blob: 45ad3d45b1691f4351572a08c44134ef94827710 [file] [log] [blame]
/*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <assert.h>
#include <string.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>
#include <openssl/err.h>
#include <openssl/sha.h>
#include <UniquePtr.h>
#include "google_keymaster.h"
#include "google_keymaster_utils.h"
#include "ae.h"
// We need placement new, but we don't want to pull in any standard C++ libs at the moment.
// Luckily, it's trivial to just implement it.
inline void* operator new(size_t /* size */, void* here) { return here; }
namespace keymaster {
const int NONCE_LENGTH = 12;
const int TAG_LENGTH = 128 / 8;
#define REQUIRED_ALIGNMENT_FOR_AES_OCB 16
GoogleKeymaster::GoogleKeymaster() {}
GoogleKeymaster::~GoogleKeymaster() {}
const int RSA_DEFAULT_KEY_SIZE = 2048;
const int RSA_DEFAULT_EXPONENT = 65537;
#define CHECK_ERR(err) \
if ((err) != OK) \
return err;
struct BIGNUM_Delete {
void operator()(BIGNUM* p) const { BN_free(p); }
};
typedef UniquePtr<BIGNUM, BIGNUM_Delete> Unique_BIGNUM;
struct RSA_Delete {
void operator()(RSA* p) const { RSA_free(p); }
};
typedef UniquePtr<RSA, RSA_Delete> Unique_RSA;
struct EVP_PKEY_Delete {
void operator()(EVP_PKEY* p) const { EVP_PKEY_free(p); }
};
typedef UniquePtr<EVP_PKEY, EVP_PKEY_Delete> Unique_EVP_PKEY;
struct AE_CTX_Delete {
void operator()(ae_ctx* ctx) const { ae_free(ctx); }
};
typedef UniquePtr<ae_ctx, AE_CTX_Delete> Unique_ae_ctx;
struct ByteArray_Delete {
void operator()(void* p) const { delete[] reinterpret_cast<uint8_t*>(p); }
};
// Context buffer used for AES OCB encryptions.
uint8_t aes_ocb_ctx_buf[896];
/**
* Many OpenSSL APIs take ownership of an argument on success but don't free the argument on
* failure. This means we need to tell our scoped pointers when we've transferred ownership, without
* triggering a warning by not using the result of release().
*/
template <typename T, typename Delete_T>
inline void release_because_ownership_transferred(UniquePtr<T, Delete_T>& p) {
T* val __attribute__((unused)) = p.release();
}
keymaster_algorithm_t supported_algorithms[] = {
KM_ALGORITHM_RSA,
};
template <typename T>
bool check_supported(keymaster_algorithm_t algorithm, SupportedResponse<T>* response) {
if (!array_contains(supported_algorithms, algorithm)) {
response->error = KM_ERROR_UNSUPPORTED_ALGORITHM;
return false;
}
return true;
}
void
GoogleKeymaster::SupportedAlgorithms(SupportedResponse<keymaster_algorithm_t>* response) const {
if (response == NULL)
return;
response->SetResults(supported_algorithms);
}
void
GoogleKeymaster::SupportedBlockModes(keymaster_algorithm_t algorithm,
SupportedResponse<keymaster_block_mode_t>* response) const {
if (response == NULL || !check_supported(algorithm, response))
return;
response->error = KM_ERROR_OK;
}
keymaster_padding_t rsa_supported_padding[] = {KM_PAD_NONE};
void
GoogleKeymaster::SupportedPaddingModes(keymaster_algorithm_t algorithm,
SupportedResponse<keymaster_padding_t>* response) const {
if (response == NULL || !check_supported(algorithm, response))
return;
response->error = KM_ERROR_OK;
switch (algorithm) {
case KM_ALGORITHM_RSA:
response->SetResults(rsa_supported_padding);
break;
default:
response->results_length = 0;
break;
}
}
keymaster_digest_t rsa_supported_digests[] = {KM_DIGEST_NONE};
void GoogleKeymaster::SupportedDigests(keymaster_algorithm_t algorithm,
SupportedResponse<keymaster_digest_t>* response) const {
if (response == NULL || !check_supported(algorithm, response))
return;
response->error = KM_ERROR_OK;
switch (algorithm) {
case KM_ALGORITHM_RSA:
response->SetResults(rsa_supported_digests);
break;
default:
response->results_length = 0;
break;
}
}
keymaster_key_format_t rsa_supported_import_formats[] = {KM_KEY_FORMAT_PKCS8};
void
GoogleKeymaster::SupportedImportFormats(keymaster_algorithm_t algorithm,
SupportedResponse<keymaster_key_format_t>* response) const {
