| /* |
| * Copyright (C) 2010 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* TO DO: |
| * 1. Perhaps keep several copies of the encrypted key, in case something |
| * goes horribly wrong? |
| * |
| */ |
| |
| #include <sys/types.h> |
| #include <sys/wait.h> |
| #include <sys/stat.h> |
| #include <fcntl.h> |
| #include <unistd.h> |
| #include <stdio.h> |
| #include <sys/ioctl.h> |
| #include <linux/dm-ioctl.h> |
| #include <libgen.h> |
| #include <stdlib.h> |
| #include <sys/param.h> |
| #include <string.h> |
| #include <sys/mount.h> |
| #include <openssl/evp.h> |
| #include <openssl/sha.h> |
| #include <errno.h> |
| #include <ext4.h> |
| #include <linux/kdev_t.h> |
| #include <fs_mgr.h> |
| #include "cryptfs.h" |
| #define LOG_TAG "Cryptfs" |
| #include "cutils/log.h" |
| #include "cutils/properties.h" |
| #include "cutils/android_reboot.h" |
| #include "hardware_legacy/power.h" |
| #include <logwrap/logwrap.h> |
| #include "VolumeManager.h" |
| #include "VoldUtil.h" |
| #include "crypto_scrypt.h" |
| |
| #define UNUSED __attribute__((unused)) |
| |
| #define DM_CRYPT_BUF_SIZE 4096 |
| #define DATA_MNT_POINT "/data" |
| |
| #define HASH_COUNT 2000 |
| #define KEY_LEN_BYTES 16 |
| #define IV_LEN_BYTES 16 |
| |
| #define KEY_IN_FOOTER "footer" |
| |
| #define EXT4_FS 1 |
| #define FAT_FS 2 |
| |
| #define TABLE_LOAD_RETRIES 10 |
| |
| char *me = "cryptfs"; |
| |
| static unsigned char saved_master_key[KEY_LEN_BYTES]; |
| static char *saved_mount_point; |
| static int master_key_saved = 0; |
| static struct crypt_persist_data *persist_data = NULL; |
| |
| extern struct fstab *fstab; |
| |
| static void cryptfs_reboot(int recovery) |
| { |
| if (recovery) { |
| property_set(ANDROID_RB_PROPERTY, "reboot,recovery"); |
| } else { |
| property_set(ANDROID_RB_PROPERTY, "reboot"); |
| } |
| sleep(20); |
| |
| /* Shouldn't get here, reboot should happen before sleep times out */ |
| return; |
| } |
| |
| static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags) |
| { |
| memset(io, 0, dataSize); |
| io->data_size = dataSize; |
| io->data_start = sizeof(struct dm_ioctl); |
| io->version[0] = 4; |
| io->version[1] = 0; |
| io->version[2] = 0; |
| io->flags = flags; |
| if (name) { |
| strncpy(io->name, name, sizeof(io->name)); |
| } |
| } |
| |
| /** |
| * Gets the default device scrypt parameters for key derivation time tuning. |
| * The parameters should lead to about one second derivation time for the |
| * given device. |
| */ |
| static void get_device_scrypt_params(struct crypt_mnt_ftr *ftr) { |
| const int default_params[] = SCRYPT_DEFAULTS; |
| int params[] = SCRYPT_DEFAULTS; |
| char paramstr[PROPERTY_VALUE_MAX]; |
| char *token; |
| char *saveptr; |
| int i; |
| |
| property_get(SCRYPT_PROP, paramstr, ""); |
| if (paramstr[0] != '\0') { |
| /* |
| * The token we're looking for should be three integers separated by |
| * colons (e.g., "12:8:1"). Scan the property to make sure it matches. |
| */ |
| for (i = 0, token = strtok_r(paramstr, ":", &saveptr); |
| token != NULL && i < 3; |
| i++, token = strtok_r(NULL, ":", &saveptr)) { |
| char *endptr; |
| params[i] = strtol(token, &endptr, 10); |
| |
| /* |
| * Check that there was a valid number and it's 8-bit. If not, |
| * break out and the end check will take the default values. |
| */ |
| if ((*token == '\0') || (*endptr != '\0') || params[i] < 0 || params[i] > 255) { |
| break; |
| } |
| } |
| |
| /* |
| * If there were not enough tokens or a token was malformed (not an |
| * integer), it will end up here and the default parameters can be |
| * taken. |
| */ |
| if ((i != 3) || (token != NULL)) { |
| SLOGW("bad scrypt parameters '%s' should be like '12:8:1'; using defaults", paramstr); |
| memcpy(params, default_params, sizeof(params)); |
| } |
| } |
| |
| ftr->N_factor = params[0]; |
| ftr->r_factor = params[1]; |
| ftr->p_factor = params[2]; |
| } |
| |
| static unsigned int get_fs_size(char *dev) |
| { |
| int fd, block_size; |
| struct ext4_super_block sb; |
| off64_t len; |
| |
| if ((fd = open(dev, O_RDONLY)) < 0) { |
| SLOGE("Cannot open device to get filesystem size "); |
| return 0; |
| } |
| |
| if (lseek64(fd, 1024, SEEK_SET) < 0) { |
| SLOGE("Cannot seek to superblock"); |
| return 0; |
| } |
| |
| if (read(fd, &sb, sizeof(sb)) != sizeof(sb)) { |
| SLOGE("Cannot read superblock"); |
| return 0; |
| } |
| |
| close(fd); |
| |
| block_size = 1024 << sb.s_log_block_size; |
| /* compute length in bytes */ |
| len = ( ((off64_t)sb.s_blocks_count_hi << 32) + sb.s_blocks_count_lo) * block_size; |
| |
| /* return length in sectors */ |
| return (unsigned int) (len / 512); |
| } |
| |
| static int get_crypt_ftr_info(char **metadata_fname, off64_t *off) |
| { |
| static int cached_data = 0; |
| static off64_t cached_off = 0; |
| static char cached_metadata_fname[PROPERTY_VALUE_MAX] = ""; |
| int fd; |
| char key_loc[PROPERTY_VALUE_MAX]; |
| char real_blkdev[PROPERTY_VALUE_MAX]; |
| unsigned int nr_sec; |
| int rc = -1; |
| |
| if (!cached_data) { |
| fs_mgr_get_crypt_info(fstab, key_loc, real_blkdev, sizeof(key_loc)); |
| |
| if (!strcmp(key_loc, KEY_IN_FOOTER)) { |
| if ( (fd = open(real_blkdev, O_RDWR)) < 0) { |
| SLOGE("Cannot open real block device %s\n", real_blkdev); |
| return -1; |
| } |
| |
| if ((nr_sec = get_blkdev_size(fd))) { |
| /* If it's an encrypted Android partition, the last 16 Kbytes contain the |
| * encryption info footer and key, and plenty of bytes to spare for future |
| * growth. |
| */ |
| strlcpy(cached_metadata_fname, real_blkdev, sizeof(cached_metadata_fname)); |
| cached_off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET; |
| cached_data = 1; |
| } else { |
| SLOGE("Cannot get size of block device %s\n", real_blkdev); |
| } |
| close(fd); |
| } else { |
| strlcpy(cached_metadata_fname, key_loc, sizeof(cached_metadata_fname)); |
| cached_off = 0; |
| cached_data = 1; |
| } |
| } |
| |
| if (cached_data) { |
| if (metadata_fname) { |
| *metadata_fname = cached_metadata_fname; |
| } |
| if (off) { |
| *off = cached_off; |
| } |
| rc = 0; |
| } |
| |
| return rc; |
| } |
| |
| /* key or salt can be NULL, in which case just skip writing that value. Useful to |
| * update the failed mount count but not change the key. |
| */ |
| static int put_crypt_ftr_and_key(struct crypt_mnt_ftr *crypt_ftr) |
| { |
| int fd; |
| unsigned int nr_sec, cnt; |
| /* starting_off is set to the SEEK_SET offset |
| * where the crypto structure starts |
| */ |
| off64_t starting_off; |
| int rc = -1; |
| char *fname = NULL; |
| struct stat statbuf; |
| |
| if (get_crypt_ftr_info(&fname, &starting_off)) { |
| SLOGE("Unable to get crypt_ftr_info\n"); |
| return -1; |
| } |
| if (fname[0] != '/') { |
| SLOGE("Unexpected value for crypto key location\n"); |
| return -1; |
| } |
| if ( (fd = open(fname, O_RDWR | O_CREAT, 0600)) < 0) { |
| SLOGE("Cannot open footer file %s for put\n", fname); |
| return -1; |
| } |
| |
| /* Seek to the start of the crypt footer */ |
| if (lseek64(fd, starting_off, SEEK_SET) == -1) { |
| SLOGE("Cannot seek to real block device footer\n"); |
| goto errout; |
| } |
| |
| if ((cnt = write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) { |
| SLOGE("Cannot write real block device footer\n"); |
| goto errout; |
| } |
| |
| fstat(fd, &statbuf); |
| /* If the keys are kept on a raw block device, do not try to truncate it. */ |
| if (S_ISREG(statbuf.st_mode)) { |
| if (ftruncate(fd, 0x4000)) { |
| SLOGE("Cannot set footer file size\n"); |
| goto errout; |
| } |
| } |
| |
| /* Success! */ |
| rc = 0; |
| |
| errout: |
| close(fd); |
| return rc; |
| |
| } |
| |
| static inline int unix_read(int fd, void* buff, int len) |
| { |
| return TEMP_FAILURE_RETRY(read(fd, buff, len)); |
| } |
| |
| static inline int unix_write(int fd, const void* buff, int len) |
| { |
| return TEMP_FAILURE_RETRY(write(fd, buff, len)); |
| } |
| |
