |
| 180 | for (int i = 0; iters == -1 || i < iters; i++) { |
| 181 | time_ns = nanoTime(); |
| 182 | for (j = 0; j < copies; j++) |
| 183 | memset(dst, 0, size); |
| 184 | time_ns = nanoTime() - time_ns; |
| 185 | |
| 186 | // Compute in kb to avoid any overflows. |
| 187 | COMPUTE_AVERAGE_KB(avg_kb, copies * size, time_ns); |
| 188 | |
| 189 | if (print_average) { |
| 190 | COMPUTE_RUNNING(avg_kb, running_avg_kb, square_avg_kb, i); |
| 191 | } |
| 192 | |
| 193 | if (print_each_iter) { |
| 194 | printf("memset %dx%d bytes took %.06f seconds (%f MB/s)\n", |
| 195 | copies, size, (double)time_ns / NS_PER_SEC, avg_kb / 1024.0); |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | if (print_average) { |
| 200 | printf(" memset %dx%d bytes average %.2f MB/s std dev %.4f\n", |
| 201 | copies, size, running_avg_kb / 1024.0, |
| 202 | GET_STD_DEV(running_avg_kb, square_avg_kb) / 1024.0); |
| 203 | } |
| 204 | return 0; |
| 205 | } |
| 206 | |
| 207 | int benchmarkMemcpy(const command_data_t &cmd_data) { |
| 208 | int size = cmd_data.args[0]; |
| 209 | int iters = cmd_data.args[1]; |
| 210 | |
| 211 | uint8_t *src = allocateAlignedMemory(size, cmd_data.src_align); |
| 212 | if (!src) |
| 213 | return -1; |
| 214 | uint8_t *dst = allocateAlignedMemory(size, cmd_data.dst_align); |
| 215 | if (!dst) |
| 216 | return -1; |
| 217 | |
| 218 | uint64_t time_ns; |
| 219 | double avg_kb, running_avg_kb = 0.0, square_avg_kb = 0.0; |
| 220 | int j; |
| 221 | bool print_average = cmd_data.print_average; |
| 222 | bool print_each_iter = cmd_data.print_each_iter; |
| 223 | int copies = cmd_data.data_size / size; |
| 224 | for (int i = 0; iters == -1 || i < iters; i++) { |
| 225 | time_ns = nanoTime(); |
| 226 | for (j = 0; j < copies; j++) |
| 227 | memcpy(dst, src, size); |
| 228 | time_ns = nanoTime() - time_ns; |
| 229 | |
| 230 | // Compute in kb to avoid any overflows. |
| 231 | COMPUTE_AVERAGE_KB(avg_kb, copies * size, time_ns); |
| 232 | |
| 233 | if (print_average) { |
| 234 | COMPUTE_RUNNING(avg_kb, running_avg_kb, square_avg_kb, i); |
| 235 | } |
| 236 | |
| 237 | if (print_each_iter) { |
| 238 | printf("memcpy %dx%d bytes took %.06f seconds (%f MB/s)\n", |
| 239 | copies, size, (double)time_ns / NS_PER_SEC, avg_kb / 1024.0); |
| 240 | } |
| 241 | } |
| 242 | if (print_average) { |
| 243 | printf(" memcpy %dx%d bytes average %.2f MB/s std dev %.4f\n", |
| 244 | copies, size, running_avg_kb/1024.0, |
| 245 | GET_STD_DEV(running_avg_kb, square_avg_kb) / 1024.0); |
| 246 | } |
| 247 | return 0; |
| 248 | } |
| 249 | |
| 250 | int benchmarkMemread(const command_data_t &cmd_data) { |
| 251 | int size = cmd_data.args[0]; |
| 252 | int iters = cmd_data.args[1]; |
| 253 | |
| 254 | int *src = reinterpret_cast<int*>(malloc(size)); |
| 255 | if (!src) |
| 256 | return -1; |
| 257 | |
| 258 | // Use volatile so the compiler does not optimize away the reads. |
| 259 | volatile int foo; |
| 260 | uint64_t time_ns; |
| 261 | int j, k; |