if (response == NULL || !check_supported(algorithm, response))
return;
response->error = KM_ERROR_OK;
switch (algorithm) {
case KM_ALGORITHM_RSA:
response->SetResults(rsa_supported_import_formats);
break;
default:
response->results_length = 0;
break;
}
}
keymaster_key_format_t rsa_supported_export_formats[] = {KM_KEY_FORMAT_X509};
void
GoogleKeymaster::SupportedExportFormats(keymaster_algorithm_t algorithm,
SupportedResponse<keymaster_key_format_t>* response) const {
if (response == NULL || !check_supported(algorithm, response))
return;
response->error = KM_ERROR_OK;
switch (algorithm) {
case KM_ALGORITHM_RSA:
response->SetResults(rsa_supported_export_formats);
break;
default:
response->results_length = 0;
break;
}
}
template <typename Message>
void store_bignum(Message* message, void (Message::*set)(const void* value, size_t size),
BIGNUM* bignum) {
size_t bufsize = BN_num_bytes(bignum);
UniquePtr<uint8_t[]> buf(new uint8_t[bufsize]);
int bytes_written = BN_bn2bin(bignum, buf.get());
(message->*set)(buf.get(), bytes_written);
}
class Eraser {
public:
Eraser(uint8_t* buf, size_t size) : buf_(buf), size_(size) {}
~Eraser() {
while (size_-- > 0)
*buf_++ = 0;
}
private:
uint8_t* buf_;
size_t size_;
};
void GoogleKeymaster::GenerateKey(const GenerateKeyRequest& request,
GenerateKeyResponse* response) {
if (response == NULL)
return;
response->error = KM_ERROR_OK;
if (!CopyAuthorizations(request.key_description, response))
return;
keymaster_algorithm_t algorithm;
if (!request.key_description.GetTagValue(TAG_ALGORITHM, &algorithm)) {
response->error = KM_ERROR_UNSUPPORTED_ALGORITHM;
return;
}
switch (algorithm) {
case KM_ALGORITHM_RSA:
if (!GenerateRsa(request.key_description, response))
return;
break;
default:
response->error = KM_ERROR_UNSUPPORTED_ALGORITHM;
return;
}
}
class KeyBlob {
public:
static KeyBlob* AllocAndInit(GenerateKeyResponse* response, size_t key_len) {
size_t blob_length = get_size(response->enforced, response->unenforced, key_len);
KeyBlob* blob(reinterpret_cast<KeyBlob*>(new uint8_t[blob_length]));
return new (blob) KeyBlob(response->enforced, response->unenforced, key_len);
}
inline size_t length() {
return get_size(enforced_length(), unenforced_length(), key_length());
}
inline uint8_t* nonce() { return nonce_; }
inline size_t nonce_length() { return NONCE_LENGTH; }
inline uint8_t* key_data() { return key_data_; }
inline size_t key_length() { return key_length_; }
inline size_t key_data_length() { return key_length_ + TAG_LENGTH; }
inline uint8_t* enforced() {
return key_data_ + key_length_ + TAG_LENGTH + padding(key_length_ + TAG_LENGTH);
}
inline size_t enforced_length() { return enforced_length_; }
inline uint32_t* enforced_length_copy() {
return reinterpret_cast<uint32_t*>(enforced() + enforced_length());
}
inline uint8_t* unenforced() { return enforced() + enforced_length_ + sizeof(uint32_t); }
inline size_t unenforced_length() { return unenforced_length_; }
inline uint8_t* end() { return unenforced() + unenforced_length_; }
inline uint8_t* auth_data() { return enforced(); }
inline size_t auth_data_length() { return end() - enforced(); }
private:
KeyBlob(AuthorizationSet& enforced_set, AuthorizationSet& unenforced_set, size_t key_len)
: enforced_length_(enforced_set.SerializedSize()),
unenforced_length_(unenforced_set.SerializedSize()), key_length_(key_len) {
enforced_set.Serialize(enforced());
unenforced_set.Serialize(unenforced());
}
uint32_t enforced_length_;
uint32_t unenforced_length_;
uint32_t key_length_;
uint8_t nonce_[NONCE_LENGTH];
uint8_t key_data_[] __attribute__((aligned(REQUIRED_ALIGNMENT_FOR_AES_OCB)));
// Actual structure will also include:
// uint8_t enforced[] at key_data + key_length
// uint32_t enforced_length at key_data + key_length + enforced_length
// uint8_t unenforced[] at key_data + key_length + enforced_length.