| static void init_empty_persist_data(struct crypt_persist_data *pdata, int len) |
| { |
| memset(pdata, 0, len); |
| pdata->persist_magic = PERSIST_DATA_MAGIC; |
| pdata->persist_valid_entries = 0; |
| } |
| |
| /* A routine to update the passed in crypt_ftr to the lastest version. |
| * fd is open read/write on the device that holds the crypto footer and persistent |
| * data, crypt_ftr is a pointer to the struct to be updated, and offset is the |
| * absolute offset to the start of the crypt_mnt_ftr on the passed in fd. |
| */ |
| static void upgrade_crypt_ftr(int fd, struct crypt_mnt_ftr *crypt_ftr, off64_t offset) |
| { |
| int orig_major = crypt_ftr->major_version; |
| int orig_minor = crypt_ftr->minor_version; |
| |
| if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 0)) { |
| struct crypt_persist_data *pdata; |
| off64_t pdata_offset = offset + CRYPT_FOOTER_TO_PERSIST_OFFSET; |
| |
| SLOGW("upgrading crypto footer to 1.1"); |
| |
| pdata = malloc(CRYPT_PERSIST_DATA_SIZE); |
| if (pdata == NULL) { |
| SLOGE("Cannot allocate persisent data\n"); |
| return; |
| } |
| memset(pdata, 0, CRYPT_PERSIST_DATA_SIZE); |
| |
| /* Need to initialize the persistent data area */ |
| if (lseek64(fd, pdata_offset, SEEK_SET) == -1) { |
| SLOGE("Cannot seek to persisent data offset\n"); |
| return; |
| } |
| /* Write all zeros to the first copy, making it invalid */ |
| unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE); |
| |
| /* Write a valid but empty structure to the second copy */ |
| init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE); |
| unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE); |
| |
| /* Update the footer */ |
| crypt_ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE; |
| crypt_ftr->persist_data_offset[0] = pdata_offset; |
| crypt_ftr->persist_data_offset[1] = pdata_offset + CRYPT_PERSIST_DATA_SIZE; |
| crypt_ftr->minor_version = 1; |
| } |
| |
| if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version)) { |
| SLOGW("upgrading crypto footer to 1.2"); |
| /* But keep the old kdf_type. |
| * It will get updated later to KDF_SCRYPT after the password has been verified. |
| */ |
| crypt_ftr->kdf_type = KDF_PBKDF2; |
| get_device_scrypt_params(crypt_ftr); |
| crypt_ftr->minor_version = 2; |
| } |
| |
| if ((orig_major != crypt_ftr->major_version) || (orig_minor != crypt_ftr->minor_version)) { |
| if (lseek64(fd, offset, SEEK_SET) == -1) { |
| SLOGE("Cannot seek to crypt footer\n"); |
| return; |
| } |
| unix_write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr)); |
| } |
| } |
| |
| |
| static int get_crypt_ftr_and_key(struct crypt_mnt_ftr *crypt_ftr) |
| { |
| int fd; |
| unsigned int nr_sec, cnt; |
| off64_t starting_off; |
| int rc = -1; |
| char *fname = NULL; |
| struct stat statbuf; |
| |
| if (get_crypt_ftr_info(&fname, &starting_off)) { |
| SLOGE("Unable to get crypt_ftr_info\n"); |
| return -1; |
| } |
| if (fname[0] != '/') { |
| SLOGE("Unexpected value for crypto key location\n"); |
| return -1; |
| } |
| if ( (fd = open(fname, O_RDWR)) < 0) { |
| SLOGE("Cannot open footer file %s for get\n", fname); |
| return -1; |
| } |
| |
| /* Make sure it's 16 Kbytes in length */ |
| fstat(fd, &statbuf); |
| if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000)) { |
| SLOGE("footer file %s is not the expected size!\n", fname); |
| goto errout; |
| } |
| |
| /* Seek to the start of the crypt footer */ |
| if (lseek64(fd, starting_off, SEEK_SET) == -1) { |
| SLOGE("Cannot seek to real block device footer\n"); |
| goto errout; |
| } |
| |
| if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) { |
| SLOGE("Cannot read real block device footer\n"); |
| goto errout; |
| } |
| |
| if (crypt_ftr->magic != CRYPT_MNT_MAGIC) { |
| SLOGE("Bad magic for real block device %s\n", fname); |
| goto errout; |
| } |
| |
| if (crypt_ftr->major_version != CURRENT_MAJOR_VERSION) { |
| SLOGE("Cannot understand major version %d real block device footer; expected %d\n", |
| crypt_ftr->major_version, CURRENT_MAJOR_VERSION); |
| goto errout; |
| } |
| |
| if (crypt_ftr->minor_version > CURRENT_MINOR_VERSION) { |
| SLOGW("Warning: crypto footer minor version %d, expected <= %d, continuing...\n", |
| crypt_ftr->minor_version, CURRENT_MINOR_VERSION); |
| } |
| |
| /* If this is a verion 1.0 crypt_ftr, make it a 1.1 crypt footer, and update the |
| * copy on disk before returning. |
| */ |
| if (crypt_ftr->minor_version < CURRENT_MINOR_VERSION) { |
| upgrade_crypt_ftr(fd, crypt_ftr, starting_off); |
| } |
| |
| /* Success! */ |
| rc = 0; |
| |
| errout: |
| close(fd); |
| return rc; |
| } |
| |
| static int validate_persistent_data_storage(struct crypt_mnt_ftr *crypt_ftr) |
| { |
| if (crypt_ftr->persist_data_offset[0] + crypt_ftr->persist_data_size > |
| crypt_ftr->persist_data_offset[1]) { |
| SLOGE("Crypt_ftr persist data regions overlap"); |
| return -1; |
| } |
| |
| if (crypt_ftr->persist_data_offset[0] >= crypt_ftr->persist_data_offset[1]) { |
| SLOGE("Crypt_ftr persist data region 0 starts after region 1"); |
| return -1; |
| } |
| |
| if (((crypt_ftr->persist_data_offset[1] + crypt_ftr->persist_data_size) - |
| (crypt_ftr->persist_data_offset[0] - CRYPT_FOOTER_TO_PERSIST_OFFSET)) > |
| CRYPT_FOOTER_OFFSET) { |
| SLOGE("Persistent data extends past crypto footer"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int load_persistent_data(void) |
| { |
| struct crypt_mnt_ftr crypt_ftr; |
| struct crypt_persist_data *pdata = NULL; |
| char encrypted_state[PROPERTY_VALUE_MAX]; |
| char *fname; |
| int found = 0; |
| int fd; |
| int ret; |
| int i; |
| |
| if (persist_data) { |
| /* Nothing to do, we've already loaded or initialized it */ |
| return 0; |
| } |
| |
| |
| /* If not encrypted, just allocate an empty table and initialize it */ |
| property_get("ro.crypto.state", encrypted_state, ""); |
| if (strcmp(encrypted_state, "encrypted") ) { |
| pdata = malloc(CRYPT_PERSIST_DATA_SIZE); |
| if (pdata) { |
| init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE); |
| persist_data = pdata; |
| return 0; |
| } |
| return -1; |
| } |
| |
| if(get_crypt_ftr_and_key(&crypt_ftr)) { |
| return -1; |
| } |
| |
| if ((crypt_ftr.major_version != 1) || (crypt_ftr.minor_version != 1)) { |
| SLOGE("Crypt_ftr version doesn't support persistent data"); |
| return -1; |
| } |
| |
| if (get_crypt_ftr_info(&fname, NULL)) { |
| return -1; |
| } |
| |
| ret = validate_persistent_data_storage(&crypt_ftr); |
| if (ret) { |
| return -1; |
| } |
| |
| fd = open(fname, O_RDONLY); |
| if (fd < 0) { |
| SLOGE("Cannot open %s metadata file", fname); |
| return -1; |
| } |
| |
| if (persist_data == NULL) { |
| pdata = malloc(crypt_ftr.persist_data_size); |
| if (pdata == NULL) { |
| SLOGE("Cannot allocate memory for persistent data"); |
| goto err; |
| } |
| } |
| |
| for (i = 0; i < 2; i++) { |
| if (lseek64(fd, crypt_ftr.persist_data_offset[i], SEEK_SET) < 0) { |
| SLOGE("Cannot seek to read persistent data on %s", fname); |
| goto err2; |
| } |
| if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0){ |
| SLOGE("Error reading persistent data on iteration %d", i); |
| goto err2; |
| } |
| if (pdata->persist_magic == PERSIST_DATA_MAGIC) { |
| found = 1; |
| break; |
| } |
| } |
| |
| if (!found) { |
| SLOGI("Could not find valid persistent data, creating"); |
| init_empty_persist_data(pdata, crypt_ftr.persist_data_size); |
| } |
| |
| /* Success */ |
| persist_data = pdata; |
| close(fd); |
| return 0; |
| |
| err2: |
| free(pdata); |
| |
| err: |
| close(fd); |
| return -1; |
| } |
| |
| static int save_persistent_data(void) |
| { |
| struct crypt_mnt_ftr crypt_ftr; |
| struct crypt_persist_data *pdata; |
| char *fname; |
| off64_t write_offset; |
| off64_t erase_offset; |
| int found = 0; |
| int fd; |
| int ret; |
| |
| if (persist_data == NULL) { |
| SLOGE("No persistent data to save"); |
| return -1; |
