blob: 14df611b2161651a266c2eb28acdf0da5965b8a1 [file] [log] [blame]
/*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <limits.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/rsa.h>
#include "rsa_operation.h"
#include "openssl_utils.h"
namespace keymaster {
struct RSA_Delete {
void operator()(RSA* p) const { RSA_free(p); }
};
RsaOperation::~RsaOperation() {
if (rsa_key_ != NULL)
RSA_free(rsa_key_);
}
keymaster_error_t RsaOperation::Update(const Buffer& input, Buffer* /* output */,
size_t* input_consumed) {
assert(input_consumed);
switch (purpose()) {
default:
return KM_ERROR_UNIMPLEMENTED;
case KM_PURPOSE_SIGN:
case KM_PURPOSE_VERIFY:
case KM_PURPOSE_ENCRYPT:
case KM_PURPOSE_DECRYPT:
return StoreData(input, input_consumed);
}
}
keymaster_error_t RsaOperation::StoreData(const Buffer& input, size_t* input_consumed) {
assert(input_consumed);
if (!data_.reserve(data_.available_read() + input.available_read()) ||
!data_.write(input.peek_read(), input.available_read()))
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
*input_consumed = input.available_read();
return KM_ERROR_OK;
}
keymaster_error_t RsaSignOperation::Finish(const Buffer& /* signature */, Buffer* output) {
assert(output);
output->Reinitialize(RSA_size(rsa_key_));
int bytes_encrypted = RSA_private_encrypt(data_.available_read(), data_.peek_read(),
output->peek_write(), rsa_key_, RSA_NO_PADDING);
if (bytes_encrypted < 0)
return KM_ERROR_UNKNOWN_ERROR;
assert(bytes_encrypted == RSA_size(rsa_key_));
output->advance_write(bytes_encrypted);
return KM_ERROR_OK;
}
keymaster_error_t RsaVerifyOperation::Finish(const Buffer& signature, Buffer* /* output */) {
#if defined(OPENSSL_IS_BORINGSSL)
size_t message_size = data_.available_read();
#else
if (data_.available_read() > INT_MAX)
return KM_ERROR_INVALID_INPUT_LENGTH;
int message_size = (int)data_.available_read();
#endif
if (message_size != RSA_size(rsa_key_))
return KM_ERROR_INVALID_INPUT_LENGTH;
if (data_.available_read() != signature.available_read())
return KM_ERROR_VERIFICATION_FAILED;
UniquePtr<uint8_t[]> decrypted_data(new uint8_t[RSA_size(rsa_key_)]);
int bytes_decrypted = RSA_public_decrypt(signature.available_read(), signature.peek_read(),
decrypted_data.get(), rsa_key_, RSA_NO_PADDING);
if (bytes_decrypted < 0)
return KM_ERROR_UNKNOWN_ERROR;
assert(bytes_decrypted == RSA_size(rsa_key_));
if (memcmp_s(decrypted_data.get(), data_.peek_read(), data_.available_read()) == 0)
return KM_ERROR_OK;
return KM_ERROR_VERIFICATION_FAILED;
}
const int OAEP_PADDING_OVERHEAD = 41;
const int PKCS1_PADDING_OVERHEAD = 11;
keymaster_error_t RsaEncryptOperation::Finish(const Buffer& /* signature */, Buffer* output) {
assert(output);
int openssl_padding;
#if defined(OPENSSL_IS_BORINGSSL)
size_t message_size = data_.available_read();
#else
if (data_.available_read() > INT_MAX)
return KM_ERROR_INVALID_INPUT_LENGTH;
int message_size = (int)data_.available_read();
#endif
switch (padding_) {
case KM_PAD_RSA_OAEP:
openssl_padding = RSA_PKCS1_OAEP_PADDING;
if (message_size >= RSA_size(rsa_key_) - OAEP_PADDING_OVERHEAD) {
logger().error("Cannot encrypt %d bytes with %d-byte key and OAEP padding",
data_.available_read(), RSA_size(rsa_key_));
return KM_ERROR_INVALID_INPUT_LENGTH;
}
break;
case KM_PAD_RSA_PKCS1_1_5_ENCRYPT:
openssl_padding = RSA_PKCS1_PADDING;
if (message_size >= RSA_size(rsa_key_) - PKCS1_PADDING_OVERHEAD) {
logger().error("Cannot encrypt %d bytes with %d-byte key and PKCS1 padding",
data_.available_read(), RSA_size(rsa_key_));
return KM_ERROR_INVALID_INPUT_LENGTH;
}
break;
default:
logger().error("Padding mode %d not supported", padding_);
return KM_ERROR_UNSUPPORTED_PADDING_MODE;
}
output->Reinitialize(RSA_size(rsa_key_));
int bytes_encrypted = RSA_public_encrypt(data_.available_read(), data_.peek_read(),
output->peek_write(), rsa_key_, openssl_padding);
if (bytes_encrypted < 0) {
logger().error("Error %d encrypting data with RSA", ERR_get_error());
return KM_ERROR_UNKNOWN_ERROR;
}
assert(bytes_encrypted == RSA_size(rsa_key_));
output->advance_write(bytes_encrypted);
return KM_ERROR_OK;
}
keymaster_error_t RsaDecryptOperation::Finish(const Buffer& /* signature */, Buffer* output) {
assert(output);
int openssl_padding;
switch (padding_) {
case KM_PAD_RSA_OAEP:
openssl_padding = RSA_PKCS1_OAEP_PADDING;
break;
case KM_PAD_RSA_PKCS1_1_5_ENCRYPT:
openssl_padding = RSA_PKCS1_PADDING;
break;
default:
logger().error("Padding mode %d not supported", padding_);
return KM_ERROR_UNSUPPORTED_PADDING_MODE;
}
output->Reinitialize(RSA_size(rsa_key_));
int bytes_decrypted = RSA_private_decrypt(data_.available_read(), data_.peek_read(),
output->peek_write(), rsa_key_, openssl_padding);
if (bytes_decrypted < 0) {
logger().error("Error %d decrypting data with RSA", ERR_get_error());
return KM_ERROR_UNKNOWN_ERROR;
}
output->advance_write(bytes_decrypted);
return KM_ERROR_OK;
}
} // namespace keymaster