static size_t get_size(AuthorizationSet& enforced_set, AuthorizationSet& unenforced_set,
size_t key_len) {
return get_size(enforced_set.SerializedSize(), unenforced_set.SerializedSize(), key_len);
}
static size_t get_size(size_t enforced_len, size_t unenforced_len, size_t key_len) {
size_t pad_len = padding(key_len + TAG_LENGTH);
return sizeof(KeyBlob) + // includes lengths and nonce
key_len + // key in key_data_
TAG_LENGTH + // authentication tag in key_data_
pad_len + // padding to align authorization data
enforced_len + // enforced authorization data
sizeof(uint32_t) + // size of enforced authorization data. This is also in
// enforced_length_ but it's duplicated here to ensure that it's
// included in the OCB-authenticated data, to enforce the
// boundary between enforced and unenforced authorizations.
unenforced_len; // size of unenforced authorization data.
}
/**
* Return the number of padding bytes needed to round up to the next alignment boundary.
* boundary.
*/
static size_t padding(size_t size) {
return REQUIRED_ALIGNMENT_FOR_AES_OCB - (size % REQUIRED_ALIGNMENT_FOR_AES_OCB);
}
};
keymaster_error_t GoogleKeymaster::WrapKey(uint8_t* key_data, size_t key_length, KeyBlob* blob) {
assert(ae_ctx_sizeof() == (int)array_size(aes_ocb_ctx_buf));
Eraser ctx_eraser(aes_ocb_ctx_buf, array_size(aes_ocb_ctx_buf));
ae_ctx* ctx = reinterpret_cast<ae_ctx*>(aes_ocb_ctx_buf);
int ae_err = ae_init(ctx, MasterKey(), MasterKeyLength(), blob->nonce_length(), TAG_LENGTH);
if (ae_err != AE_SUCCESS) {
return KM_ERROR_UNKNOWN_ERROR;
}
GetNonce(blob->nonce(), blob->nonce_length());
ae_err = ae_encrypt(ctx, blob->nonce(), key_data, key_length, blob->auth_data(),
blob->auth_data_length(), blob->key_data(), NULL, 1 /* final */);
if (ae_err < 0) {
return KM_ERROR_UNKNOWN_ERROR;
}
assert(ae_err == (int)key_length + TAG_LENGTH);
return KM_ERROR_OK;
}
bool GoogleKeymaster::CreateKeyBlob(GenerateKeyResponse* response, uint8_t* key_bytes,
size_t key_length) {
UniquePtr<KeyBlob, ByteArray_Delete> blob(KeyBlob::AllocAndInit(response, key_length));
if (blob.get() == NULL) {
response->error = KM_ERROR_MEMORY_ALLOCATION_FAILED;
return false;
}
keymaster_error_t err = WrapKey(key_bytes, key_length, blob.get());
if (err != KM_ERROR_OK) {
response->error = err;
return false;
}
response->key_blob.key_material_size = blob->length();
response->key_blob.key_material = reinterpret_cast<uint8_t*>(blob.release());
return true;
}
bool GoogleKeymaster::GenerateRsa(const AuthorizationSet& key_auths,
GenerateKeyResponse* response) {
uint64_t public_exponent = RSA_DEFAULT_EXPONENT;
if (!key_auths.GetTagValue(TAG_RSA_PUBLIC_EXPONENT, &public_exponent))
AddAuthorization(Authorization(TAG_RSA_PUBLIC_EXPONENT, public_exponent), response);
uint32_t key_size = RSA_DEFAULT_KEY_SIZE;
