blob: 4f17259d1984f3f15952ca2cb7610994557fc3db [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string>
#include <fstream>
#include <gtest/gtest.h>
#include <openssl/engine.h>
#include <keymaster/google_keymaster_utils.h>
#include <keymaster/keymaster_tags.h>
#include "google_keymaster_test_utils.h"
#include "google_softkeymaster.h"
using std::string;
using std::ifstream;
using std::istreambuf_iterator;
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
int result = RUN_ALL_TESTS();
// Clean up stuff OpenSSL leaves around, so Valgrind doesn't complain.
CRYPTO_cleanup_all_ex_data();
ERR_remove_thread_state(NULL);
ERR_free_strings();
return result;
}
namespace keymaster {
namespace test {
// Note that these DSA generator, p and q values must match the values from dsa_privkey_pk8.der.
const uint8_t dsa_g[] = {
0x19, 0x1C, 0x71, 0xFD, 0xE0, 0x03, 0x0C, 0x43, 0xD9, 0x0B, 0xF6, 0xCD, 0xD6, 0xA9, 0x70, 0xE7,
0x37, 0x86, 0x3A, 0x78, 0xE9, 0xA7, 0x47, 0xA7, 0x47, 0x06, 0x88, 0xB1, 0xAF, 0xD7, 0xF3, 0xF1,
0xA1, 0xD7, 0x00, 0x61, 0x28, 0x88, 0x31, 0x48, 0x60, 0xD8, 0x11, 0xEF, 0xA5, 0x24, 0x1A, 0x81,
0xC4, 0x2A, 0xE2, 0xEA, 0x0E, 0x36, 0xD2, 0xD2, 0x05, 0x84, 0x37, 0xCF, 0x32, 0x7D, 0x09, 0xE6,
0x0F, 0x8B, 0x0C, 0xC8, 0xC2, 0xA4, 0xB1, 0xDC, 0x80, 0xCA, 0x68, 0xDF, 0xAF, 0xD2, 0x90, 0xC0,
0x37, 0x58, 0x54, 0x36, 0x8F, 0x49, 0xB8, 0x62, 0x75, 0x8B, 0x48, 0x47, 0xC0, 0xBE, 0xF7, 0x9A,
0x92, 0xA6, 0x68, 0x05, 0xDA, 0x9D, 0xAF, 0x72, 0x9A, 0x67, 0xB3, 0xB4, 0x14, 0x03, 0xAE, 0x4F,
0x4C, 0x76, 0xB9, 0xD8, 0x64, 0x0A, 0xBA, 0x3B, 0xA8, 0x00, 0x60, 0x4D, 0xAE, 0x81, 0xC3, 0xC5,
};
const uint8_t dsa_p[] = {
0xA3, 0xF3, 0xE9, 0xB6, 0x7E, 0x7D, 0x88, 0xF6, 0xB7, 0xE5, 0xF5, 0x1F, 0x3B, 0xEE, 0xAC, 0xD7,
0xAD, 0xBC, 0xC9, 0xD1, 0x5A, 0xF8, 0x88, 0xC4, 0xEF, 0x6E, 0x3D, 0x74, 0x19, 0x74, 0xE7, 0xD8,
0xE0, 0x26, 0x44, 0x19, 0x86, 0xAF, 0x19, 0xDB, 0x05, 0xE9, 0x3B, 0x8B, 0x58, 0x58, 0xDE, 0xE5,
0x4F, 0x48, 0x15, 0x01, 0xEA, 0xE6, 0x83, 0x52, 0xD7, 0xC1, 0x21, 0xDF, 0xB9, 0xB8, 0x07, 0x66,
0x50, 0xFB, 0x3A, 0x0C, 0xB3, 0x85, 0xEE, 0xBB, 0x04, 0x5F, 0xC2, 0x6D, 0x6D, 0x95, 0xFA, 0x11,
0x93, 0x1E, 0x59, 0x5B, 0xB1, 0x45, 0x8D, 0xE0, 0x3D, 0x73, 0xAA, 0xF2, 0x41, 0x14, 0x51, 0x07,
0x72, 0x3D, 0xA2, 0xF7, 0x58, 0xCD, 0x11, 0xA1, 0x32, 0xCF, 0xDA, 0x42, 0xB7, 0xCC, 0x32, 0x80,
0xDB, 0x87, 0x82, 0xEC, 0x42, 0xDB, 0x5A, 0x55, 0x24, 0x24, 0xA2, 0xD1, 0x55, 0x29, 0xAD, 0xEB,
};
const uint8_t dsa_q[] = {
0xEB, 0xEA, 0x17, 0xD2, 0x09, 0xB3, 0xD7, 0x21, 0x9A, 0x21,
0x07, 0x82, 0x8F, 0xAB, 0xFE, 0x88, 0x71, 0x68, 0xF7, 0xE3,
};
class KeymasterTest : public testing::Test {
protected:
KeymasterTest() : device(5, new StdoutLogger) { RAND_seed("foobar", 6); }
~KeymasterTest() {}
template <typename T> void ExpectEmptyResponse(const SupportedResponse<T>& response) {
EXPECT_EQ(KM_ERROR_OK, response.error);
EXPECT_EQ(0U, response.results_length);
}
template <typename T> void ExpectResponseContains(T val, const SupportedResponse<T>& response) {
EXPECT_EQ(KM_ERROR_OK, response.error);
EXPECT_EQ(1U, response.results_length);
EXPECT_EQ(val, response.results[0]);
}
GoogleSoftKeymaster device;
};
typedef KeymasterTest CheckSupported;
TEST_F(CheckSupported, SupportedAlgorithms) {
// Shouldn't blow up on NULL.
device.SupportedAlgorithms(NULL);
SupportedResponse<keymaster_algorithm_t> response;
device.SupportedAlgorithms(&response);
EXPECT_EQ(KM_ERROR_OK, response.error);
EXPECT_EQ(4U, response.results_length);
EXPECT_EQ(KM_ALGORITHM_RSA, response.results[0]);
EXPECT_EQ(KM_ALGORITHM_DSA, response.results[1]);
EXPECT_EQ(KM_ALGORITHM_ECDSA, response.results[2]);
EXPECT_EQ(KM_ALGORITHM_AES, response.results[3]);
}
TEST_F(CheckSupported, SupportedBlockModes) {
// Shouldn't blow up on NULL.
device.SupportedBlockModes(KM_ALGORITHM_RSA, KM_PURPOSE_ENCRYPT, NULL);
SupportedResponse<keymaster_block_mode_t> response;
device.SupportedBlockModes(KM_ALGORITHM_RSA, KM_PURPOSE_ENCRYPT, &response);
EXPECT_EQ(KM_ERROR_UNSUPPORTED_BLOCK_MODE, response.error);
device.SupportedBlockModes(KM_ALGORITHM_DSA, KM_PURPOSE_ENCRYPT, &response);
EXPECT_EQ(KM_ERROR_UNSUPPORTED_BLOCK_MODE, response.error);
device.SupportedBlockModes(KM_ALGORITHM_ECDSA, KM_PURPOSE_ENCRYPT, &response);
EXPECT_EQ(KM_ERROR_UNSUPPORTED_BLOCK_MODE, response.error);
device.SupportedBlockModes(KM_ALGORITHM_AES, KM_PURPOSE_ENCRYPT, &response);
EXPECT_EQ(KM_ERROR_UNSUPPORTED_BLOCK_MODE, response.error);
}
TEST_F(CheckSupported, SupportedPaddingModes) {
// Shouldn't blow up on NULL.