| 262 | double avg_kb, running_avg_kb = 0.0, square_avg_kb = 0.0; |
| 263 | bool print_average = cmd_data.print_average; |
| 264 | bool print_each_iter = cmd_data.print_each_iter; |
| 265 | int c = cmd_data.data_size / size; |
| 266 | for (int i = 0; iters == -1 || i < iters; i++) { |
| 267 | time_ns = nanoTime(); |
| 268 | for (j = 0; j < c; j++) |
| 269 | for (k = 0; k < size/4; k++) |
| 270 | foo = src[k]; |
| 271 | time_ns = nanoTime() - time_ns; |
| 272 | |
| 273 | // Compute in kb to avoid any overflows. |
| 274 | COMPUTE_AVERAGE_KB(avg_kb, c * size, time_ns); |
| 275 | |
| 276 | if (print_average) { |
| 277 | COMPUTE_RUNNING(avg_kb, running_avg_kb, square_avg_kb, i); |
| 278 | } |
| 279 | |
| 280 | if (print_each_iter) { |
| 281 | printf("read %dx%d bytes took %.06f seconds (%f MB/s)\n", |
| 282 | c, size, (double)time_ns / NS_PER_SEC, avg_kb / 1024.0); |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | if (print_average) { |
| 287 | printf(" read %dx%d bytes average %.2f MB/s std dev %.4f\n", |
| 288 | c, size, running_avg_kb/1024.0, |
| 289 | GET_STD_DEV(running_avg_kb, square_avg_kb) / 1024.0); |
| 290 | } |
| 291 | |
| 292 | return 0; |
| 293 | } |
| 294 | |
| 295 | // Create the mapping structure. |
| 296 | function_t function_table[] = { |
| 297 | { "sleep", benchmarkSleep }, |
| 298 | { "cpu", benchmarkCpu }, |
| 299 | { "memset", benchmarkMemset }, |
| 300 | { "memcpy", benchmarkMemcpy }, |
| 301 | { "memread", benchmarkMemread }, |
| 302 | { NULL, NULL } |
| 303 | }; |
| 304 | |
| 305 | void usage() { |
| 306 | printf("Usage:\n"); |
| 307 | printf(" micro_bench [--data_size DATA_BYTES] [--print_average]\n"); |
| 308 | printf(" [--no_print_each_iter] [--lock_to_cpu CORE]\n"); |
| 309 | printf(" --data_size DATA_BYTES\n"); |
| 310 | printf(" For the data benchmarks (memcpy/memset/memread) the approximate\n"); |
| 311 | printf(" size of data, in bytes, that will be manipulated in each iteration.\n"); |
| 312 | printf(" --print_average\n"); |
| 313 | printf(" Print the average and standard deviation of all iterations.\n"); |
| 314 | printf(" --no_print_each_iter\n"); |
| 315 | printf(" Do not print any values in each iteration.\n"); |
| 316 | printf(" --lock_to_cpu CORE\n"); |
| 317 | printf(" Lock to the specified CORE. The default is to use the last core found.\n"); |
| 318 | printf(" ITERS\n"); |
| 319 | printf(" The number of iterations to execute each benchmark. If not\n"); |
| 320 | printf(" passed in then run forever.\n"); |
| 321 | printf(" micro_bench sleep TIME_TO_SLEEP [ITERS]\n"); |
| 322 | printf(" TIME_TO_SLEEP\n"); |
| 323 | printf(" The time in seconds to sleep.\n"); |
| 324 | printf(" micro_bench cpu UNUSED [ITERS]\n"); |
| 325 | printf(" micro_bench [--dst_align ALIGN] memset NUM_BYTES [ITERS]\n"); |
| 326 | printf(" --dst_align ALIGN\n"); |
| 327 | printf(" Align the memset destination pointer to ALIGN. The default is to use the\n"); |
| 328 | printf(" value returned by malloc.\n"); |
