blob: 32d75b2bddd1451d2b426c2d482f73f046e9430d [file] [log] [blame]
Eric Rowe987f27f2012-03-26 16:55:30 -07001/*
2 * Copyright (c) 2012, The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in
12 * the documentation and/or other materials provided with the
13 * distribution.
14 * * Neither the name of Google, Inc. nor the names of its contributors
15 * may be used to endorse or promote products derived from this
16 * software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
22 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
28 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32#include <stdio.h>
33#include <stdlib.h>
Elliott Hughes8678c6f2015-01-29 21:26:35 -080034#include <string.h>
Eric Rowe987f27f2012-03-26 16:55:30 -070035#include <unistd.h>
36
37#define MAX_BUF_SIZE 64
38
39struct freq_info {
40 unsigned freq;
41 long unsigned time;
42};
43
44struct cpu_info {
45 long unsigned utime, ntime, stime, itime, iowtime, irqtime, sirqtime;
46 struct freq_info *freqs;
47 int freq_count;
48};
49
50#define die(...) { fprintf(stderr, __VA_ARGS__); exit(EXIT_FAILURE); }
51
52static struct cpu_info old_total_cpu, new_total_cpu, *old_cpus, *new_cpus;
53static int cpu_count, delay, iterations;
54static char minimal, aggregate_freq_stats;
55
56static int get_cpu_count();
57static int get_cpu_count_from_file(char *filename);
58static long unsigned get_cpu_total_time(struct cpu_info *cpu);
59static int get_freq_scales_count(int cpu);
60static void print_stats();
61static void print_cpu_stats(char *label, struct cpu_info *new_cpu, struct cpu_info *old_cpu,
62 char print_freq);
63static void print_freq_stats(struct cpu_info *new_cpu, struct cpu_info *old_cpu);
64static void read_stats();
65static void read_freq_stats(int cpu);
66static char should_aggregate_freq_stats();
67static char should_print_freq_stats();
68static void usage(char *cmd);
69
70int main(int argc, char *argv[]) {
71 struct cpu_info *tmp_cpus, tmp_total_cpu;
72 int i, freq_count;
73
74 delay = 3;
75 iterations = -1;
76 minimal = 0;
77 aggregate_freq_stats = 0;
78
79 for (i = 0; i < argc; i++) {
80 if (!strcmp(argv[i], "-n")) {
81 if (i + 1 >= argc) {
82 fprintf(stderr, "Option -n expects an argument.\n");
83 usage(argv[0]);
84 exit(EXIT_FAILURE);
85 }
86 iterations = atoi(argv[++i]);
87 continue;
88 }
89 if (!strcmp(argv[i], "-d")) {
90 if (i + 1 >= argc) {
91 fprintf(stderr, "Option -d expects an argument.\n");
92 usage(argv[0]);
93 exit(EXIT_FAILURE);
94 }
95 delay = atoi(argv[++i]);
96 continue;
97 }
98 if (!strcmp(argv[i], "-m")) {
99 minimal = 1;
100 }
101 if (!strcmp(argv[i], "-h")) {
102 usage(argv[0]);
103 exit(EXIT_SUCCESS);
104 }
105 }
106
107 cpu_count = get_cpu_count();
108
109 old_cpus = malloc(sizeof(struct cpu_info) * cpu_count);
110 if (!old_cpus) die("Could not allocate struct cpu_info\n");
111 new_cpus = malloc(sizeof(struct cpu_info) * cpu_count);
112 if (!new_cpus) die("Could not allocate struct cpu_info\n");
113
114 for (i = 0; i < cpu_count; i++) {
115 old_cpus[i].freq_count = new_cpus[i].freq_count = get_freq_scales_count(i);
116 new_cpus[i].freqs = malloc(sizeof(struct freq_info) * new_cpus[i].freq_count);
117 if (!new_cpus[i].freqs) die("Could not allocate struct freq_info\n");
118 old_cpus[i].freqs = malloc(sizeof(struct freq_info) * old_cpus[i].freq_count);