| } |
| |
| if(get_crypt_ftr_and_key(&crypt_ftr)) { |
| return -1; |
| } |
| |
| if ((crypt_ftr.major_version != 1) || (crypt_ftr.minor_version != 1)) { |
| SLOGE("Crypt_ftr version doesn't support persistent data"); |
| return -1; |
| } |
| |
| ret = validate_persistent_data_storage(&crypt_ftr); |
| if (ret) { |
| return -1; |
| } |
| |
| if (get_crypt_ftr_info(&fname, NULL)) { |
| return -1; |
| } |
| |
| fd = open(fname, O_RDWR); |
| if (fd < 0) { |
| SLOGE("Cannot open %s metadata file", fname); |
| return -1; |
| } |
| |
| pdata = malloc(crypt_ftr.persist_data_size); |
| if (pdata == NULL) { |
| SLOGE("Cannot allocate persistant data"); |
| goto err; |
| } |
| |
| if (lseek64(fd, crypt_ftr.persist_data_offset[0], SEEK_SET) < 0) { |
| SLOGE("Cannot seek to read persistent data on %s", fname); |
| goto err2; |
| } |
| |
| if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0) { |
| SLOGE("Error reading persistent data before save"); |
| goto err2; |
| } |
| |
| if (pdata->persist_magic == PERSIST_DATA_MAGIC) { |
| /* The first copy is the curent valid copy, so write to |
| * the second copy and erase this one */ |
| write_offset = crypt_ftr.persist_data_offset[1]; |
| erase_offset = crypt_ftr.persist_data_offset[0]; |
| } else { |
| /* The second copy must be the valid copy, so write to |
| * the first copy, and erase the second */ |
| write_offset = crypt_ftr.persist_data_offset[0]; |
| erase_offset = crypt_ftr.persist_data_offset[1]; |
| } |
| |
| /* Write the new copy first, if successful, then erase the old copy */ |
| if (lseek(fd, write_offset, SEEK_SET) < 0) { |
| SLOGE("Cannot seek to write persistent data"); |
| goto err2; |
| } |
| if (unix_write(fd, persist_data, crypt_ftr.persist_data_size) == |
| (int) crypt_ftr.persist_data_size) { |
| if (lseek(fd, erase_offset, SEEK_SET) < 0) { |
| SLOGE("Cannot seek to erase previous persistent data"); |
| goto err2; |
| } |
| fsync(fd); |
| memset(pdata, 0, crypt_ftr.persist_data_size); |
| if (unix_write(fd, pdata, crypt_ftr.persist_data_size) != |
| (int) crypt_ftr.persist_data_size) { |
| SLOGE("Cannot write to erase previous persistent data"); |
| goto err2; |
| } |
| fsync(fd); |
| } else { |
| SLOGE("Cannot write to save persistent data"); |
| goto err2; |
| } |
| |
| /* Success */ |
| free(pdata); |
| close(fd); |
| return 0; |
| |
| err2: |
| free(pdata); |
| err: |
| close(fd); |
| return -1; |
| } |
| |
| /* Convert a binary key of specified length into an ascii hex string equivalent, |
| * without the leading 0x and with null termination |
| */ |
| void convert_key_to_hex_ascii(unsigned char *master_key, unsigned int keysize, |
| char *master_key_ascii) |
| { |
| unsigned int i, a; |
| unsigned char nibble; |
| |
| for (i=0, a=0; i<keysize; i++, a+=2) { |
| /* For each byte, write out two ascii hex digits */ |
| nibble = (master_key[i] >> 4) & 0xf; |
| master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30); |
| |
| nibble = master_key[i] & 0xf; |
| master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30); |
| } |
| |
| /* Add the null termination */ |
| master_key_ascii[a] = '\0'; |
| |
| } |
| |
| static int load_crypto_mapping_table(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key, |
| char *real_blk_name, const char *name, int fd, |
| char *extra_params) |
| { |
| char buffer[DM_CRYPT_BUF_SIZE]; |
| struct dm_ioctl *io; |
| struct dm_target_spec *tgt; |
| char *crypt_params; |
| char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */ |
| int i; |
| |
| io = (struct dm_ioctl *) buffer; |
| |
| /* Load the mapping table for this device */ |
| tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)]; |
| |
| ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); |
| io->target_count = 1; |
| tgt->status = 0; |
| tgt->sector_start = 0; |
| tgt->length = crypt_ftr->fs_size; |
| strcpy(tgt->target_type, "crypt"); |
| |
| crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec); |
| convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii); |
| sprintf(crypt_params, "%s %s 0 %s 0 %s", crypt_ftr->crypto_type_name, |
| master_key_ascii, real_blk_name, extra_params); |
| crypt_params += strlen(crypt_params) + 1; |
| crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */ |
| tgt->next = crypt_params - buffer; |
| |
| for (i = 0; i < TABLE_LOAD_RETRIES; i++) { |
| if (! ioctl(fd, DM_TABLE_LOAD, io)) { |
| break; |
| } |
| usleep(500000); |
| } |
| |
| if (i == TABLE_LOAD_RETRIES) { |
| /* We failed to load the table, return an error */ |
| return -1; |
| } else { |
| return i + 1; |
| } |
| } |
| |
| |
| static int get_dm_crypt_version(int fd, const char *name, int *version) |
| { |
| char buffer[DM_CRYPT_BUF_SIZE]; |
| struct dm_ioctl *io; |
| struct dm_target_versions *v; |
| int i; |
| |
| io = (struct dm_ioctl *) buffer; |
| |
| ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); |
| |
| if (ioctl(fd, DM_LIST_VERSIONS, io)) { |
| return -1; |
| } |
| |
| /* Iterate over the returned versions, looking for name of "crypt". |
| * When found, get and return the version. |
| */ |
| v = (struct dm_target_versions *) &buffer[sizeof(struct dm_ioctl)]; |
| while (v->next) { |
| if (! strcmp(v->name, "crypt")) { |
| /* We found the crypt driver, return the version, and get out */ |
| version[0] = v->version[0]; |
| version[1] = v->version[1]; |
| version[2] = v->version[2]; |
| return 0; |
| } |
| v = (struct dm_target_versions *)(((char *)v) + v->next); |
| } |
| |
| return -1; |
| } |
| |
| static int create_crypto_blk_dev(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key, |
| char *real_blk_name, char *crypto_blk_name, const char *name) |
| { |
| char buffer[DM_CRYPT_BUF_SIZE]; |
| char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */ |
| char *crypt_params; |
| struct dm_ioctl *io; |
| struct dm_target_spec *tgt; |
| unsigned int minor; |
| int fd; |
| int i; |
| int retval = -1; |
| int version[3]; |
| char *extra_params; |
| int load_count; |
| |
| if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) { |
| SLOGE("Cannot open device-mapper\n"); |
| goto errout; |
| } |
| |
| io = (struct dm_ioctl *) buffer; |
| |
| ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); |
| if (ioctl(fd, DM_DEV_CREATE, io)) { |
| SLOGE("Cannot create dm-crypt device\n"); |
| goto errout; |
| } |
| |
| /* Get the device status, in particular, the name of it's device file */ |
| ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); |
| if (ioctl(fd, DM_DEV_STATUS, io)) { |
| SLOGE("Cannot retrieve dm-crypt device status\n"); |
| goto errout; |
| } |
| minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00); |
| snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor); |
| |
| extra_params = ""; |
| if (! get_dm_crypt_version(fd, name, version)) { |
| /* Support for allow_discards was added in version 1.11.0 */ |
| if ((version[0] >= 2) || |
| ((version[0] == 1) && (version[1] >= 11))) { |
| extra_params = "1 allow_discards"; |
| SLOGI("Enabling support for allow_discards in dmcrypt.\n"); |
| } |
| } |
| |
| load_count = load_crypto_mapping_table(crypt_ftr, master_key, real_blk_name, name, |
| fd, extra_params); |
| if (load_count < 0) { |
| SLOGE("Cannot load dm-crypt mapping table.\n"); |
| goto errout; |
| } else if (load_count > 1) { |
| SLOGI("Took %d tries to load dmcrypt table.\n", load_count); |
| } |
| |
| /* Resume this device to activate it */ |
| ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); |
| |
| if (ioctl(fd, DM_DEV_SUSPEND, io)) { |
| SLOGE("Cannot resume the dm-crypt device\n"); |
| goto errout; |
| } |
| |
| /* We made it here with no errors. Woot! */ |
| retval = 0; |
| |
| errout: |
| close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */ |
| |
| return retval; |
| } |
| |
| static int delete_crypto_blk_dev(char *name) |
| { |
| int fd; |
| char buffer[DM_CRYPT_BUF_SIZE]; |