| 329 | printf(" micro_bench [--src_align ALIGN] [--dst_align ALIGN] memcpy NUM_BYTES [ITERS]\n"); |
| 330 | printf(" --src_align ALIGN\n"); |
| 331 | printf(" Align the memcpy source pointer to ALIGN. The default is to use the\n"); |
| 332 | printf(" value returned by malloc.\n"); |
| 333 | printf(" --dst_align ALIGN\n"); |
| 334 | printf(" Align the memcpy destination pointer to ALIGN. The default is to use the\n"); |
| 335 | printf(" value returned by malloc.\n"); |
| 336 | printf(" micro_bench memread NUM_BYTES [ITERS]\n"); |
| 337 | } |
| 338 | |
| 339 | function_t *processOptions(int argc, char **argv, command_data_t *cmd_data) { |
| 340 | function_t *command = NULL; |
| 341 | |
| 342 | // Initialize the command_flags. |
| 343 | cmd_data->print_average = false; |
| 344 | cmd_data->print_each_iter = true; |
| 345 | cmd_data->dst_align = 0; |
| 346 | cmd_data->src_align = 0; |
| 347 | cmd_data->num_args = 0; |
| 348 | cmd_data->cpu_to_lock = -1; |
| 349 | cmd_data->data_size = DEFAULT_DATA_SIZE; |
| 350 | for (int i = 0; i < MAX_ARGS; i++) { |
| 351 | cmd_data->args[i] = -1; |
| 352 | } |
| 353 | |
| 354 | for (int i = 1; i < argc; i++) { |
| 355 | if (argv[i][0] == '-') { |
| 356 | int *save_value = NULL; |
| 357 | if (strcmp(argv[i], "--print_average") == 0) { |
| 358 | cmd_data->print_average = true; |
| 359 | } else if (strcmp(argv[i], "--no_print_each_iter") == 0) { |
| 360 | cmd_data->print_each_iter = false; |
| 361 | } else if (strcmp(argv[i], "--dst_align") == 0) { |
| 362 | save_value = &cmd_data->dst_align; |
| 363 | } else if (strcmp(argv[i], "--src_align") == 0) { |
| 364 | save_value = &cmd_data->src_align; |
| 365 | } else if (strcmp(argv[i], "--lock_to_cpu") == 0) { |
| 366 | save_value = &cmd_data->cpu_to_lock; |
| 367 | } else if (strcmp(argv[i], "--data_size") == 0) { |
| 368 | save_value = &cmd_data->data_size; |
| 369 | } else { |
| 370 | printf("Unknown option %s\n", argv[i]); |
| 371 | return NULL; |
| 372 | } |
| 373 | if (save_value) { |
| 374 | // Checking both characters without a strlen() call should be |
| 375 | // safe since as long as the argument exists, one character will |
| 376 | // be present (\0). And if the first character is '-', then |
| 377 | // there will always be a second character (\0 again). |
| 378 | if (i == argc - 1 || (argv[i + 1][0] == '-' && !isdigit(argv[i + 1][1]))) { |
| 379 | printf("The option %s requires one argument.\n", |
| 380 | argv[i]); |
| 381 | return NULL; |
| 382 | } |
| 383 | *save_value = atoi(argv[++i]); |
| 384 | } |
| 385 | } else if (!command) { |
| 386 | for (function_t *function = function_table; function->name != NULL; function++) { |
| 387 | if (strcmp(argv[i], function->name) == 0) { |
| 388 | command = function; |
| 389 | break; |
| 390 | } |
| 391 | } |
| 392 | if (!command) { |
| 393 | printf("Uknown command %s\n", argv[i]); |
| 394 | return NULL; |
| 395 | } |
| 396 | } else if (cmd_data->num_args > MAX_ARGS) { |