119 if (!old_cpus[i].freqs) die("Could not allocate struct freq_info\n");
120 }
121
122 // Read stats without aggregating freq stats in the total cpu
123 read_stats();
124
125 aggregate_freq_stats = should_aggregate_freq_stats();
126 if (aggregate_freq_stats) {
127 old_total_cpu.freq_count = new_total_cpu.freq_count = new_cpus[0].freq_count;
128 new_total_cpu.freqs = malloc(sizeof(struct freq_info) * new_total_cpu.freq_count);
129 if (!new_total_cpu.freqs) die("Could not allocate struct freq_info\n");
130 old_total_cpu.freqs = malloc(sizeof(struct freq_info) * old_total_cpu.freq_count);
131 if (!old_total_cpu.freqs) die("Could not allocate struct freq_info\n");
132
133 // Read stats again with aggregating freq stats in the total cpu
134 read_stats();
135 }
136
137 while ((iterations == -1) || (iterations-- > 0)) {
138 // Swap new and old cpu buffers;
139 tmp_total_cpu = old_total_cpu;
140 old_total_cpu = new_total_cpu;
141 new_total_cpu = tmp_total_cpu;
142
143 tmp_cpus = old_cpus;
144 old_cpus = new_cpus;
145 new_cpus = tmp_cpus;
146
147 sleep(delay);
148 read_stats();
149 print_stats();
150 }
151
152 // Clean up
153 if (aggregate_freq_stats) {
154 free(new_total_cpu.freqs);
155 free(old_total_cpu.freqs);
156 }
157 for (i = 0; i < cpu_count; i++) {
158 free(new_cpus[i].freqs);
159 free(old_cpus[i].freqs);
160 }
161 free(new_cpus);
162 free(old_cpus);
163
164 return 0;
165}
166
167/*
168 * Get the number of CPUs of the system.
169 *
170 * Uses the two files /sys/devices/system/cpu/present and
171 * /sys/devices/system/cpu/online to determine the number of CPUs. Expects the
172 * format of both files to be either 0 or 0-N where N+1 is the number of CPUs.
173 *
174 * Exits if the present CPUs is not equal to the online CPUs
175 */
176static int get_cpu_count() {
177 int cpu_count = get_cpu_count_from_file("/sys/devices/system/cpu/present");
178 if (cpu_count != get_cpu_count_from_file("/sys/devices/system/cpu/online")) {
179 die("present cpus != online cpus\n");
180 }
181 return cpu_count;
182}
183
184/*
185 * Get the number of CPUs from a given filename.
186 */
187static int get_cpu_count_from_file(char *filename) {
188 FILE *file;
189 char line[MAX_BUF_SIZE];
190 int cpu_count;
191
192 file = fopen(filename, "r");
193 if (!file) die("Could not open %s\n", filename);
194 if (!fgets(line, MAX_BUF_SIZE, file)) die("Could not get %s contents\n", filename);
195 fclose(file);
196
197 if (strcmp(line, "0\n") == 0) {
198 return 1;
199 }
200
201 if (1 == sscanf(line, "0-%d\n", &cpu_count)) {
202 return cpu_count + 1;
203 }
204
205 die("Unexpected input in file %s (%s).\n", filename, line);
206 return -1;
207}
208
209/*
210 * Get the number of frequency states a given CPU can be scaled to.
211 */
212static int get_freq_scales_count(int cpu) {
213 FILE *file;
214 char filename[MAX_BUF_SIZE];
215 long unsigned freq;
216 int count = 0;
217
218 sprintf(filename, "/sys/devices/system/cpu/cpu%d/cpufreq/stats/time_in_state", cpu);
219 file = fopen(filename, "r");
220 if (!file) die("Could not open %s\n", filename);
221 do {
222 freq = 0;
223 fscanf(file, "%lu %*d\n", &freq);
224 if (freq) count++;
225 } while(freq);
226 fclose(file);
227
228 return count;
229}
230
231/*
232 * Read the CPU and frequency stats for all cpus.