| struct dm_ioctl *io; |
| int retval = -1; |
| |
| if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) { |
| SLOGE("Cannot open device-mapper\n"); |
| goto errout; |
| } |
| |
| io = (struct dm_ioctl *) buffer; |
| |
| ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); |
| if (ioctl(fd, DM_DEV_REMOVE, io)) { |
| SLOGE("Cannot remove dm-crypt device\n"); |
| goto errout; |
| } |
| |
| /* We made it here with no errors. Woot! */ |
| retval = 0; |
| |
| errout: |
| close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */ |
| |
| return retval; |
| |
| } |
| |
| static void pbkdf2(char *passwd, unsigned char *salt, unsigned char *ikey, void *params UNUSED) { |
| /* Turn the password into a key and IV that can decrypt the master key */ |
| PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd), salt, SALT_LEN, |
| HASH_COUNT, KEY_LEN_BYTES+IV_LEN_BYTES, ikey); |
| } |
| |
| static void scrypt(char *passwd, unsigned char *salt, unsigned char *ikey, void *params) { |
| struct crypt_mnt_ftr *ftr = (struct crypt_mnt_ftr *) params; |
| |
| int N = 1 << ftr->N_factor; |
| int r = 1 << ftr->r_factor; |
| int p = 1 << ftr->p_factor; |
| |
| /* Turn the password into a key and IV that can decrypt the master key */ |
| crypto_scrypt((unsigned char *) passwd, strlen(passwd), salt, SALT_LEN, N, r, p, ikey, |
| KEY_LEN_BYTES + IV_LEN_BYTES); |
| } |
| |
| static int encrypt_master_key(char *passwd, unsigned char *salt, |
| unsigned char *decrypted_master_key, |
| unsigned char *encrypted_master_key, |
| struct crypt_mnt_ftr *crypt_ftr) |
| { |
| unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */ |
| EVP_CIPHER_CTX e_ctx; |
| int encrypted_len, final_len; |
| |
| /* Turn the password into a key and IV that can decrypt the master key */ |
| get_device_scrypt_params(crypt_ftr); |
| scrypt(passwd, salt, ikey, crypt_ftr); |
| |
| /* Initialize the decryption engine */ |
| if (! EVP_EncryptInit(&e_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) { |
| SLOGE("EVP_EncryptInit failed\n"); |
| return -1; |
| } |
| EVP_CIPHER_CTX_set_padding(&e_ctx, 0); /* Turn off padding as our data is block aligned */ |
| |
| /* Encrypt the master key */ |
| if (! EVP_EncryptUpdate(&e_ctx, encrypted_master_key, &encrypted_len, |
| decrypted_master_key, KEY_LEN_BYTES)) { |
| SLOGE("EVP_EncryptUpdate failed\n"); |
| return -1; |
| } |
| if (! EVP_EncryptFinal(&e_ctx, encrypted_master_key + encrypted_len, &final_len)) { |
| SLOGE("EVP_EncryptFinal failed\n"); |
| return -1; |
| } |
| |
| if (encrypted_len + final_len != KEY_LEN_BYTES) { |
| SLOGE("EVP_Encryption length check failed with %d, %d bytes\n", encrypted_len, final_len); |
| return -1; |
| } else { |
| return 0; |
| } |
| } |
| |
| static int decrypt_master_key_aux(char *passwd, unsigned char *salt, |
| unsigned char *encrypted_master_key, |
| unsigned char *decrypted_master_key, |
| kdf_func kdf, void *kdf_params) |
| { |
| unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */ |
| EVP_CIPHER_CTX d_ctx; |
| int decrypted_len, final_len; |
| |
| /* Turn the password into a key and IV that can decrypt the master key */ |
| kdf(passwd, salt, ikey, kdf_params); |
| |
| /* Initialize the decryption engine */ |
| if (! EVP_DecryptInit(&d_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) { |
| return -1; |
| } |
| EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */ |
| /* Decrypt the master key */ |
| if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len, |
| encrypted_master_key, KEY_LEN_BYTES)) { |
| return -1; |
| } |
| if (! EVP_DecryptFinal(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) { |
| return -1; |
| } |
| |
| if (decrypted_len + final_len != KEY_LEN_BYTES) { |
| return -1; |
| } else { |
| return 0; |
| } |
| } |
| |
| static void get_kdf_func(struct crypt_mnt_ftr *ftr, kdf_func *kdf, void** kdf_params) |
| { |
| if (ftr->kdf_type == KDF_SCRYPT) { |
| *kdf = scrypt; |
| *kdf_params = ftr; |
| } else { |
| *kdf = pbkdf2; |
| *kdf_params = NULL; |
| } |
| } |
| |
| static int decrypt_master_key(char *passwd, unsigned char *decrypted_master_key, |
| struct crypt_mnt_ftr *crypt_ftr) |
| { |
| kdf_func kdf; |
| void *kdf_params; |
| int ret; |
| |
| get_kdf_func(crypt_ftr, &kdf, &kdf_params); |
| ret = decrypt_master_key_aux(passwd, crypt_ftr->salt, crypt_ftr->master_key, decrypted_master_key, kdf, |
| kdf_params); |
| if (ret != 0) { |
| SLOGW("failure decrypting master key"); |
| } |
| |
| return ret; |
| } |
| |
| static int create_encrypted_random_key(char *passwd, unsigned char *master_key, unsigned char *salt, |
| struct crypt_mnt_ftr *crypt_ftr) { |
| int fd; |
| unsigned char key_buf[KEY_LEN_BYTES]; |
| EVP_CIPHER_CTX e_ctx; |
| int encrypted_len, final_len; |
| |
| /* Get some random bits for a key */ |
| fd = open("/dev/urandom", O_RDONLY); |
| read(fd, key_buf, sizeof(key_buf)); |
| read(fd, salt, SALT_LEN); |
| close(fd); |
| |
| /* Now encrypt it with the password */ |
| return encrypt_master_key(passwd, salt, key_buf, master_key, crypt_ftr); |
| } |
| |
| static int wait_and_unmount(char *mountpoint) |
| { |
| int i, rc; |
| #define WAIT_UNMOUNT_COUNT 20 |
| |
| /* Now umount the tmpfs filesystem */ |
| for (i=0; i<WAIT_UNMOUNT_COUNT; i++) { |
| if (umount(mountpoint)) { |
| if (errno == EINVAL) { |
| /* EINVAL is returned if the directory is not a mountpoint, |
| * i.e. there is no filesystem mounted there. So just get out. |
| */ |
| break; |
| } |
| sleep(1); |
| i++; |
| } else { |
| break; |
| } |
| } |
| |
| if (i < WAIT_UNMOUNT_COUNT) { |
| SLOGD("unmounting %s succeeded\n", mountpoint); |
| rc = 0; |
| } else { |
| SLOGE("unmounting %s failed\n", mountpoint); |
| rc = -1; |
| } |
| |
| return rc; |
| } |
| |
| #define DATA_PREP_TIMEOUT 200 |
| static int prep_data_fs(void) |
| { |
| int i; |
| |
| /* Do the prep of the /data filesystem */ |
| property_set("vold.post_fs_data_done", "0"); |
| property_set("vold.decrypt", "trigger_post_fs_data"); |
| SLOGD("Just triggered post_fs_data\n"); |
| |
| /* Wait a max of 50 seconds, hopefully it takes much less */ |
| for (i=0; i<DATA_PREP_TIMEOUT; i++) { |
| char p[PROPERTY_VALUE_MAX]; |
| |
| property_get("vold.post_fs_data_done", p, "0"); |
| if (*p == '1') { |
| break; |
| } else { |
| usleep(250000); |
| } |
| } |
| if (i == DATA_PREP_TIMEOUT) { |
| /* Ugh, we failed to prep /data in time. Bail. */ |
| SLOGE("post_fs_data timed out!\n"); |
| return -1; |
| } else { |
| SLOGD("post_fs_data done\n"); |
| return 0; |
| } |
| } |
| |
| int cryptfs_restart(void) |
| { |
| char fs_type[32]; |
| char real_blkdev[MAXPATHLEN]; |
| char crypto_blkdev[MAXPATHLEN]; |
| char fs_options[256]; |
| unsigned long mnt_flags; |
| struct stat statbuf; |
| int rc = -1, i; |
| static int restart_successful = 0; |
| |
| /* Validate that it's OK to call this routine */ |
| if (! master_key_saved) { |
| SLOGE("Encrypted filesystem not validated, aborting"); |
| return -1; |
| } |
| |
| if (restart_successful) { |
| SLOGE("System already restarted with encrypted disk, aborting"); |
| return -1; |
| } |
| |
| /* Here is where we shut down the framework. The init scripts |
| * start all services in one of three classes: core, main or late_start. |
| * On boot, we start core and main. Now, we stop main, but not core, |
| * as core includes vold and a few other really important things that |
| * we need to keep running. Once main has stopped, we should be able |
| * to umount the tmpfs /data, then mount the encrypted /data. |
| * We then restart the class main, and also the class late_start. |
| * At the moment, I've only put a few things in late_start that I know |
| * are not needed to bring up the framework, and that also cause problems |
| * with unmounting the tmpfs /data, but I hope to add add more services |
| * to the late_start class as we optimize this to decrease the delay |
| * till the user is asked for the password to the filesystem. |