device.SupportedPaddingModes(KM_ALGORITHM_RSA, KM_PURPOSE_ENCRYPT, NULL);
SupportedResponse<keymaster_padding_t> response;
device.SupportedPaddingModes(KM_ALGORITHM_RSA, KM_PURPOSE_SIGN, &response);
ExpectResponseContains(KM_PAD_NONE, response);
device.SupportedPaddingModes(KM_ALGORITHM_DSA, KM_PURPOSE_SIGN, &response);
ExpectResponseContains(KM_PAD_NONE, response);
device.SupportedPaddingModes(KM_ALGORITHM_ECDSA, KM_PURPOSE_SIGN, &response);
ExpectResponseContains(KM_PAD_NONE, response);
device.SupportedPaddingModes(KM_ALGORITHM_AES, KM_PURPOSE_SIGN, &response);
ExpectEmptyResponse(response);
}
TEST_F(CheckSupported, SupportedDigests) {
// Shouldn't blow up on NULL.
device.SupportedDigests(KM_ALGORITHM_RSA, KM_PURPOSE_SIGN, NULL);
SupportedResponse<keymaster_digest_t> response;
device.SupportedDigests(KM_ALGORITHM_RSA, KM_PURPOSE_SIGN, &response);
ExpectResponseContains(KM_DIGEST_NONE, response);
device.SupportedDigests(KM_ALGORITHM_DSA, KM_PURPOSE_SIGN, &response);
ExpectResponseContains(KM_DIGEST_NONE, response);
device.SupportedDigests(KM_ALGORITHM_ECDSA, KM_PURPOSE_SIGN, &response);
ExpectResponseContains(KM_DIGEST_NONE, response);
device.SupportedDigests(KM_ALGORITHM_AES, KM_PURPOSE_SIGN, &response);
ExpectEmptyResponse(response);
}
TEST_F(CheckSupported, SupportedImportFormats) {
// Shouldn't blow up on NULL.
device.SupportedImportFormats(KM_ALGORITHM_RSA, NULL);
SupportedResponse<keymaster_key_format_t> response;
device.SupportedImportFormats(KM_ALGORITHM_RSA, &response);
ExpectResponseContains(KM_KEY_FORMAT_PKCS8, response);
device.SupportedImportFormats(KM_ALGORITHM_DSA, &response);
ExpectResponseContains(KM_KEY_FORMAT_PKCS8, response);
device.SupportedImportFormats(KM_ALGORITHM_ECDSA, &response);
ExpectResponseContains(KM_KEY_FORMAT_PKCS8, response);
device.SupportedImportFormats(KM_ALGORITHM_AES, &response);
ExpectEmptyResponse(response);
}
TEST_F(CheckSupported, SupportedExportFormats) {
// Shouldn't blow up on NULL.
device.SupportedExportFormats(KM_ALGORITHM_RSA, NULL);
SupportedResponse<keymaster_key_format_t> response;
device.SupportedExportFormats(KM_ALGORITHM_RSA, &response);
ExpectResponseContains(KM_KEY_FORMAT_X509, response);
device.SupportedExportFormats(KM_ALGORITHM_DSA, &response);
ExpectResponseContains(KM_KEY_FORMAT_X509, response);
device.SupportedExportFormats(KM_ALGORITHM_ECDSA, &response);
ExpectResponseContains(KM_KEY_FORMAT_X509, response);
device.SupportedExportFormats(KM_ALGORITHM_AES, &response);
ExpectEmptyResponse(response);
}
keymaster_key_param_t key_generation_base_params[] = {
Authorization(TAG_PURPOSE, KM_PURPOSE_SIGN), Authorization(TAG_PURPOSE, KM_PURPOSE_VERIFY),
Authorization(TAG_USER_ID, 7), Authorization(TAG_USER_AUTH_ID, 8),
Authorization(TAG_APPLICATION_ID, "app_id", 6),
Authorization(TAG_APPLICATION_DATA, "app_data", 8), Authorization(TAG_AUTH_TIMEOUT, 300),
};
class NewKeyGeneration : public KeymasterTest {
protected:
NewKeyGeneration() {
req_.key_description.Reinitialize(key_generation_base_params,
array_length(key_generation_base_params));
}
void CheckBaseParams(const GenerateKeyResponse& rsp) {
ASSERT_EQ(KM_ERROR_OK, rsp.error);
EXPECT_EQ(0U, rsp.enforced.size());
EXPECT_EQ(12U, rsp.enforced.SerializedSize());
EXPECT_GT(rsp.unenforced.SerializedSize(), 12U);
EXPECT_TRUE(contains(rsp.unenforced, TAG_PURPOSE, KM_PURPOSE_SIGN));
EXPECT_TRUE(contains(rsp.unenforced, TAG_PURPOSE, KM_PURPOSE_VERIFY));
EXPECT_TRUE(contains(rsp.unenforced, TAG_USER_ID, 7));
EXPECT_TRUE(contains(rsp.unenforced, TAG_USER_AUTH_ID, 8));
EXPECT_TRUE(contains(rsp.unenforced, TAG_AUTH_TIMEOUT, 300));
// Verify that App ID, App data and ROT are NOT included.
EXPECT_FALSE(contains(rsp.unenforced, TAG_ROOT_OF_TRUST));
EXPECT_FALSE(contains(rsp.unenforced, TAG_APPLICATION_ID));
EXPECT_FALSE(contains(rsp.unenforced, TAG_APPLICATION_DATA));
// Just for giggles, check that some unexpected tags/values are NOT present.
EXPECT_FALSE(contains(rsp.unenforced, TAG_PURPOSE, KM_PURPOSE_ENCRYPT));
EXPECT_FALSE(contains(rsp.unenforced, TAG_PURPOSE, KM_PURPOSE_DECRYPT));
EXPECT_FALSE(contains(rsp.unenforced, TAG_AUTH_TIMEOUT, 301));
EXPECT_FALSE(contains(rsp.unenforced, TAG_RESCOPE_AUTH_TIMEOUT));
// Now check that unspecified, defaulted tags are correct.
EXPECT_TRUE(contains(rsp.unenforced, TAG_ORIGIN, KM_ORIGIN_SOFTWARE));
EXPECT_TRUE(contains(rsp.unenforced, KM_TAG_CREATION_DATETIME));
}
GenerateKeyRequest req_;
GenerateKeyResponse rsp_;
};
TEST_F(NewKeyGeneration, Rsa) {
req_.key_description.push_back(Authorization(TAG_ALGORITHM, KM_ALGORITHM_RSA));
req_.key_description.push_back(Authorization(TAG_KEY_SIZE, 256));
req_.key_description.push_back(Authorization(TAG_RSA_PUBLIC_EXPONENT, 3));
device.GenerateKey(req_, &rsp_);
CheckBaseParams(rsp_);
// Check specified tags are all present in unenforced characteristics
EXPECT_TRUE(contains(rsp_.unenforced, TAG_ALGORITHM, KM_ALGORITHM_RSA));
EXPECT_TRUE(contains(rsp_.unenforced, TAG_KEY_SIZE, 256));
EXPECT_TRUE(contains(rsp_.unenforced, TAG_RSA_PUBLIC_EXPONENT, 3));
}
TEST_F(NewKeyGeneration, RsaDefaultSize) {
req_.key_description.push_back(Authorization(TAG_ALGORITHM, KM_ALGORITHM_RSA));
device.GenerateKey(req_, &rsp_);
CheckBaseParams(rsp_);
// Check specified tags are all present in unenforced characteristics
EXPECT_TRUE(contains(rsp_.unenforced, TAG_ALGORITHM, KM_ALGORITHM_RSA));
// Now check that unspecified, defaulted tags are correct.