| 397 | printf("More than %d number arguments passed in.\n", MAX_ARGS); |
| 398 | return NULL; |
| 399 | } else { |
| 400 | cmd_data->args[cmd_data->num_args++] = atoi(argv[i]); |
| 401 | } |
| 402 | } |
| 403 | |
| 404 | // Check the arguments passed in make sense. |
| 405 | if (cmd_data->num_args != 1 && cmd_data->num_args != 2) { |
| 406 | printf("Not enough arguments passed in.\n"); |
| 407 | return NULL; |
| 408 | } else if (cmd_data->dst_align < 0) { |
| 409 | printf("The --dst_align option must be greater than or equal to 0.\n"); |
| 410 | return NULL; |
| 411 | } else if (cmd_data->src_align < 0) { |
| 412 | printf("The --src_align option must be greater than or equal to 0.\n"); |
| 413 | return NULL; |
| 414 | } else if (cmd_data->data_size <= 0) { |
| 415 | printf("The --data_size option must be a positive number.\n"); |
| 416 | return NULL; |
| 417 | } else if ((cmd_data->dst_align & (cmd_data->dst_align - 1))) { |
| 418 | printf("The --dst_align option must be a power of 2.\n"); |
| 419 | return NULL; |
| 420 | } else if ((cmd_data->src_align & (cmd_data->src_align - 1))) { |
| 421 | printf("The --src_align option must be a power of 2.\n"); |
| 422 | return NULL; |
| 423 | } |
| 424 | |
| 425 | return command; |
| 426 | } |
| 427 | |
| 428 | bool raisePriorityAndLock(int cpu_to_lock) { |
| 429 | cpu_set_t cpuset; |
| 430 | |
| 431 | if (setpriority(PRIO_PROCESS, 0, -20)) { |
| 432 | perror("Unable to raise priority of process.\n"); |
| 433 | return false; |
| 434 | } |
| 435 | |
| 436 | CPU_ZERO(&cpuset); |
| 437 | if (sched_getaffinity(0, sizeof(cpuset), &cpuset) != 0) { |
| 438 | perror("sched_getaffinity failed"); |
| 439 | return false; |
| 440 | } |
| 441 | |
| 442 | if (cpu_to_lock < 0) { |
| 443 | // Lock to the last active core we find. |
| 444 | for (int i = 0; i < CPU_SETSIZE; i++) { |
| 445 | if (CPU_ISSET(i, &cpuset)) { |
| 446 | cpu_to_lock = i; |
| 447 | } |
| 448 | } |
| 449 | } else if (!CPU_ISSET(cpu_to_lock, &cpuset)) { |
| 450 | printf("Cpu %d does not exist.\n", cpu_to_lock); |
| 451 | return false; |
| 452 | } |
| 453 | |
| 454 | if (cpu_to_lock < 0) { |
| 455 | printf("Cannot find any valid cpu to lock.\n"); |
| 456 | return false; |
| 457 | } |
| 458 | |
| 459 | CPU_ZERO(&cpuset); |
| 460 | CPU_SET(cpu_to_lock, &cpuset); |
| 461 | if (sched_setaffinity(0, sizeof(cpuset), &cpuset) != 0) { |
| 462 | perror("sched_setaffinity failed"); |
| 463 | return false; |
| 464 | } |
| 465 | |
| 466 | return true; |
| 467 | } |
| 468 | |
| 469 | int main(int argc, char **argv) { |
| 470 | command_data_t cmd_data; |
| 471 | |
| 472 | function_t *command = processOptions(argc, argv, &cmd_data); |
| 473 | if (!command) { |
| 474 | usage(); |
| 475 | return -1; |
| 476 | } |
| 477 | |
| 478 | if (!raisePriorityAndLock(cmd_data.cpu_to_lock)) { |
| 479 | return -1; |
| 480 | } |
| 481 | |
| 482 | printf("%s\n", command->name); |
| 483 | return (*command->ptr)(cmd_data); |
| 484 | } |