| */ |
| |
| /* The init files are setup to stop the class main when vold.decrypt is |
| * set to trigger_reset_main. |
| */ |
| property_set("vold.decrypt", "trigger_reset_main"); |
| SLOGD("Just asked init to shut down class main\n"); |
| |
| /* Ugh, shutting down the framework is not synchronous, so until it |
| * can be fixed, this horrible hack will wait a moment for it all to |
| * shut down before proceeding. Without it, some devices cannot |
| * restart the graphics services. |
| */ |
| sleep(2); |
| |
| /* Now that the framework is shutdown, we should be able to umount() |
| * the tmpfs filesystem, and mount the real one. |
| */ |
| |
| property_get("ro.crypto.fs_crypto_blkdev", crypto_blkdev, ""); |
| if (strlen(crypto_blkdev) == 0) { |
| SLOGE("fs_crypto_blkdev not set\n"); |
| return -1; |
| } |
| |
| if (! (rc = wait_and_unmount(DATA_MNT_POINT)) ) { |
| /* If that succeeded, then mount the decrypted filesystem */ |
| fs_mgr_do_mount(fstab, DATA_MNT_POINT, crypto_blkdev, 0); |
| |
| property_set("vold.decrypt", "trigger_load_persist_props"); |
| /* Create necessary paths on /data */ |
| if (prep_data_fs()) { |
| return -1; |
| } |
| |
| /* startup service classes main and late_start */ |
| property_set("vold.decrypt", "trigger_restart_framework"); |
| SLOGD("Just triggered restart_framework\n"); |
| |
| /* Give it a few moments to get started */ |
| sleep(1); |
| } |
| |
| if (rc == 0) { |
| restart_successful = 1; |
| } |
| |
| return rc; |
| } |
| |
| static int do_crypto_complete(char *mount_point UNUSED) |
| { |
| struct crypt_mnt_ftr crypt_ftr; |
| char encrypted_state[PROPERTY_VALUE_MAX]; |
| char key_loc[PROPERTY_VALUE_MAX]; |
| |
| property_get("ro.crypto.state", encrypted_state, ""); |
| if (strcmp(encrypted_state, "encrypted") ) { |
| SLOGE("not running with encryption, aborting"); |
| return 1; |
| } |
| |
| if (get_crypt_ftr_and_key(&crypt_ftr)) { |
| fs_mgr_get_crypt_info(fstab, key_loc, 0, sizeof(key_loc)); |
| |
| /* |
| * Only report this error if key_loc is a file and it exists. |
| * If the device was never encrypted, and /data is not mountable for |
| * some reason, returning 1 should prevent the UI from presenting the |
| * a "enter password" screen, or worse, a "press button to wipe the |
| * device" screen. |
| */ |
| if ((key_loc[0] == '/') && (access("key_loc", F_OK) == -1)) { |
| SLOGE("master key file does not exist, aborting"); |
| return 1; |
| } else { |
| SLOGE("Error getting crypt footer and key\n"); |
| return -1; |
| } |
| } |
| |
| if (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS) { |
| SLOGE("Encryption process didn't finish successfully\n"); |
| return -2; /* -2 is the clue to the UI that there is no usable data on the disk, |
| * and give the user an option to wipe the disk */ |
| } |
| |
| /* We passed the test! We shall diminish, and return to the west */ |
| return 0; |
| } |
| |
| static int test_mount_encrypted_fs(char *passwd, char *mount_point, char *label) |
| { |
| struct crypt_mnt_ftr crypt_ftr; |
| /* Allocate enough space for a 256 bit key, but we may use less */ |
| unsigned char decrypted_master_key[32]; |
| char crypto_blkdev[MAXPATHLEN]; |
| char real_blkdev[MAXPATHLEN]; |
| char tmp_mount_point[64]; |
| unsigned int orig_failed_decrypt_count; |
| char encrypted_state[PROPERTY_VALUE_MAX]; |
| int rc; |
| kdf_func kdf; |
| void *kdf_params; |
| |
| property_get("ro.crypto.state", encrypted_state, ""); |
| if ( master_key_saved || strcmp(encrypted_state, "encrypted") ) { |
| SLOGE("encrypted fs already validated or not running with encryption, aborting"); |
| return -1; |
| } |
| |
| fs_mgr_get_crypt_info(fstab, 0, real_blkdev, sizeof(real_blkdev)); |
| |
| if (get_crypt_ftr_and_key(&crypt_ftr)) { |
| SLOGE("Error getting crypt footer and key\n"); |
| return -1; |
| } |
| |
| SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr.fs_size); |
| orig_failed_decrypt_count = crypt_ftr.failed_decrypt_count; |
| |
| if (! (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) ) { |
| if (decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr)) { |
| SLOGE("Failed to decrypt master key\n"); |
| return -1; |
| } |
| } |
| |
| if (create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, |
| real_blkdev, crypto_blkdev, label)) { |
| SLOGE("Error creating decrypted block device\n"); |
| return -1; |
| } |
| |
| /* If init detects an encrypted filesystem, it writes a file for each such |
| * encrypted fs into the tmpfs /data filesystem, and then the framework finds those |
| * files and passes that data to me */ |
| /* Create a tmp mount point to try mounting the decryptd fs |
| * Since we're here, the mount_point should be a tmpfs filesystem, so make |
| * a directory in it to test mount the decrypted filesystem. |
| */ |
| sprintf(tmp_mount_point, "%s/tmp_mnt", mount_point); |
| mkdir(tmp_mount_point, 0755); |
| if (fs_mgr_do_mount(fstab, DATA_MNT_POINT, crypto_blkdev, tmp_mount_point)) { |
| SLOGE("Error temp mounting decrypted block device\n"); |
| delete_crypto_blk_dev(label); |
| crypt_ftr.failed_decrypt_count++; |
| } else { |
| /* Success, so just umount and we'll mount it properly when we restart |
| * the framework. |
| */ |
| umount(tmp_mount_point); |
| crypt_ftr.failed_decrypt_count = 0; |
| } |
| |
| if (orig_failed_decrypt_count != crypt_ftr.failed_decrypt_count) { |
| put_crypt_ftr_and_key(&crypt_ftr); |
| } |
| |
| if (crypt_ftr.failed_decrypt_count) { |
| /* We failed to mount the device, so return an error */ |
| rc = crypt_ftr.failed_decrypt_count; |
| |
| } else { |
| /* Woot! Success! Save the name of the crypto block device |
| * so we can mount it when restarting the framework. |
| */ |
| property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev); |
| |
| /* Also save a the master key so we can reencrypted the key |
| * the key when we want to change the password on it. |
| */ |
| memcpy(saved_master_key, decrypted_master_key, KEY_LEN_BYTES); |
| saved_mount_point = strdup(mount_point); |
| master_key_saved = 1; |
| SLOGD("%s(): Master key saved\n", __FUNCTION__); |
| rc = 0; |
| /* |
| * Upgrade if we're not using the latest KDF. |
| */ |
| if (crypt_ftr.kdf_type != KDF_SCRYPT) { |
| crypt_ftr.kdf_type = KDF_SCRYPT; |
| rc = encrypt_master_key(passwd, crypt_ftr.salt, saved_master_key, crypt_ftr.master_key, |
| &crypt_ftr); |
| if (!rc) { |
| rc = put_crypt_ftr_and_key(&crypt_ftr); |
| } |
| SLOGD("Key Derivation Function upgrade: rc=%d\n", rc); |
| } |
| } |
| |
| return rc; |
| } |
| |
| /* Called by vold when it wants to undo the crypto mapping of a volume it |
| * manages. This is usually in response to a factory reset, when we want |
| * to undo the crypto mapping so the volume is formatted in the clear. |
| */ |
| int cryptfs_revert_volume(const char *label) |
| { |
| return delete_crypto_blk_dev((char *)label); |
| } |
| |
| /* |
| * Called by vold when it's asked to mount an encrypted, nonremovable volume. |
| * Setup a dm-crypt mapping, use the saved master key from |
| * setting up the /data mapping, and return the new device path. |
| */ |
| int cryptfs_setup_volume(const char *label, int major, int minor, |
| char *crypto_sys_path, unsigned int max_path, |
| int *new_major, int *new_minor) |
| { |
| char real_blkdev[MAXPATHLEN], crypto_blkdev[MAXPATHLEN]; |
| struct crypt_mnt_ftr sd_crypt_ftr; |
| struct stat statbuf; |
| int nr_sec, fd; |
| |
| sprintf(real_blkdev, "/dev/block/vold/%d:%d", major, minor); |
| |
| get_crypt_ftr_and_key(&sd_crypt_ftr); |
| |
| /* Update the fs_size field to be the size of the volume */ |
| fd = open(real_blkdev, O_RDONLY); |
| nr_sec = get_blkdev_size(fd); |
| close(fd); |
| if (nr_sec == 0) { |
| SLOGE("Cannot get size of volume %s\n", real_blkdev); |
| return -1; |
| } |
| |
| sd_crypt_ftr.fs_size = nr_sec; |
| create_crypto_blk_dev(&sd_crypt_ftr, saved_master_key, real_blkdev, |