EXPECT_TRUE(contains(rsp_.unenforced, TAG_RSA_PUBLIC_EXPONENT, 65537));
EXPECT_TRUE(contains(rsp_.unenforced, TAG_KEY_SIZE, 2048));
}
TEST_F(NewKeyGeneration, Ecdsa) {
req_.key_description.push_back(Authorization(TAG_ALGORITHM, KM_ALGORITHM_ECDSA));
req_.key_description.push_back(Authorization(TAG_KEY_SIZE, 224));
device.GenerateKey(req_, &rsp_);
CheckBaseParams(rsp_);
// Check specified tags are all present in unenforced characteristics
EXPECT_TRUE(contains(rsp_.unenforced, TAG_ALGORITHM, KM_ALGORITHM_ECDSA));
EXPECT_TRUE(contains(rsp_.unenforced, TAG_KEY_SIZE, 224));
}
TEST_F(NewKeyGeneration, EcdsaDefaultSize) {
req_.key_description.push_back(Authorization(TAG_ALGORITHM, KM_ALGORITHM_ECDSA));
device.GenerateKey(req_, &rsp_);
CheckBaseParams(rsp_);
// Check specified tags are all present in unenforced characteristics
EXPECT_TRUE(contains(rsp_.unenforced, TAG_ALGORITHM, KM_ALGORITHM_ECDSA));
// Now check that unspecified, defaulted tags are correct.
EXPECT_TRUE(contains(rsp_.unenforced, TAG_KEY_SIZE, 224));
}
TEST_F(NewKeyGeneration, EcdsaInvalidSize) {
req_.key_description.push_back(Authorization(TAG_ALGORITHM, KM_ALGORITHM_ECDSA));
req_.key_description.push_back(Authorization(TAG_KEY_SIZE, 190));
device.GenerateKey(req_, &rsp_);
ASSERT_EQ(KM_ERROR_UNSUPPORTED_KEY_SIZE, rsp_.error);
}
TEST_F(NewKeyGeneration, EcdsaAllValidSizes) {
size_t valid_sizes[] = {224, 256, 384, 521};
for (size_t size : valid_sizes) {
GenerateKeyResponse rsp;
req_.key_description.Reinitialize(key_generation_base_params,
array_length(key_generation_base_params));
req_.key_description.push_back(Authorization(TAG_ALGORITHM, KM_ALGORITHM_ECDSA));
req_.key_description.push_back(Authorization(TAG_KEY_SIZE, size));
device.GenerateKey(req_, &rsp);
EXPECT_EQ(KM_ERROR_OK, rsp.error) << "Failed to generate size: " << size;
}
}
TEST_F(NewKeyGeneration, AesOcb) {
keymaster_key_param_t params[] = {
Authorization(TAG_PURPOSE, KM_PURPOSE_ENCRYPT),
Authorization(TAG_PURPOSE, KM_PURPOSE_DECRYPT),
Authorization(TAG_ALGORITHM, KM_ALGORITHM_AES), Authorization(TAG_KEY_SIZE, 128),
Authorization(TAG_BLOCK_MODE, KM_MODE_OCB), Authorization(TAG_CHUNK_LENGTH, 4096),
Authorization(TAG_MAC_LENGTH, 16), Authorization(TAG_PADDING, KM_PAD_NONE),
};
req_.key_description.Reinitialize(params, array_length(params));
device.GenerateKey(req_, &rsp_);
EXPECT_EQ(KM_ERROR_OK, rsp_.error);
}
TEST_F(NewKeyGeneration, AesOcbInvalidKeySize) {
keymaster_key_param_t params[] = {
Authorization(TAG_PURPOSE, KM_PURPOSE_ENCRYPT),
Authorization(TAG_PURPOSE, KM_PURPOSE_DECRYPT),
Authorization(TAG_ALGORITHM, KM_ALGORITHM_AES), Authorization(TAG_KEY_SIZE, 129),
Authorization(TAG_BLOCK_MODE, KM_MODE_OCB), Authorization(TAG_CHUNK_LENGTH, 4096),
Authorization(TAG_MAC_LENGTH, 16), Authorization(TAG_PADDING, KM_PAD_NONE),
};
req_.key_description.Reinitialize(params, array_length(params));
device.GenerateKey(req_, &rsp_);
EXPECT_EQ(KM_ERROR_UNSUPPORTED_KEY_SIZE, rsp_.error);
}
TEST_F(NewKeyGeneration, AesOcbAllValidSizes) {
keymaster_key_param_t params[] = {
Authorization(TAG_PURPOSE, KM_PURPOSE_ENCRYPT),
Authorization(TAG_PURPOSE, KM_PURPOSE_DECRYPT),
Authorization(TAG_ALGORITHM, KM_ALGORITHM_AES), Authorization(TAG_BLOCK_MODE, KM_MODE_OCB),
Authorization(TAG_MAC_LENGTH, 16), Authorization(TAG_CHUNK_LENGTH, 4096),
Authorization(TAG_PADDING, KM_PAD_NONE),
};
size_t valid_sizes[] = {128, 192, 256};
for (size_t size : valid_sizes) {
GenerateKeyResponse rsp;
req_.key_description.Reinitialize(params, array_length(params));
req_.key_description.push_back(Authorization(TAG_KEY_SIZE, size));
device.GenerateKey(req_, &rsp);
EXPECT_EQ(KM_ERROR_OK, rsp.error) << "Failed to generate size: " << size;
}
}
TEST_F(NewKeyGeneration, AesOcbNoChunkLength) {
keymaster_key_param_t params[] = {
Authorization(TAG_PURPOSE, KM_PURPOSE_ENCRYPT),
Authorization(TAG_PURPOSE, KM_PURPOSE_DECRYPT),
Authorization(TAG_ALGORITHM, KM_ALGORITHM_AES), Authorization(TAG_KEY_SIZE, 128),
Authorization(TAG_BLOCK_MODE, KM_MODE_OCB), Authorization(TAG_PADDING, KM_PAD_NONE),
};
req_.key_description.Reinitialize(params, array_length(params));
device.GenerateKey(req_, &rsp_);
EXPECT_EQ(KM_ERROR_INVALID_ARGUMENT, rsp_.error);
}
TEST_F(NewKeyGeneration, AesEcbUnsupported) {
keymaster_key_param_t params[] = {
Authorization(TAG_PURPOSE, KM_PURPOSE_ENCRYPT),
Authorization(TAG_PURPOSE, KM_PURPOSE_DECRYPT),
Authorization(TAG_ALGORITHM, KM_ALGORITHM_AES), Authorization(TAG_KEY_SIZE, 128),
Authorization(TAG_BLOCK_MODE, KM_MODE_ECB), Authorization(TAG_PADDING, KM_PAD_NONE),
};
req_.key_description.Reinitialize(params, array_length(params));
device.GenerateKey(req_, &rsp_);
EXPECT_EQ(KM_ERROR_UNSUPPORTED_BLOCK_MODE, rsp_.error);
}
TEST_F(NewKeyGeneration, AesOcbPaddingUnsupported) {
keymaster_key_param_t params[] = {
Authorization(TAG_PURPOSE, KM_PURPOSE_ENCRYPT),
Authorization(TAG_PURPOSE, KM_PURPOSE_DECRYPT),
Authorization(TAG_ALGORITHM, KM_ALGORITHM_AES), Authorization(TAG_KEY_SIZE, 128),
Authorization(TAG_BLOCK_MODE, KM_MODE_OCB), Authorization(TAG_CHUNK_LENGTH, 4096),
Authorization(TAG_PADDING, KM_PAD_ZERO),
};
req_.key_description.Reinitialize(params, array_length(params));
device.GenerateKey(req_, &rsp_);
EXPECT_EQ(KM_ERROR_UNSUPPORTED_PADDING_MODE, rsp_.error);
}
TEST_F(NewKeyGeneration, AesOcbInvalidMacLength) {
keymaster_key_param_t params[] = {
Authorization(TAG_PURPOSE, KM_PURPOSE_ENCRYPT),
Authorization(TAG_PURPOSE, KM_PURPOSE_DECRYPT),
Authorization(TAG_ALGORITHM, KM_ALGORITHM_AES), Authorization(TAG_KEY_SIZE, 128),
Authorization(TAG_BLOCK_MODE, KM_MODE_OCB), Authorization(TAG_CHUNK_LENGTH, 4096),
Authorization(TAG_MAC_LENGTH, 17), Authorization(TAG_PADDING, KM_PAD_NONE),
};
req_.key_description.Reinitialize(params, array_length(params));
device.GenerateKey(req_, &rsp_);
EXPECT_EQ(KM_ERROR_INVALID_ARGUMENT, rsp_.error);
}
typedef KeymasterTest GetKeyCharacteristics;
TEST_F(GetKeyCharacteristics, SimpleRsa) {
keymaster_key_param_t params[] = {
Authorization(TAG_PURPOSE, KM_PURPOSE_SIGN), Authorization(TAG_PURPOSE, KM_PURPOSE_VERIFY),
Authorization(TAG_ALGORITHM, KM_ALGORITHM_RSA), Authorization(TAG_KEY_SIZE, 256),
Authorization(TAG_USER_ID, 7), Authorization(TAG_USER_AUTH_ID, 8),
Authorization(TAG_APPLICATION_ID, "app_id", 6), Authorization(TAG_AUTH_TIMEOUT, 300),
};
GenerateKeyRequest gen_req;
gen_req.key_description.Reinitialize(params, array_length(params));
GenerateKeyResponse gen_rsp;
device.GenerateKey(gen_req, &gen_rsp);
ASSERT_EQ(KM_ERROR_OK, gen_rsp.error);
GetKeyCharacteristicsRequest req;
req.SetKeyMaterial(gen_rsp.key_blob);
req.additional_params.push_back(TAG_APPLICATION_ID, "app_id", 6);
GetKeyCharacteristicsResponse rsp;
device.GetKeyCharacteristics(req, &rsp);
ASSERT_EQ(KM_ERROR_OK, rsp.error);
EXPECT_EQ(gen_rsp.enforced, rsp.enforced);
EXPECT_EQ(gen_rsp.unenforced, rsp.unenforced);
}
/**
* Test class that provides some infrastructure for generating keys and signing messages.