233 */
234static void read_stats() {
235 FILE *file;
236 char scanline[MAX_BUF_SIZE];
237 int i;
238
239 file = fopen("/proc/stat", "r");
240 if (!file) die("Could not open /proc/stat.\n");
241 fscanf(file, "cpu %lu %lu %lu %lu %lu %lu %lu %*d %*d %*d\n",
242 &new_total_cpu.utime, &new_total_cpu.ntime, &new_total_cpu.stime, &new_total_cpu.itime,
243 &new_total_cpu.iowtime, &new_total_cpu.irqtime, &new_total_cpu.sirqtime);
244 if (aggregate_freq_stats) {
245 for (i = 0; i < new_total_cpu.freq_count; i++) {
246 new_total_cpu.freqs[i].time = 0;
247 }
248 }
249
250 for (i = 0; i < cpu_count; i++) {
251 sprintf(scanline, "cpu%d %%lu %%lu %%lu %%lu %%lu %%lu %%lu %%*d %%*d %%*d\n", i);
252 fscanf(file, scanline, &new_cpus[i].utime, &new_cpus[i].ntime, &new_cpus[i].stime,
253 &new_cpus[i].itime, &new_cpus[i].iowtime, &new_cpus[i].irqtime,
254 &new_cpus[i].sirqtime);
255 read_freq_stats(i);
256 }
257 fclose(file);
258}
259
260/*
261 * Read the frequency stats for a given cpu.
262 */
263static void read_freq_stats(int cpu) {
264 FILE *file;
265 char filename[MAX_BUF_SIZE];
266 int i;
267
268 sprintf(filename, "/sys/devices/system/cpu/cpu%d/cpufreq/stats/time_in_state", cpu);
269 file = fopen(filename, "r");
270 if (!file) die("Could not open %s\n", filename);
271 for (i = 0; i < new_cpus[cpu].freq_count; i++) {
272 fscanf(file, "%u %lu\n", &new_cpus[cpu].freqs[i].freq,
273 &new_cpus[cpu].freqs[i].time);
274 if (aggregate_freq_stats) {
275 new_total_cpu.freqs[i].freq = new_cpus[cpu].freqs[i].freq;
276 new_total_cpu.freqs[i].time += new_cpus[cpu].freqs[i].time;
277 }
278 }
279 fclose(file);
280}
281
282/*
283 * Get the sum of the cpu time from all categories.
284 */
285static long unsigned get_cpu_total_time(struct cpu_info *cpu) {
286 return (cpu->utime + cpu->ntime + cpu->stime + cpu->itime + cpu->iowtime + cpu->irqtime +
287 cpu->sirqtime);
288}
289
290/*
291 * Print the stats for all CPUs.
292 */
293static void print_stats() {
294 char label[8];
295 int i, j;
296 char print_freq;
297
298 print_freq = should_print_freq_stats();
299
300 print_cpu_stats("Total", &new_total_cpu, &old_total_cpu, 1);
301 for (i = 0; i < cpu_count; i++) {
302 sprintf(label, "cpu%d", i);
303 print_cpu_stats(label, &new_cpus[i], &old_cpus[i], print_freq);
304 }
305 printf("\n");
306}
307
308/*
309 * Print the stats for a single CPU.