| crypto_blkdev, label); |
| |
| stat(crypto_blkdev, &statbuf); |
| *new_major = MAJOR(statbuf.st_rdev); |
| *new_minor = MINOR(statbuf.st_rdev); |
| |
| /* Create path to sys entry for this block device */ |
| snprintf(crypto_sys_path, max_path, "/devices/virtual/block/%s", strrchr(crypto_blkdev, '/')+1); |
| |
| return 0; |
| } |
| |
| int cryptfs_crypto_complete(void) |
| { |
| return do_crypto_complete("/data"); |
| } |
| |
| int cryptfs_check_passwd(char *passwd) |
| { |
| int rc = -1; |
| |
| rc = test_mount_encrypted_fs(passwd, DATA_MNT_POINT, "userdata"); |
| |
| return rc; |
| } |
| |
| int cryptfs_verify_passwd(char *passwd) |
| { |
| struct crypt_mnt_ftr crypt_ftr; |
| /* Allocate enough space for a 256 bit key, but we may use less */ |
| unsigned char decrypted_master_key[32]; |
| char encrypted_state[PROPERTY_VALUE_MAX]; |
| int rc; |
| |
| property_get("ro.crypto.state", encrypted_state, ""); |
| if (strcmp(encrypted_state, "encrypted") ) { |
| SLOGE("device not encrypted, aborting"); |
| return -2; |
| } |
| |
| if (!master_key_saved) { |
| SLOGE("encrypted fs not yet mounted, aborting"); |
| return -1; |
| } |
| |
| if (!saved_mount_point) { |
| SLOGE("encrypted fs failed to save mount point, aborting"); |
| return -1; |
| } |
| |
| if (get_crypt_ftr_and_key(&crypt_ftr)) { |
| SLOGE("Error getting crypt footer and key\n"); |
| return -1; |
| } |
| |
| if (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) { |
| /* If the device has no password, then just say the password is valid */ |
| rc = 0; |
| } else { |
| decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr); |
| if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) { |
| /* They match, the password is correct */ |
| rc = 0; |
| } else { |
| /* If incorrect, sleep for a bit to prevent dictionary attacks */ |
| sleep(1); |
| rc = 1; |
| } |
| } |
| |
| return rc; |
| } |
| |
| /* Initialize a crypt_mnt_ftr structure. The keysize is |
| * defaulted to 16 bytes, and the filesystem size to 0. |
| * Presumably, at a minimum, the caller will update the |
| * filesystem size and crypto_type_name after calling this function. |
| */ |
| static void cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr *ftr) |
| { |
| off64_t off; |
| |
| memset(ftr, 0, sizeof(struct crypt_mnt_ftr)); |
| ftr->magic = CRYPT_MNT_MAGIC; |
| ftr->major_version = CURRENT_MAJOR_VERSION; |
| ftr->minor_version = CURRENT_MINOR_VERSION; |
| ftr->ftr_size = sizeof(struct crypt_mnt_ftr); |
| ftr->keysize = KEY_LEN_BYTES; |
| |
| ftr->kdf_type = KDF_SCRYPT; |
| get_device_scrypt_params(ftr); |
| |
| ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE; |
| if (get_crypt_ftr_info(NULL, &off) == 0) { |
| ftr->persist_data_offset[0] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET; |
| ftr->persist_data_offset[1] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET + |
| ftr->persist_data_size; |
| } |
| } |
| |
| static int cryptfs_enable_wipe(char *crypto_blkdev, off64_t size, int type) |
| { |
| const char *args[10]; |
| char size_str[32]; /* Must be large enough to hold a %lld and null byte */ |
| int num_args; |
| int status; |
| int tmp; |
| int rc = -1; |
| |
| if (type == EXT4_FS) { |
| args[0] = "/system/bin/make_ext4fs"; |
| args[1] = "-a"; |
| args[2] = "/data"; |
| args[3] = "-l"; |
| snprintf(size_str, sizeof(size_str), "%lld", size * 512); |
| args[4] = size_str; |
| args[5] = crypto_blkdev; |
| num_args = 6; |
| SLOGI("Making empty filesystem with command %s %s %s %s %s %s\n", |
| args[0], args[1], args[2], args[3], args[4], args[5]); |
| } else if (type== FAT_FS) { |
| args[0] = "/system/bin/newfs_msdos"; |
| args[1] = "-F"; |
| args[2] = "32"; |
| args[3] = "-O"; |
| args[4] = "android"; |
| args[5] = "-c"; |
| args[6] = "8"; |
| args[7] = "-s"; |
| snprintf(size_str, sizeof(size_str), "%lld", size); |
| args[8] = size_str; |
| args[9] = crypto_blkdev; |
| num_args = 10; |
| SLOGI("Making empty filesystem with command %s %s %s %s %s %s %s %s %s %s\n", |
| args[0], args[1], args[2], args[3], args[4], args[5], |
| args[6], args[7], args[8], args[9]); |
| } else { |
| SLOGE("cryptfs_enable_wipe(): unknown filesystem type %d\n", type); |
| return -1; |
| } |
| |
| tmp = android_fork_execvp(num_args, (char **)args, &status, false, true); |
| |
| if (tmp != 0) { |
| SLOGE("Error creating empty filesystem on %s due to logwrap error\n", crypto_blkdev); |
| } else { |
| if (WIFEXITED(status)) { |
| if (WEXITSTATUS(status)) { |
| SLOGE("Error creating filesystem on %s, exit status %d ", |
| crypto_blkdev, WEXITSTATUS(status)); |
| } else { |
| SLOGD("Successfully created filesystem on %s\n", crypto_blkdev); |
| rc = 0; |
| } |
| } else { |
| SLOGE("Error creating filesystem on %s, did not exit normally\n", crypto_blkdev); |
| } |
| } |
| |
| return rc; |
| } |
| |
| #define CRYPT_INPLACE_BUFSIZE 4096 |
| #define CRYPT_SECTORS_PER_BUFSIZE (CRYPT_INPLACE_BUFSIZE / 512) |
| static int cryptfs_enable_inplace(char *crypto_blkdev, char *real_blkdev, off64_t size, |
| off64_t *size_already_done, off64_t tot_size) |
| { |
| int realfd, cryptofd; |
| char *buf[CRYPT_INPLACE_BUFSIZE]; |
| int rc = -1; |
| off64_t numblocks, i, remainder; |
| off64_t one_pct, cur_pct, new_pct; |
| off64_t blocks_already_done, tot_numblocks; |
| |
| if ( (realfd = open(real_blkdev, O_RDONLY)) < 0) { |
| SLOGE("Error opening real_blkdev %s for inplace encrypt\n", real_blkdev); |
| return -1; |
| } |
| |
| if ( (cryptofd = open(crypto_blkdev, O_WRONLY)) < 0) { |
| SLOGE("Error opening crypto_blkdev %s for inplace encrypt\n", crypto_blkdev); |
| close(realfd); |
| return -1; |
| } |
| |
| /* This is pretty much a simple loop of reading 4K, and writing 4K. |
| * The size passed in is the number of 512 byte sectors in the filesystem. |
| * So compute the number of whole 4K blocks we should read/write, |
| * and the remainder. |
| */ |
| numblocks = size / CRYPT_SECTORS_PER_BUFSIZE; |
| remainder = size % CRYPT_SECTORS_PER_BUFSIZE; |
| tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE; |
| blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE; |
| |
| SLOGE("Encrypting filesystem in place..."); |
| |
| one_pct = tot_numblocks / 100; |
| cur_pct = 0; |
| /* process the majority of the filesystem in blocks */ |
| for (i=0; i<numblocks; i++) { |
| new_pct = (i + blocks_already_done) / one_pct; |
| if (new_pct > cur_pct) { |
| char buf[8]; |
| |
| cur_pct = new_pct; |
| snprintf(buf, sizeof(buf), "%lld", cur_pct); |
| property_set("vold.encrypt_progress", buf); |
| } |
| if (unix_read(realfd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) { |
| SLOGE("Error reading real_blkdev %s for inplace encrypt\n", crypto_blkdev); |
| goto errout; |
| } |
| if (unix_write(cryptofd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) { |
| SLOGE("Error writing crypto_blkdev %s for inplace encrypt\n", crypto_blkdev); |
| goto errout; |
| } |
| } |
| |
| /* Do any remaining sectors */ |
| for (i=0; i<remainder; i++) { |
| if (unix_read(realfd, buf, 512) <= 0) { |
| SLOGE("Error reading rival sectors from real_blkdev %s for inplace encrypt\n", crypto_blkdev); |
| goto errout; |
| } |
| if (unix_write(cryptofd, buf, 512) <= 0) { |
| SLOGE("Error writing final sectors to crypto_blkdev %s for inplace encrypt\n", crypto_blkdev); |
| goto errout; |
| } |
| } |
| |
| *size_already_done += size; |
| rc = 0; |
| |
| errout: |
| close(realfd); |
| close(cryptofd); |
| |
| return rc; |
| } |
| |
| #define CRYPTO_ENABLE_WIPE 1 |
| #define CRYPTO_ENABLE_INPLACE 2 |
| |
| #define FRAMEWORK_BOOT_WAIT 60 |
| |
| static inline int should_encrypt(struct volume_info *volume) |
| { |
| return (volume->flags & (VOL_ENCRYPTABLE | VOL_NONREMOVABLE)) == |
| (VOL_ENCRYPTABLE | VOL_NONREMOVABLE); |
| } |
| |
| int cryptfs_enable(char *howarg, char *passwd) |
| { |
| int how = 0; |