*/
class SigningOperationsTest : public KeymasterTest {
protected:
void GenerateKey(keymaster_algorithm_t algorithm, keymaster_digest_t digest,
keymaster_padding_t padding, uint32_t key_size) {
keymaster_key_param_t params[] = {
Authorization(TAG_PURPOSE, KM_PURPOSE_SIGN),
Authorization(TAG_PURPOSE, KM_PURPOSE_VERIFY), Authorization(TAG_ALGORITHM, algorithm),
Authorization(TAG_KEY_SIZE, key_size), Authorization(TAG_USER_ID, 7),
Authorization(TAG_USER_AUTH_ID, 8), Authorization(TAG_APPLICATION_ID, "app_id", 6),
Authorization(TAG_AUTH_TIMEOUT, 300),
};
GenerateKeyRequest generate_request;
generate_request.key_description.Reinitialize(params, array_length(params));
if (static_cast<int>(digest) != -1)
generate_request.key_description.push_back(TAG_DIGEST, digest);
if (static_cast<int>(padding) != -1)
generate_request.key_description.push_back(TAG_PADDING, padding);
device.GenerateKey(generate_request, &generate_response_);
EXPECT_EQ(KM_ERROR_OK, generate_response_.error);
}
void SignMessage(const void* message, size_t size) {
SignMessage(generate_response_.key_blob, message, size);
}
void SignMessage(const keymaster_key_blob_t& key_blob, const void* message, size_t size) {
BeginOperationRequest begin_request;
BeginOperationResponse begin_response;
begin_request.SetKeyMaterial(key_blob);
begin_request.purpose = KM_PURPOSE_SIGN;
AddClientParams(&begin_request.additional_params);
device.BeginOperation(begin_request, &begin_response);
ASSERT_EQ(KM_ERROR_OK, begin_response.error);
UpdateOperationRequest update_request;
UpdateOperationResponse update_response;
update_request.op_handle = begin_response.op_handle;
update_request.input.Reinitialize(message, size);
EXPECT_EQ(size, update_request.input.available_read());
device.UpdateOperation(update_request, &update_response);
ASSERT_EQ(KM_ERROR_OK, update_response.error);
EXPECT_EQ(0U, update_response.output.available_read());
EXPECT_EQ(size, update_response.input_consumed);
FinishOperationRequest finish_request;
finish_request.op_handle = begin_response.op_handle;
device.FinishOperation(finish_request, &finish_response_);
ASSERT_EQ(KM_ERROR_OK, finish_response_.error);
EXPECT_GT(finish_response_.output.available_read(), 0U);
}
void AddClientParams(AuthorizationSet* set) { set->push_back(TAG_APPLICATION_ID, "app_id", 6); }
const keymaster_key_blob_t& key_blob() { return generate_response_.key_blob; }
const keymaster_key_blob_t& corrupt_key_blob() {
uint8_t* tmp = const_cast<uint8_t*>(generate_response_.key_blob.key_material);
++tmp[generate_response_.key_blob.key_material_size / 2];
return generate_response_.key_blob;
}
Buffer* signature() {
if (finish_response_.error == KM_ERROR_OK)
return &finish_response_.output;
return NULL;
}
GenerateKeyResponse generate_response_;
FinishOperationResponse finish_response_;
};
TEST_F(SigningOperationsTest, RsaSuccess) {
GenerateKey(KM_ALGORITHM_RSA, KM_DIGEST_NONE, KM_PAD_NONE, 256 /* key size */);
const char message[] = "12345678901234567890123456789012";
SignMessage(message, array_size(message) - 1);
}
TEST_F(SigningOperationsTest, EcdsaSuccess) {
GenerateKey(KM_ALGORITHM_ECDSA, KM_DIGEST_NONE, KM_PAD_NONE, 224 /* key size */);
const char message[] = "123456789012345678901234567890123456789012345678";
SignMessage(message, array_size(message) - 1);
}
TEST_F(SigningOperationsTest, RsaAbort) {
GenerateKey(KM_ALGORITHM_RSA, KM_DIGEST_NONE, KM_PAD_NONE, 256 /* key size */);
BeginOperationRequest begin_request;
BeginOperationResponse begin_response;
begin_request.SetKeyMaterial(key_blob());
begin_request.purpose = KM_PURPOSE_SIGN;
AddClientParams(&begin_request.additional_params);
device.BeginOperation(begin_request, &begin_response);
ASSERT_EQ(KM_ERROR_OK, begin_response.error);
EXPECT_EQ(KM_ERROR_OK, device.AbortOperation(begin_response.op_handle));
// Another abort should fail
EXPECT_EQ(KM_ERROR_INVALID_OPERATION_HANDLE, device.AbortOperation(begin_response.op_handle));
}
TEST_F(SigningOperationsTest, RsaUnsupportedDigest) {
GenerateKey(KM_ALGORITHM_RSA, KM_DIGEST_SHA_2_256, KM_PAD_NONE, 256 /* key size */);
BeginOperationRequest begin_request;
BeginOperationResponse begin_response;
begin_request.purpose = KM_PURPOSE_SIGN;
begin_request.SetKeyMaterial(key_blob());
AddClientParams(&begin_request.additional_params);
device.BeginOperation(begin_request, &begin_response);
ASSERT_EQ(KM_ERROR_UNSUPPORTED_DIGEST, begin_response.error);
EXPECT_EQ(KM_ERROR_INVALID_OPERATION_HANDLE, device.AbortOperation(begin_response.op_handle));
}
TEST_F(SigningOperationsTest, RsaUnsupportedPadding) {
GenerateKey(KM_ALGORITHM_RSA, KM_DIGEST_NONE, KM_PAD_RSA_OAEP, 256 /* key size */);
BeginOperationRequest begin_request;
BeginOperationResponse begin_response;
begin_request.purpose = KM_PURPOSE_SIGN;
begin_request.SetKeyMaterial(key_blob());
AddClientParams(&begin_request.additional_params);
device.BeginOperation(begin_request, &begin_response);
ASSERT_EQ(KM_ERROR_UNSUPPORTED_PADDING_MODE, begin_response.error);
EXPECT_EQ(KM_ERROR_INVALID_OPERATION_HANDLE, device.AbortOperation(begin_response.op_handle));
}
TEST_F(SigningOperationsTest, RsaNoDigest) {
GenerateKey(KM_ALGORITHM_RSA, static_cast<keymaster_digest_t>(-1), KM_PAD_NONE,
256 /* key size */);
BeginOperationRequest begin_request;
BeginOperationResponse begin_response;
begin_request.purpose = KM_PURPOSE_SIGN;
begin_request.SetKeyMaterial(key_blob());