if (!key_auths.GetTagValue(TAG_KEY_SIZE, &key_size))
AddAuthorization(Authorization(TAG_KEY_SIZE, key_size), response);
Unique_BIGNUM exponent(BN_new());
Unique_RSA rsa_key(RSA_new());
Unique_EVP_PKEY pkey(EVP_PKEY_new());
if (rsa_key.get() == NULL || pkey.get() == NULL) {
response->error = KM_ERROR_MEMORY_ALLOCATION_FAILED;
return false;
}
if (!BN_set_word(exponent.get(), public_exponent) ||
!RSA_generate_key_ex(rsa_key.get(), key_size, exponent.get(), NULL /* callback */)) {
response->error = KM_ERROR_UNKNOWN_ERROR;
return false;
}
if (!EVP_PKEY_assign_RSA(pkey.get(), rsa_key.get())) {
response->error = KM_ERROR_UNKNOWN_ERROR;
return false;
} else {
release_because_ownership_transferred(rsa_key);
}
int der_length = i2d_PrivateKey(pkey.get(), NULL);
if (der_length <= 0) {
response->error = KM_ERROR_UNKNOWN_ERROR;
return false;
}
UniquePtr<uint8_t[]> der_data(new uint8_t[der_length]);
if (der_data.get() == NULL) {
response->error = KM_ERROR_MEMORY_ALLOCATION_FAILED;
return false;
}
uint8_t* tmp = der_data.get();
i2d_PrivateKey(pkey.get(), &tmp);
return CreateKeyBlob(response, der_data.get(), der_length);
}
static keymaster_error_t CheckAuthorizationSet(const AuthorizationSet& set) {
switch (set.is_valid()) {
case AuthorizationSet::OK_FULL:
case AuthorizationSet::OK_GROWABLE:
return KM_ERROR_OK;
case AuthorizationSet::ALLOCATION_FAILURE:
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
case AuthorizationSet::BOUNDS_CHECKING_FAILURE:
case AuthorizationSet::MALFORMED_DATA:
return KM_ERROR_UNKNOWN_ERROR;
}
return KM_ERROR_OK;
}
bool GoogleKeymaster::CopyAuthorizations(const AuthorizationSet& key_description,
GenerateKeyResponse* response) {
for (size_t i = 0; i < key_description.size(); ++i) {
switch (key_description[i].tag) {
case KM_TAG_ROOT_OF_TRUST:
case KM_TAG_CREATION_DATETIME:
case KM_TAG_ORIGIN:
response->error = KM_ERROR_INVALID_TAG;
return false;
case KM_TAG_ROLLBACK_RESISTANT:
response->error = KM_ERROR_UNSUPPORTED_TAG;
return false;
default:
AddAuthorization(key_description[i], response);
break;
}
}
AddAuthorization(Authorization(TAG_CREATION_DATETIME, java_time(time(NULL))), response);
AddAuthorization(Authorization(TAG_ORIGIN, origin()), response);
AddAuthorization(Authorization(TAG_ROOT_OF_TRUST, "SW", 2), response);
response->error = CheckAuthorizationSet(response->enforced);
if (response->error != KM_ERROR_OK)
return false;
response->error = CheckAuthorizationSet(response->unenforced);
if (response->error != KM_ERROR_OK)
return false;
return true;
}
void GoogleKeymaster::AddAuthorization(const keymaster_key_param_t& auth,
GenerateKeyResponse* response) {
if (is_enforced(auth.tag))
response->enforced.push_back(auth);
else
response->unenforced.push_back(auth);
}
} // namespace keymaster