| char crypto_blkdev[MAXPATHLEN], real_blkdev[MAXPATHLEN], sd_crypto_blkdev[MAXPATHLEN]; |
| unsigned long nr_sec; |
| unsigned char decrypted_master_key[KEY_LEN_BYTES]; |
| int rc=-1, fd, i, ret; |
| struct crypt_mnt_ftr crypt_ftr, sd_crypt_ftr;; |
| struct crypt_persist_data *pdata; |
| char tmpfs_options[PROPERTY_VALUE_MAX]; |
| char encrypted_state[PROPERTY_VALUE_MAX]; |
| char lockid[32] = { 0 }; |
| char key_loc[PROPERTY_VALUE_MAX]; |
| char fuse_sdcard[PROPERTY_VALUE_MAX]; |
| char *sd_mnt_point; |
| char sd_blk_dev[256] = { 0 }; |
| int num_vols; |
| struct volume_info *vol_list = 0; |
| off64_t cur_encryption_done=0, tot_encryption_size=0; |
| |
| property_get("ro.crypto.state", encrypted_state, ""); |
| if (strcmp(encrypted_state, "unencrypted")) { |
| SLOGE("Device is already running encrypted, aborting"); |
| goto error_unencrypted; |
| } |
| |
| fs_mgr_get_crypt_info(fstab, key_loc, 0, sizeof(key_loc)); |
| |
| if (!strcmp(howarg, "wipe")) { |
| how = CRYPTO_ENABLE_WIPE; |
| } else if (! strcmp(howarg, "inplace")) { |
| how = CRYPTO_ENABLE_INPLACE; |
| } else { |
| /* Shouldn't happen, as CommandListener vets the args */ |
| goto error_unencrypted; |
| } |
| |
| fs_mgr_get_crypt_info(fstab, 0, real_blkdev, sizeof(real_blkdev)); |
| |
| /* Get the size of the real block device */ |
| fd = open(real_blkdev, O_RDONLY); |
| if ( (nr_sec = get_blkdev_size(fd)) == 0) { |
| SLOGE("Cannot get size of block device %s\n", real_blkdev); |
| goto error_unencrypted; |
| } |
| close(fd); |
| |
| /* If doing inplace encryption, make sure the orig fs doesn't include the crypto footer */ |
| if ((how == CRYPTO_ENABLE_INPLACE) && (!strcmp(key_loc, KEY_IN_FOOTER))) { |
| unsigned int fs_size_sec, max_fs_size_sec; |
| |
| fs_size_sec = get_fs_size(real_blkdev); |
| max_fs_size_sec = nr_sec - (CRYPT_FOOTER_OFFSET / 512); |
| |
| if (fs_size_sec > max_fs_size_sec) { |
| SLOGE("Orig filesystem overlaps crypto footer region. Cannot encrypt in place."); |
| goto error_unencrypted; |
| } |
| } |
| |
| /* Get a wakelock as this may take a while, and we don't want the |
| * device to sleep on us. We'll grab a partial wakelock, and if the UI |
| * wants to keep the screen on, it can grab a full wakelock. |
| */ |
| snprintf(lockid, sizeof(lockid), "enablecrypto%d", (int) getpid()); |
| acquire_wake_lock(PARTIAL_WAKE_LOCK, lockid); |
| |
| /* Get the sdcard mount point */ |
| sd_mnt_point = getenv("EMULATED_STORAGE_SOURCE"); |
| if (!sd_mnt_point) { |
| sd_mnt_point = getenv("EXTERNAL_STORAGE"); |
| } |
| if (!sd_mnt_point) { |
| sd_mnt_point = "/mnt/sdcard"; |
| } |
| |
| num_vols=vold_getNumDirectVolumes(); |
| vol_list = malloc(sizeof(struct volume_info) * num_vols); |
| vold_getDirectVolumeList(vol_list); |
| |
| for (i=0; i<num_vols; i++) { |
| if (should_encrypt(&vol_list[i])) { |
| fd = open(vol_list[i].blk_dev, O_RDONLY); |
| if ( (vol_list[i].size = get_blkdev_size(fd)) == 0) { |
| SLOGE("Cannot get size of block device %s\n", vol_list[i].blk_dev); |
| goto error_unencrypted; |
| } |
| close(fd); |
| |
| ret=vold_disableVol(vol_list[i].label); |
| if ((ret < 0) && (ret != UNMOUNT_NOT_MOUNTED_ERR)) { |
| /* -2 is returned when the device exists but is not currently mounted. |
| * ignore the error and continue. */ |
| SLOGE("Failed to unmount volume %s\n", vol_list[i].label); |
| goto error_unencrypted; |
| } |
| } |
| } |
| |
| /* The init files are setup to stop the class main and late start when |
| * vold sets trigger_shutdown_framework. |
| */ |
| property_set("vold.decrypt", "trigger_shutdown_framework"); |
| SLOGD("Just asked init to shut down class main\n"); |
| |
| if (vold_unmountAllAsecs()) { |
| /* Just report the error. If any are left mounted, |
| * umounting /data below will fail and handle the error. |
| */ |
| SLOGE("Error unmounting internal asecs"); |
| } |
| |
| property_get("ro.crypto.fuse_sdcard", fuse_sdcard, ""); |
| if (!strcmp(fuse_sdcard, "true")) { |
| /* This is a device using the fuse layer to emulate the sdcard semantics |
| * on top of the userdata partition. vold does not manage it, it is managed |
| * by the sdcard service. The sdcard service was killed by the property trigger |
| * above, so just unmount it now. We must do this _AFTER_ killing the framework, |
| * unlike the case for vold managed devices above. |
| */ |
| if (wait_and_unmount(sd_mnt_point)) { |
| goto error_shutting_down; |
| } |
| } |
| |
| /* Now unmount the /data partition. */ |
| if (wait_and_unmount(DATA_MNT_POINT)) { |
| goto error_shutting_down; |
| } |
| |
| /* Do extra work for a better UX when doing the long inplace encryption */ |
| if (how == CRYPTO_ENABLE_INPLACE) { |
| /* Now that /data is unmounted, we need to mount a tmpfs |
| * /data, set a property saying we're doing inplace encryption, |
| * and restart the framework. |
| */ |
| if (fs_mgr_do_tmpfs_mount(DATA_MNT_POINT)) { |
| goto error_shutting_down; |
| } |
| /* Tells the framework that inplace encryption is starting */ |
| property_set("vold.encrypt_progress", "0"); |
| |
| /* restart the framework. */ |
| /* Create necessary paths on /data */ |
| if (prep_data_fs()) { |
| goto error_shutting_down; |
| } |
| |
| /* Ugh, shutting down the framework is not synchronous, so until it |
| * can be fixed, this horrible hack will wait a moment for it all to |
| * shut down before proceeding. Without it, some devices cannot |
| * restart the graphics services. |
| */ |
| sleep(2); |
| |
| /* startup service classes main and late_start */ |
| property_set("vold.decrypt", "trigger_restart_min_framework"); |
| SLOGD("Just triggered restart_min_framework\n"); |
| |
| /* OK, the framework is restarted and will soon be showing a |
| * progress bar. Time to setup an encrypted mapping, and |
| * either write a new filesystem, or encrypt in place updating |
| * the progress bar as we work. |
| */ |
| } |
| |
| /* Start the actual work of making an encrypted filesystem */ |
| /* Initialize a crypt_mnt_ftr for the partition */ |
| cryptfs_init_crypt_mnt_ftr(&crypt_ftr); |
| |
| if (!strcmp(key_loc, KEY_IN_FOOTER)) { |
| crypt_ftr.fs_size = nr_sec - (CRYPT_FOOTER_OFFSET / 512); |
| } else { |
| crypt_ftr.fs_size = nr_sec; |
| } |
| crypt_ftr.flags |= CRYPT_ENCRYPTION_IN_PROGRESS; |
| strcpy((char *)crypt_ftr.crypto_type_name, "aes-cbc-essiv:sha256"); |
| |
| /* Make an encrypted master key */ |
| if (create_encrypted_random_key(passwd, crypt_ftr.master_key, crypt_ftr.salt, &crypt_ftr)) { |
| SLOGE("Cannot create encrypted master key\n"); |
| goto error_unencrypted; |
| } |
| |
| /* Write the key to the end of the partition */ |
| put_crypt_ftr_and_key(&crypt_ftr); |
| |
| /* If any persistent data has been remembered, save it. |
| * If none, create a valid empty table and save that. |
| */ |
| if (!persist_data) { |
| pdata = malloc(CRYPT_PERSIST_DATA_SIZE); |
| if (pdata) { |
| init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE); |
| persist_data = pdata; |
| } |
| } |
| if (persist_data) { |
| save_persistent_data(); |
| } |
| |
| decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr); |
| create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev, |
| "userdata"); |
| |
| /* The size of the userdata partition, and add in the vold volumes below */ |
| tot_encryption_size = crypt_ftr.fs_size; |
| |
| /* setup crypto mapping for all encryptable volumes handled by vold */ |
| for (i=0; i<num_vols; i++) { |
| if (should_encrypt(&vol_list[i])) { |
| vol_list[i].crypt_ftr = crypt_ftr; /* gotta love struct assign */ |
| vol_list[i].crypt_ftr.fs_size = vol_list[i].size; |
| create_crypto_blk_dev(&vol_list[i].crypt_ftr, decrypted_master_key, |
| vol_list[i].blk_dev, vol_list[i].crypto_blkdev, |
| vol_list[i].label); |
| tot_encryption_size += vol_list[i].size; |
| } |
| } |
| |
| if (how == CRYPTO_ENABLE_WIPE) { |
| rc = cryptfs_enable_wipe(crypto_blkdev, crypt_ftr.fs_size, EXT4_FS); |