AddClientParams(&begin_request.additional_params);
device.BeginOperation(begin_request, &begin_response);
ASSERT_EQ(KM_ERROR_UNSUPPORTED_DIGEST, begin_response.error);
EXPECT_EQ(KM_ERROR_INVALID_OPERATION_HANDLE, device.AbortOperation(begin_response.op_handle));
}
TEST_F(SigningOperationsTest, RsaNoPadding) {
GenerateKey(KM_ALGORITHM_RSA, KM_DIGEST_NONE, static_cast<keymaster_padding_t>(-1),
256 /* key size */);
BeginOperationRequest begin_request;
BeginOperationResponse begin_response;
begin_request.purpose = KM_PURPOSE_SIGN;
begin_request.SetKeyMaterial(key_blob());
AddClientParams(&begin_request.additional_params);
device.BeginOperation(begin_request, &begin_response);
ASSERT_EQ(KM_ERROR_UNSUPPORTED_PADDING_MODE, begin_response.error);
EXPECT_EQ(KM_ERROR_INVALID_OPERATION_HANDLE, device.AbortOperation(begin_response.op_handle));
}
TEST_F(SigningOperationsTest, RsaTooShortMessage) {
GenerateKey(KM_ALGORITHM_RSA, KM_DIGEST_NONE, KM_PAD_NONE, 256 /* key size */);
BeginOperationRequest begin_request;
BeginOperationResponse begin_response;
begin_request.SetKeyMaterial(key_blob());
begin_request.purpose = KM_PURPOSE_SIGN;
AddClientParams(&begin_request.additional_params);
device.BeginOperation(begin_request, &begin_response);
ASSERT_EQ(KM_ERROR_OK, begin_response.error);
UpdateOperationRequest update_request;
UpdateOperationResponse update_response;
update_request.op_handle = begin_response.op_handle;
update_request.input.Reinitialize("01234567890123456789012345678901", 31);
EXPECT_EQ(31U, update_request.input.available_read());
device.UpdateOperation(update_request, &update_response);
ASSERT_EQ(KM_ERROR_OK, update_response.error);
EXPECT_EQ(0U, update_response.output.available_read());
EXPECT_EQ(31U, update_response.input_consumed);
FinishOperationRequest finish_request;
finish_request.op_handle = begin_response.op_handle;
FinishOperationResponse finish_response;
device.FinishOperation(finish_request, &finish_response);
ASSERT_EQ(KM_ERROR_UNKNOWN_ERROR, finish_response.error);
EXPECT_EQ(0U, finish_response.output.available_read());
EXPECT_EQ(KM_ERROR_INVALID_OPERATION_HANDLE, device.AbortOperation(begin_response.op_handle));
}
class VerificationOperationsTest : public SigningOperationsTest {
protected:
void VerifyMessage(const void* message, size_t message_len) {
VerifyMessage(generate_response_.key_blob, message, message_len);
}
void VerifyMessage(const keymaster_key_blob_t& key_blob, const void* message,
size_t message_len) {
ASSERT_TRUE(signature() != NULL);
BeginOperationRequest begin_request;
BeginOperationResponse begin_response;
begin_request.SetKeyMaterial(key_blob);
begin_request.purpose = KM_PURPOSE_VERIFY;
AddClientParams(&begin_request.additional_params);
device.BeginOperation(begin_request, &begin_response);
ASSERT_EQ(KM_ERROR_OK, begin_response.error);
UpdateOperationRequest update_request;
UpdateOperationResponse update_response;
update_request.op_handle = begin_response.op_handle;
update_request.input.Reinitialize(message, message_len);
EXPECT_EQ(message_len, update_request.input.available_read());
device.UpdateOperation(update_request, &update_response);
ASSERT_EQ(KM_ERROR_OK, update_response.error);
EXPECT_EQ(0U, update_response.output.available_read());
EXPECT_EQ(message_len, update_response.input_consumed);
FinishOperationRequest finish_request;
finish_request.op_handle = begin_response.op_handle;
finish_request.signature.Reinitialize(*signature());
FinishOperationResponse finish_response;
device.FinishOperation(finish_request, &finish_response);
ASSERT_EQ(KM_ERROR_OK, finish_response.error);
EXPECT_EQ(0U, finish_response.output.available_read());
EXPECT_EQ(KM_ERROR_INVALID_OPERATION_HANDLE,
device.AbortOperation(begin_response.op_handle));
}
};
TEST_F(VerificationOperationsTest, RsaSuccess) {
GenerateKey(KM_ALGORITHM_RSA, KM_DIGEST_NONE, KM_PAD_NONE, 256 /* key size */);
const char message[] = "12345678901234567890123456789012";
SignMessage(message, array_size(message) - 1);
VerifyMessage(message, array_size(message) - 1);
}
TEST_F(VerificationOperationsTest, EcdsaSuccess) {
GenerateKey(KM_ALGORITHM_ECDSA, KM_DIGEST_NONE, KM_PAD_NONE, 224 /* key size */);
const char message[] = "123456789012345678901234567890123456789012345678";
SignMessage(message, array_size(message) - 1);
VerifyMessage(message, array_size(message) - 1);
}
typedef SigningOperationsTest ExportKeyTest;
TEST_F(ExportKeyTest, RsaSuccess) {
GenerateKey(KM_ALGORITHM_RSA, KM_DIGEST_NONE, KM_PAD_NONE, 256 /* key size */);
ExportKeyRequest request;
ExportKeyResponse response;
AddClientParams(&request.additional_params);
request.key_format = KM_KEY_FORMAT_X509;
request.SetKeyMaterial(key_blob());
device.ExportKey(request, &response);
ASSERT_EQ(KM_ERROR_OK, response.error);
EXPECT_TRUE(response.key_data != NULL);
// TODO(swillden): Verify that the exported key is actually usable to verify signatures.
}
TEST_F(ExportKeyTest, EcdsaSuccess) {
GenerateKey(KM_ALGORITHM_ECDSA, KM_DIGEST_NONE, KM_PAD_NONE, 224 /* key size */);
ExportKeyRequest request;
ExportKeyResponse response;
AddClientParams(&request.additional_params);
request.key_format = KM_KEY_FORMAT_X509;
request.SetKeyMaterial(key_blob());
device.ExportKey(request, &response);
ASSERT_EQ(KM_ERROR_OK, response.error);
EXPECT_TRUE(response.key_data != NULL);
// TODO(swillden): Verify that the exported key is actually usable to verify signatures.