310 */
311static void print_cpu_stats(char *label, struct cpu_info *new_cpu, struct cpu_info *old_cpu,
312 char print_freq) {
313 long int total_delta_time;
314
315 if (!minimal) {
316 total_delta_time = get_cpu_total_time(new_cpu) - get_cpu_total_time(old_cpu);
317 printf("%s: User %ld + Nice %ld + Sys %ld + Idle %ld + IOW %ld + IRQ %ld + SIRQ %ld = "
318 "%ld\n", label,
319 new_cpu->utime - old_cpu->utime,
320 new_cpu->ntime - old_cpu->ntime,
321 new_cpu->stime - old_cpu->stime,
322 new_cpu->itime - old_cpu->itime,
323 new_cpu->iowtime - old_cpu->iowtime,
324 new_cpu->irqtime - old_cpu->irqtime,
325 new_cpu->sirqtime - old_cpu->sirqtime,
326 total_delta_time);
327 if (print_freq) {
328 print_freq_stats(new_cpu, old_cpu);
329 }
330 } else {
331 printf("%s,%ld,%ld,%ld,%ld,%ld,%ld,%ld", label,
332 new_cpu->utime - old_cpu->utime,
333 new_cpu->ntime - old_cpu->ntime,
334 new_cpu->stime - old_cpu->stime,
335 new_cpu->itime - old_cpu->itime,
336 new_cpu->iowtime - old_cpu->iowtime,
337 new_cpu->irqtime - old_cpu->irqtime,
338 new_cpu->sirqtime - old_cpu->sirqtime);
339 print_freq_stats(new_cpu, old_cpu);
340 printf("\n");
341 }
342}
343
344/*
345 * Print the CPU stats for a single CPU.
346 */
347static void print_freq_stats(struct cpu_info *new_cpu, struct cpu_info *old_cpu) {
348 long int delta_time, total_delta_time;
349 int i;
350
351 if (new_cpu->freq_count > 0) {
352 if (!minimal) {
353 total_delta_time = 0;
354 printf(" ");
355 for (i = 0; i < new_cpu->freq_count; i++) {
356 delta_time = new_cpu->freqs[i].time - old_cpu->freqs[i].time;
357 total_delta_time += delta_time;
358 printf("%ukHz %ld", new_cpu->freqs[i].freq, delta_time);
359 if (i + 1 != new_cpu->freq_count) {
360 printf(" + \n ");
361 } else {
362 printf(" = ");
363 }
364 }
365 printf("%ld\n", total_delta_time);
366 } else {
367 for (i = 0; i < new_cpu->freq_count; i++) {
368 printf(",%u,%ld", new_cpu->freqs[i].freq,
369 new_cpu->freqs[i].time - old_cpu->freqs[i].time);
370 }
371 }
372 }
373}
374
375/*
376 * Determine if frequency stats should be printed.
377 *
378 * If the frequency stats are different between CPUs, the stats should be
379 * printed for each CPU, else only the aggregate frequency stats should be
380 * printed.
381 */
382static char should_print_freq_stats() {
383 int i, j;
384
385 for (i = 1; i < cpu_count; i++) {
386 for (j = 0; j < new_cpus[i].freq_count; j++) {
387 if (new_cpus[i].freqs[j].time - old_cpus[i].freqs[j].time !=
388 new_cpus[0].freqs[j].time - old_cpus[0].freqs[j].time) {
389 return 1;
390 }
391 }
392 }
393 return 0;
394}
395
396/*
397 * Determine if the frequency stats should be aggregated.
398 *
399 * Only aggregate the frequency stats in the total cpu stats if the frequencies
400 * reported by all CPUs are identical. Must be called after read_stats() has
401 * been called once.
402 */
403static char should_aggregate_freq_stats() {
404 int i, j;
405
406 for (i = 1; i < cpu_count; i++) {
407 if (new_cpus[i].freq_count != new_cpus[0].freq_count) {
408 return 0;
409 }
410 for (j = 0; j < new_cpus[i].freq_count; j++) {
411 if (new_cpus[i].freqs[j].freq != new_cpus[0].freqs[j].freq) {
412 return 0;
413 }
414 }
415 }
416
417 return 1;
418}
419
420/*
421 * Print the usage message.
422 */
423static void usage(char *cmd) {
424 fprintf(stderr, "Usage %s [ -n iterations ] [ -d delay ] [ -c cpu ] [ -m ] [ -h ]\n"
425 " -n num Updates to show before exiting.\n"
426 " -d num Seconds to wait between updates.\n"
427 " -m Display minimal output.\n"
428 " -h Display this help screen.\n",
429 cmd);
430}