| /* Encrypt all encryptable volumes handled by vold */ |
| if (!rc) { |
| for (i=0; i<num_vols; i++) { |
| if (should_encrypt(&vol_list[i])) { |
| rc = cryptfs_enable_wipe(vol_list[i].crypto_blkdev, |
| vol_list[i].crypt_ftr.fs_size, FAT_FS); |
| } |
| } |
| } |
| } else if (how == CRYPTO_ENABLE_INPLACE) { |
| rc = cryptfs_enable_inplace(crypto_blkdev, real_blkdev, crypt_ftr.fs_size, |
| &cur_encryption_done, tot_encryption_size); |
| /* Encrypt all encryptable volumes handled by vold */ |
| if (!rc) { |
| for (i=0; i<num_vols; i++) { |
| if (should_encrypt(&vol_list[i])) { |
| rc = cryptfs_enable_inplace(vol_list[i].crypto_blkdev, |
| vol_list[i].blk_dev, |
| vol_list[i].crypt_ftr.fs_size, |
| &cur_encryption_done, tot_encryption_size); |
| } |
| } |
| } |
| if (!rc) { |
| /* The inplace routine never actually sets the progress to 100% |
| * due to the round down nature of integer division, so set it here */ |
| property_set("vold.encrypt_progress", "100"); |
| } |
| } else { |
| /* Shouldn't happen */ |
| SLOGE("cryptfs_enable: internal error, unknown option\n"); |
| goto error_unencrypted; |
| } |
| |
| /* Undo the dm-crypt mapping whether we succeed or not */ |
| delete_crypto_blk_dev("userdata"); |
| for (i=0; i<num_vols; i++) { |
| if (should_encrypt(&vol_list[i])) { |
| delete_crypto_blk_dev(vol_list[i].label); |
| } |
| } |
| |
| free(vol_list); |
| |
| if (! rc) { |
| /* Success */ |
| |
| /* Clear the encryption in progres flag in the footer */ |
| crypt_ftr.flags &= ~CRYPT_ENCRYPTION_IN_PROGRESS; |
| put_crypt_ftr_and_key(&crypt_ftr); |
| |
| sleep(2); /* Give the UI a chance to show 100% progress */ |
| cryptfs_reboot(0); |
| } else { |
| char value[PROPERTY_VALUE_MAX]; |
| |
| property_get("ro.vold.wipe_on_crypt_fail", value, "0"); |
| if (!strcmp(value, "1")) { |
| /* wipe data if encryption failed */ |
| SLOGE("encryption failed - rebooting into recovery to wipe data\n"); |
| mkdir("/cache/recovery", 0700); |
| int fd = open("/cache/recovery/command", O_RDWR|O_CREAT|O_TRUNC, 0600); |
| if (fd >= 0) { |
| write(fd, "--wipe_data", strlen("--wipe_data") + 1); |
| close(fd); |
| } else { |
| SLOGE("could not open /cache/recovery/command\n"); |
| } |
| cryptfs_reboot(1); |
| } else { |
| /* set property to trigger dialog */ |
| property_set("vold.encrypt_progress", "error_partially_encrypted"); |
| release_wake_lock(lockid); |
| } |
| return -1; |
| } |
| |
| /* hrm, the encrypt step claims success, but the reboot failed. |
| * This should not happen. |
| * Set the property and return. Hope the framework can deal with it. |
| */ |
| property_set("vold.encrypt_progress", "error_reboot_failed"); |
| release_wake_lock(lockid); |
| return rc; |
| |
| error_unencrypted: |
| free(vol_list); |
| property_set("vold.encrypt_progress", "error_not_encrypted"); |
| if (lockid[0]) { |
| release_wake_lock(lockid); |
| } |
| return -1; |
| |
| error_shutting_down: |
| /* we failed, and have not encrypted anthing, so the users's data is still intact, |
| * but the framework is stopped and not restarted to show the error, so it's up to |
| * vold to restart the system. |
| */ |
| SLOGE("Error enabling encryption after framework is shutdown, no data changed, restarting system"); |
| cryptfs_reboot(0); |
| |
| /* shouldn't get here */ |
| property_set("vold.encrypt_progress", "error_shutting_down"); |
| free(vol_list); |
| if (lockid[0]) { |
| release_wake_lock(lockid); |
| } |
| return -1; |
| } |
| |
| int cryptfs_changepw(char *newpw) |
| { |
| struct crypt_mnt_ftr crypt_ftr; |
| unsigned char decrypted_master_key[KEY_LEN_BYTES]; |
| |
| /* This is only allowed after we've successfully decrypted the master key */ |
| if (! master_key_saved) { |
| SLOGE("Key not saved, aborting"); |
| return -1; |
| } |
| |
| /* get key */ |
| if (get_crypt_ftr_and_key(&crypt_ftr)) { |
| SLOGE("Error getting crypt footer and key"); |
| return -1; |
| } |
| |
| encrypt_master_key(newpw, crypt_ftr.salt, saved_master_key, crypt_ftr.master_key, &crypt_ftr); |
| |
| /* save the key */ |
| put_crypt_ftr_and_key(&crypt_ftr); |
| |
| return 0; |
| } |
| |
| static int persist_get_key(char *fieldname, char *value) |
| { |
| unsigned int i; |
| |
| if (persist_data == NULL) { |
| return -1; |
| } |
| for (i = 0; i < persist_data->persist_valid_entries; i++) { |
| if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) { |
| /* We found it! */ |
| strlcpy(value, persist_data->persist_entry[i].val, PROPERTY_VALUE_MAX); |
| return 0; |
| } |
| } |
| |
| return -1; |
| } |
| |
| static int persist_set_key(char *fieldname, char *value, int encrypted) |
| { |
| unsigned int i; |
| unsigned int num; |
| struct crypt_mnt_ftr crypt_ftr; |
| unsigned int max_persistent_entries; |
| unsigned int dsize; |
| |
| if (persist_data == NULL) { |
| return -1; |
| } |
| |
| /* If encrypted, use the values from the crypt_ftr, otherwise |
| * use the values for the current spec. |
| */ |
| if (encrypted) { |
| if(get_crypt_ftr_and_key(&crypt_ftr)) { |
| return -1; |
| } |
| dsize = crypt_ftr.persist_data_size; |
| } else { |
| dsize = CRYPT_PERSIST_DATA_SIZE; |
| } |
| max_persistent_entries = (dsize - sizeof(struct crypt_persist_data)) / |
| sizeof(struct crypt_persist_entry); |
| |
| num = persist_data->persist_valid_entries; |
| |
| for (i = 0; i < num; i++) { |
| if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) { |
| /* We found an existing entry, update it! */ |
| memset(persist_data->persist_entry[i].val, 0, PROPERTY_VALUE_MAX); |
| strlcpy(persist_data->persist_entry[i].val, value, PROPERTY_VALUE_MAX); |
| return 0; |
| } |
| } |
| |
| /* We didn't find it, add it to the end, if there is room */ |
| if (persist_data->persist_valid_entries < max_persistent_entries) { |
| memset(&persist_data->persist_entry[num], 0, sizeof(struct crypt_persist_entry)); |
| strlcpy(persist_data->persist_entry[num].key, fieldname, PROPERTY_KEY_MAX); |
| strlcpy(persist_data->persist_entry[num].val, value, PROPERTY_VALUE_MAX); |
| persist_data->persist_valid_entries++; |
| return 0; |
| } |
| |
| return -1; |
| } |
| |
| /* Return the value of the specified field. */ |
| int cryptfs_getfield(char *fieldname, char *value, int len) |
| { |
| char temp_value[PROPERTY_VALUE_MAX]; |
| char real_blkdev[MAXPATHLEN]; |
| /* 0 is success, 1 is not encrypted, |
| * -1 is value not set, -2 is any other error |
| */ |
| int rc = -2; |
| |
| if (persist_data == NULL) { |
| load_persistent_data(); |
| if (persist_data == NULL) { |
| SLOGE("Getfield error, cannot load persistent data"); |
| goto out; |
| } |
| } |
| |
| if (!persist_get_key(fieldname, temp_value)) { |
| /* We found it, copy it to the caller's buffer and return */ |
| strlcpy(value, temp_value, len); |
| rc = 0; |
| } else { |
| /* Sadness, it's not there. Return the error */ |
| rc = -1; |
| } |
| |
| out: |
| return rc; |
| } |
| |
| /* Set the value of the specified field. */ |
| int cryptfs_setfield(char *fieldname, char *value) |
| { |
| struct crypt_persist_data stored_pdata; |
| struct crypt_persist_data *pdata_p; |
| struct crypt_mnt_ftr crypt_ftr; |
| char encrypted_state[PROPERTY_VALUE_MAX]; |
| /* 0 is success, -1 is an error */ |
| int rc = -1; |
| int encrypted = 0; |
| |
| if (persist_data == NULL) { |
| load_persistent_data(); |
| if (persist_data == NULL) { |
| SLOGE("Setfield error, cannot load persistent data"); |
| goto out; |
| } |
| } |
| |
| property_get("ro.crypto.state", encrypted_state, ""); |
| if (!strcmp(encrypted_state, "encrypted") ) { |
| encrypted = 1; |
| } |
| |
| if (persist_set_key(fieldname, value, encrypted)) { |
| goto out; |
| } |
| |
| /* If we are running encrypted, save the persistent data now */ |
| if (encrypted) { |
| if (save_persistent_data()) { |
| SLOGE("Setfield error, cannot save persistent data"); |
| goto out; |
| } |
| } |
| |
| rc = 0; |
| |
| out: |
| return rc; |
| } |