}
TEST_F(ExportKeyTest, RsaUnsupportedKeyFormat) {
GenerateKey(KM_ALGORITHM_RSA, KM_DIGEST_NONE, KM_PAD_NONE, 256);
ExportKeyRequest request;
ExportKeyResponse response;
AddClientParams(&request.additional_params);
/* We have no other defined export formats defined. */
request.key_format = KM_KEY_FORMAT_PKCS8;
request.SetKeyMaterial(key_blob());
device.ExportKey(request, &response);
ASSERT_EQ(KM_ERROR_UNSUPPORTED_KEY_FORMAT, response.error);
EXPECT_TRUE(response.key_data == NULL);
}
TEST_F(ExportKeyTest, RsaCorruptedKeyBlob) {
GenerateKey(KM_ALGORITHM_RSA, KM_DIGEST_NONE, KM_PAD_NONE, 256);
ExportKeyRequest request;
ExportKeyResponse response;
AddClientParams(&request.additional_params);
request.key_format = KM_KEY_FORMAT_X509;
request.SetKeyMaterial(corrupt_key_blob());
device.ExportKey(request, &response);
ASSERT_EQ(KM_ERROR_INVALID_KEY_BLOB, response.error);
ASSERT_TRUE(response.key_data == NULL);
}
static string read_file(const string& file_name) {
ifstream file_stream(file_name, std::ios::binary);
istreambuf_iterator<char> file_begin(file_stream);
istreambuf_iterator<char> file_end;
return string(file_begin, file_end);
}
typedef VerificationOperationsTest ImportKeyTest;
TEST_F(ImportKeyTest, RsaSuccess) {
keymaster_key_param_t params[] = {
Authorization(TAG_PURPOSE, KM_PURPOSE_SIGN), Authorization(TAG_PURPOSE, KM_PURPOSE_VERIFY),
Authorization(TAG_DIGEST, KM_DIGEST_NONE), Authorization(TAG_PADDING, KM_PAD_NONE),
Authorization(TAG_USER_ID, 7), Authorization(TAG_USER_AUTH_ID, 8),
Authorization(TAG_APPLICATION_ID, "app_id", 6), Authorization(TAG_AUTH_TIMEOUT, 300),
};
string pk8_key = read_file("rsa_privkey_pk8.der");
ASSERT_EQ(633U, pk8_key.size());
ImportKeyRequest import_request;
import_request.key_description.Reinitialize(params, array_length(params));
import_request.key_format = KM_KEY_FORMAT_PKCS8;
import_request.SetKeyMaterial(pk8_key.data(), pk8_key.size());
ImportKeyResponse import_response;
device.ImportKey(import_request, &import_response);
ASSERT_EQ(KM_ERROR_OK, import_response.error);
EXPECT_EQ(0U, import_response.enforced.size());
EXPECT_GT(import_response.unenforced.size(), 0U);
// Check values derived from the key.
EXPECT_TRUE(contains(import_response.unenforced, TAG_ALGORITHM, KM_ALGORITHM_RSA));
EXPECT_TRUE(contains(import_response.unenforced, TAG_KEY_SIZE, 1024));
EXPECT_TRUE(contains(import_response.unenforced, TAG_RSA_PUBLIC_EXPONENT, 65537U));
// And values provided by GoogleKeymaster
EXPECT_TRUE(contains(import_response.unenforced, TAG_ORIGIN, KM_ORIGIN_IMPORTED));
EXPECT_TRUE(contains(import_response.unenforced, KM_TAG_CREATION_DATETIME));
size_t message_len = 1024 / 8;
UniquePtr<uint8_t[]> message(new uint8_t[message_len]);
std::fill(message.get(), message.get() + message_len, 'a');
SignMessage(import_response.key_blob, message.get(), message_len);
ASSERT_TRUE(signature() != NULL);
VerifyMessage(import_response.key_blob, message.get(), message_len);
}
TEST_F(ImportKeyTest, RsaKeySizeMismatch) {
keymaster_key_param_t params[] = {
Authorization(TAG_PURPOSE, KM_PURPOSE_SIGN), Authorization(TAG_PURPOSE, KM_PURPOSE_VERIFY),
Authorization(TAG_DIGEST, KM_DIGEST_NONE), Authorization(TAG_PADDING, KM_PAD_NONE),
Authorization(TAG_KEY_SIZE, 2048), // Doesn't match key
Authorization(TAG_USER_ID, 7), Authorization(TAG_USER_AUTH_ID, 8),
Authorization(TAG_APPLICATION_ID, "app_id", 6), Authorization(TAG_AUTH_TIMEOUT, 300),
};
string pk8_key = read_file("rsa_privkey_pk8.der");
ASSERT_EQ(633U, pk8_key.size());
ImportKeyRequest import_request;
import_request.key_description.Reinitialize(params, array_length(params));
import_request.key_format = KM_KEY_FORMAT_PKCS8;
import_request.SetKeyMaterial(pk8_key.data(), pk8_key.size());
ImportKeyResponse import_response;
device.ImportKey(import_request, &import_response);
ASSERT_EQ(KM_ERROR_IMPORT_PARAMETER_MISMATCH, import_response.error);
}
TEST_F(ImportKeyTest, RsaPublicExponenMismatch) {
keymaster_key_param_t params[] = {
Authorization(TAG_PURPOSE, KM_PURPOSE_SIGN), Authorization(TAG_PURPOSE, KM_PURPOSE_VERIFY),
Authorization(TAG_DIGEST, KM_DIGEST_NONE), Authorization(TAG_PADDING, KM_PAD_NONE),
Authorization(TAG_RSA_PUBLIC_EXPONENT, 3), Authorization(TAG_USER_ID, 7),
Authorization(TAG_USER_AUTH_ID, 8), Authorization(TAG_APPLICATION_ID, "app_id", 6),
Authorization(TAG_AUTH_TIMEOUT, 300),
};
string pk8_key = read_file("rsa_privkey_pk8.der");
ASSERT_EQ(633U, pk8_key.size());
ImportKeyRequest import_request;
import_request.key_description.Reinitialize(params, array_length(params));
import_request.key_format = KM_KEY_FORMAT_PKCS8;
import_request.SetKeyMaterial(pk8_key.data(), pk8_key.size());
ImportKeyResponse import_response;
device.ImportKey(import_request, &import_response);
ASSERT_EQ(KM_ERROR_IMPORT_PARAMETER_MISMATCH, import_response.error);
}
TEST_F(ImportKeyTest, EcdsaSuccess) {
keymaster_key_param_t params[] = {
Authorization(TAG_PURPOSE, KM_PURPOSE_SIGN), Authorization(TAG_PURPOSE, KM_PURPOSE_VERIFY),
Authorization(TAG_DIGEST, KM_DIGEST_NONE), Authorization(TAG_PADDING, KM_PAD_NONE),
Authorization(TAG_USER_ID, 7), Authorization(TAG_USER_AUTH_ID, 8),
Authorization(TAG_APPLICATION_ID, "app_id", 6), Authorization(TAG_AUTH_TIMEOUT, 300),
};
string pk8_key = read_file("ec_privkey_pk8.der");
ASSERT_EQ(138U, pk8_key.size());
ImportKeyRequest import_request;
import_request.key_description.Reinitialize(params, array_length(params));
import_request.key_format = KM_KEY_FORMAT_PKCS8;
import_request.SetKeyMaterial(pk8_key.data(), pk8_key.size());
ImportKeyResponse import_response;
device.ImportKey(import_request, &import_response);
ASSERT_EQ(KM_ERROR_OK, import_response.error);
EXPECT_EQ(0U, import_response.enforced.size());
EXPECT_GT(import_response.unenforced.size(), 0U);
// Check values derived from the key.
EXPECT_TRUE(contains(import_response.unenforced, TAG_ALGORITHM, KM_ALGORITHM_ECDSA));
EXPECT_TRUE(contains(import_response.unenforced, TAG_KEY_SIZE, 256));
// And values provided by GoogleKeymaster
EXPECT_TRUE(contains(import_response.unenforced, TAG_ORIGIN, KM_ORIGIN_IMPORTED));
EXPECT_TRUE(contains(import_response.unenforced, KM_TAG_CREATION_DATETIME));
size_t message_len = 1024 / 8;
UniquePtr<uint8_t[]> message(new uint8_t[message_len]);
std::fill(message.get(), message.get() + message_len, 'a');
SignMessage(import_response.key_blob, message.get(), message_len);
ASSERT_TRUE(signature() != NULL);
VerifyMessage(import_response.key_blob, message.get(), message_len);
}
TEST_F(ImportKeyTest, EcdsaSizeSpecified) {
keymaster_key_param_t params[] = {
Authorization(TAG_PURPOSE, KM_PURPOSE_SIGN), Authorization(TAG_PURPOSE, KM_PURPOSE_VERIFY),
Authorization(TAG_DIGEST, KM_DIGEST_NONE), Authorization(TAG_PADDING, KM_PAD_NONE),
Authorization(TAG_USER_ID, 7), Authorization(TAG_USER_AUTH_ID, 8),
Authorization(TAG_APPLICATION_ID, "app_id", 6), Authorization(TAG_AUTH_TIMEOUT, 300),
Authorization(TAG_KEY_SIZE, 256),
};
string pk8_key = read_file("ec_privkey_pk8.der");
ASSERT_EQ(138U, pk8_key.size());
ImportKeyRequest import_request;
import_request.key_description.Reinitialize(params, array_length(params));
import_request.key_format = KM_KEY_FORMAT_PKCS8;
import_request.SetKeyMaterial(pk8_key.data(), pk8_key.size());
ImportKeyResponse import_response;
device.ImportKey(import_request, &import_response);
ASSERT_EQ(KM_ERROR_OK, import_response.error);
EXPECT_EQ(0U, import_response.enforced.size());
EXPECT_GT(import_response.unenforced.size(), 0U);
// Check values derived from the key.
EXPECT_TRUE(contains(import_response.unenforced, TAG_ALGORITHM, KM_ALGORITHM_ECDSA));
EXPECT_TRUE(contains(import_response.unenforced, TAG_KEY_SIZE, 256));
// And values provided by GoogleKeymaster
EXPECT_TRUE(contains(import_response.unenforced, TAG_ORIGIN, KM_ORIGIN_IMPORTED));
EXPECT_TRUE(contains(import_response.unenforced, KM_TAG_CREATION_DATETIME));
size_t message_len = 1024 / 8;
UniquePtr<uint8_t[]> message(new uint8_t[message_len]);
std::fill(message.get(), message.get() + message_len, 'a');
SignMessage(import_response.key_blob, message.get(), message_len);
ASSERT_TRUE(signature() != NULL);
VerifyMessage(import_response.key_blob, message.get(), message_len);
}
TEST_F(ImportKeyTest, EcdsaSizeMismatch) {
keymaster_key_param_t params[] = {
Authorization(TAG_PURPOSE, KM_PURPOSE_SIGN), Authorization(TAG_PURPOSE, KM_PURPOSE_VERIFY),
Authorization(TAG_DIGEST, KM_DIGEST_NONE), Authorization(TAG_PADDING, KM_PAD_NONE),
Authorization(TAG_USER_ID, 7), Authorization(TAG_USER_AUTH_ID, 8),
Authorization(TAG_APPLICATION_ID, "app_id", 6), Authorization(TAG_AUTH_TIMEOUT, 300),
Authorization(TAG_KEY_SIZE, 224),
};
string pk8_key = read_file("ec_privkey_pk8.der");
ASSERT_EQ(138U, pk8_key.size());
ImportKeyRequest import_request;
import_request.key_description.Reinitialize(params, array_length(params));
import_request.key_format = KM_KEY_FORMAT_PKCS8;
import_request.SetKeyMaterial(pk8_key.data(), pk8_key.size());
ImportKeyResponse import_response;
device.ImportKey(import_request, &import_response);
ASSERT_EQ(KM_ERROR_IMPORT_PARAMETER_MISMATCH, import_response.error);
}
/**
* Test class that provides some infrastructure for generating keys and encrypting messages.
*/
class EncryptionOperationsTest : public KeymasterTest {
protected:
void GenerateKey(keymaster_algorithm_t algorithm, keymaster_padding_t padding,
uint32_t key_size) {
keymaster_key_param_t params[] = {
Authorization(TAG_PURPOSE, KM_PURPOSE_ENCRYPT),
Authorization(TAG_PURPOSE, KM_PURPOSE_DECRYPT), Authorization(TAG_ALGORITHM, algorithm),
Authorization(TAG_KEY_SIZE, key_size), Authorization(TAG_USER_ID, 7),
Authorization(TAG_USER_AUTH_ID, 8), Authorization(TAG_APPLICATION_ID, "app_id", 6),
Authorization(TAG_AUTH_TIMEOUT, 300),
};
GenerateKeyRequest generate_request;
generate_request.key_description.Reinitialize(params, array_length(params));
if (static_cast<int>(padding) != -1)
generate_request.key_description.push_back(TAG_PADDING, padding);
device.GenerateKey(generate_request, &generate_response_);
EXPECT_EQ(KM_ERROR_OK, generate_response_.error);
}
void GenerateSymmetricKey(keymaster_algorithm_t algorithm, uint32_t key_size,
keymaster_block_mode_t block_mode, uint32_t chunk_length) {
keymaster_key_param_t params[] = {
Authorization(TAG_PURPOSE, KM_PURPOSE_ENCRYPT),
Authorization(TAG_PURPOSE, KM_PURPOSE_DECRYPT), Authorization(TAG_ALGORITHM, algorithm),
Authorization(TAG_BLOCK_MODE, block_mode),
Authorization(TAG_CHUNK_LENGTH, chunk_length), Authorization(TAG_KEY_SIZE, key_size),
Authorization(TAG_MAC_LENGTH, 16), Authorization(TAG_USER_ID, 7),
Authorization(TAG_USER_AUTH_ID, 8), Authorization(TAG_APPLICATION_ID, "app_id", 6),
Authorization(TAG_AUTH_TIMEOUT, 300),
};
GenerateKeyRequest generate_request;
generate_request.key_description.Reinitialize(params, array_length(params));
device.GenerateKey(generate_request, &generate_response_);
EXPECT_EQ(KM_ERROR_OK, generate_response_.error);
}
keymaster_error_t BeginOperation(keymaster_purpose_t purpose,
const keymaster_key_blob_t& key_blob, uint64_t* op_handle) {
BeginOperationRequest begin_request;
begin_request.SetKeyMaterial(key_blob);
begin_request.purpose = purpose;
AddClientParams(&begin_request.additional_params);
BeginOperationResponse begin_response;
device.BeginOperation(begin_request, &begin_response);
*op_handle = begin_response.op_handle;
return begin_response.error;
}
keymaster_error_t UpdateOperation(uint64_t op_handle, const void* message, size_t size,
string* output, size_t* input_consumed) {
UpdateOperationRequest update_request;
update_request.op_handle = op_handle;
update_request.input.Reinitialize(message, size);
UpdateOperationResponse update_response;
device.UpdateOperation(update_request, &update_response);
if (update_response.error == KM_ERROR_OK)
output->append(reinterpret_cast<const char*>(update_response.output.peek_read()),
update_response.output.available_read());
*input_consumed = update_response.input_consumed;
return update_response.error;
}
keymaster_error_t FinishOperation(uint64_t op_handle, string* output) {
FinishOperationRequest finish_request;
finish_request.op_handle = op_handle;
FinishOperationResponse finish_response;
device.FinishOperation(finish_request, &finish_response);
if (finish_response.error == KM_ERROR_OK)
output->append(reinterpret_cast<const char*>(finish_response.output.peek_read()),
finish_response.output.available_read());
return finish_response.error;
}
string ProcessMessage(keymaster_purpose_t purpose, const keymaster_key_blob_t& key_blob,
const void* message, size_t size) {
uint64_t op_handle;
EXPECT_EQ(KM_ERROR_OK, BeginOperation(purpose, key_blob, &op_handle));
string result;
size_t input_consumed;
EXPECT_EQ(KM_ERROR_OK, UpdateOperation(op_handle, message, size, &result, &input_consumed));
EXPECT_EQ(size, input_consumed);
EXPECT_EQ(KM_ERROR_OK, FinishOperation(op_handle, &result));
return result;
}
string EncryptMessage(const void* message, size_t size) {
return ProcessMessage(KM_PURPOSE_ENCRYPT, generate_response_.key_blob, message, size);
}
string DecryptMessage(const void* ciphertext, size_t size) {
return ProcessMessage(KM_PURPOSE_DECRYPT, generate_response_.key_blob, ciphertext, size);
}
void AddClientParams(AuthorizationSet* set) { set->push_back(TAG_APPLICATION_ID, "app_id", 6); }
const keymaster_key_blob_t& key_blob() { return generate_response_.key_blob; }
const keymaster_key_blob_t& corrupt_key_blob() {
uint8_t* tmp = const_cast<uint8_t*>(generate_response_.key_blob.key_material);
++tmp[generate_response_.key_blob.key_material_size / 2];
return generate_response_.key_blob;
}
protected:
GenerateKeyResponse generate_response_;
};
TEST_F(EncryptionOperationsTest, RsaOaepSuccess) {
GenerateKey(KM_ALGORITHM_RSA, KM_PAD_RSA_OAEP, 512);
const char message[] = "Hello World!";
string ciphertext1 = EncryptMessage(message, strlen(message));
EXPECT_EQ(512 / 8, ciphertext1.size());
string ciphertext2 = EncryptMessage(message, strlen(message));
EXPECT_EQ(512 / 8, ciphertext2.size());
// OAEP randomizes padding so every result should be different.
EXPECT_NE(ciphertext1, ciphertext2);
}
TEST_F(EncryptionOperationsTest, RsaOaepRoundTrip) {
GenerateKey(KM_ALGORITHM_RSA, KM_PAD_RSA_OAEP, 512);
const char message[] = "Hello World!";
string ciphertext = EncryptMessage(message, strlen(message));
EXPECT_EQ(512 / 8, ciphertext.size());
string plaintext = DecryptMessage(ciphertext.data(), ciphertext.size());
EXPECT_EQ(message, plaintext);
}
TEST_F(EncryptionOperationsTest, RsaOaepTooLarge) {
GenerateKey(KM_ALGORITHM_RSA, KM_PAD_RSA_OAEP, 512);
const char message[] = "12345678901234567890123";
uint64_t op_handle;
string result;
size_t input_consumed;
EXPECT_EQ(KM_ERROR_OK,
BeginOperation(KM_PURPOSE_ENCRYPT, generate_response_.key_blob, &op_handle));
EXPECT_EQ(KM_ERROR_OK,
UpdateOperation(op_handle, message, array_size(message), &result, &input_consumed));
EXPECT_EQ(KM_ERROR_INVALID_INPUT_LENGTH, FinishOperation(op_handle, &result));
EXPECT_EQ(0, result.size());
}
TEST_F(EncryptionOperationsTest, RsaOaepCorruptedDecrypt) {
GenerateKey(KM_ALGORITHM_RSA, KM_PAD_RSA_OAEP, 512);
const char message[] = "Hello World!";
string ciphertext = EncryptMessage(message, strlen(message));
EXPECT_EQ(512 / 8, ciphertext.size());
// Corrupt the ciphertext
ciphertext[512 / 8 / 2]++;
uint64_t op_handle;
string result;
size_t input_consumed;
EXPECT_EQ(KM_ERROR_OK,
BeginOperation(KM_PURPOSE_DECRYPT, generate_response_.key_blob, &op_handle));
EXPECT_EQ(KM_ERROR_OK, UpdateOperation(op_handle, ciphertext.data(), ciphertext.size(), &result,
&input_consumed));
EXPECT_EQ(KM_ERROR_UNKNOWN_ERROR, FinishOperation(op_handle, &result));
EXPECT_EQ(0, result.size());
}
TEST_F(EncryptionOperationsTest, RsaPkcs1Success) {
GenerateKey(KM_ALGORITHM_RSA, KM_PAD_RSA_PKCS1_1_5_ENCRYPT, 512);
const char message[] = "Hello World!";
string ciphertext1 = EncryptMessage(message, strlen(message));
EXPECT_EQ(512 / 8, ciphertext1.size());
string ciphertext2 = EncryptMessage(message, strlen(message));
EXPECT_EQ(512 / 8, ciphertext2.size());
// PKCS1 v1.5 randomizes padding so every result should be different.
EXPECT_NE(ciphertext1, ciphertext2);
}
TEST_F(EncryptionOperationsTest, RsaPkcs1RoundTrip) {
GenerateKey(KM_ALGORITHM_RSA, KM_PAD_RSA_PKCS1_1_5_ENCRYPT, 512);
const char message[] = "Hello World!";
string ciphertext = EncryptMessage(message, strlen(message));
EXPECT_EQ(512 / 8, ciphertext.size());
string plaintext = DecryptMessage(ciphertext.data(), ciphertext.size());
EXPECT_EQ(message, plaintext);
}
TEST_F(EncryptionOperationsTest, RsaPkcs1TooLarge) {
GenerateKey(KM_ALGORITHM_RSA, KM_PAD_RSA_PKCS1_1_5_ENCRYPT, 512);
const char message[] = "1234567890123456789012345678901234567890123456789012";
uint64_t op_handle;
string result;
size_t input_consumed;
EXPECT_EQ(KM_ERROR_OK,
BeginOperation(KM_PURPOSE_ENCRYPT, generate_response_.key_blob, &op_handle));
EXPECT_EQ(KM_ERROR_OK,
UpdateOperation(op_handle, message, array_size(message), &result, &input_consumed));
EXPECT_EQ(KM_ERROR_INVALID_INPUT_LENGTH, FinishOperation(op_handle, &result));
EXPECT_EQ(0, result.size());
}
TEST_F(EncryptionOperationsTest, RsaPkcs1CorruptedDecrypt) {
GenerateKey(KM_ALGORITHM_RSA, KM_PAD_RSA_PKCS1_1_5_ENCRYPT, 512);
const char message[] = "Hello World!";
string ciphertext = EncryptMessage(message, strlen(message));
EXPECT_EQ(512 / 8, ciphertext.size());
// Corrupt the ciphertext
ciphertext[512 / 8 / 2]++;
uint64_t op_handle;
string result;
size_t input_consumed;
EXPECT_EQ(KM_ERROR_OK,
BeginOperation(KM_PURPOSE_DECRYPT, generate_response_.key_blob, &op_handle));
EXPECT_EQ(KM_ERROR_OK, UpdateOperation(op_handle, ciphertext.data(), ciphertext.size(), &result,
&input_consumed));
EXPECT_EQ(KM_ERROR_UNKNOWN_ERROR, FinishOperation(op_handle, &result));
EXPECT_EQ(0, result.size());
}
TEST_F(EncryptionOperationsTest, AesOcbSuccess) {
GenerateSymmetricKey(KM_ALGORITHM_AES, 128, KM_MODE_OCB, 4096);
const char message[] = "Hello World!";
string ciphertext1 = EncryptMessage(message, strlen(message));
EXPECT_EQ(12 /* nonce */ + strlen(message) + 16 /* tag */, ciphertext1.size());
string ciphertext2 = EncryptMessage(message, strlen(message));
EXPECT_EQ(12 /* nonce */ + strlen(message) + 16 /* tag */, ciphertext2.size());
// OCB uses a random nonce, so every output should be different
EXPECT_NE(ciphertext1, ciphertext2);
}
typedef KeymasterTest VersionTest;
TEST_F(VersionTest, GetVersion) {
GetVersionRequest req;
GetVersionResponse rsp;
device.GetVersion(req, &rsp);
EXPECT_EQ(KM_ERROR_OK, rsp.error);
EXPECT_EQ(1, rsp.major_ver);
EXPECT_EQ(0, rsp.minor_ver);
EXPECT_EQ(0, rsp.subminor_ver);
}
} // namespace test
} // namespace keymaster