blob: d060439af8ee21c3cae0226cfcf1ce55bcd94b60 [file] [log] [blame]
/*
* Copyright (c) 2011-2012, Code Aurora Forum. All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Code Aurora Forum, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cutils/log.h>
#include <cutils/memory.h>
#include <qcom_ui.h>
#include <utils/comptype.h>
#include <gralloc_priv.h>
#include <alloc_controller.h>
#include <memalloc.h>
#include <errno.h>
#include <EGL/eglext.h>
#include <sys/stat.h>
#include <SkBitmap.h>
#include <SkImageEncoder.h>
#include <Transform.h>
using gralloc::IMemAlloc;
using gralloc::IonController;
using gralloc::alloc_data;
using android::sp;
namespace {
static android::sp<gralloc::IAllocController> sAlloc = 0;
int reallocate_memory(native_handle_t *buffer_handle, int mReqSize, int usage)
{
int ret = 0;
#ifndef NON_QCOM_TARGET
if (sAlloc == 0) {
sAlloc = gralloc::IAllocController::getInstance(true);
}
if (sAlloc == 0) {
LOGE("sAlloc is still NULL");
return -EINVAL;
}
// Dealloc the old memory
private_handle_t *hnd = (private_handle_t *)buffer_handle;
sp<IMemAlloc> memalloc = sAlloc->getAllocator(hnd->flags);
ret = memalloc->free_buffer((void*)hnd->base, hnd->size, hnd->offset, hnd->fd);
if (ret) {
LOGE("%s: free_buffer failed", __FUNCTION__);
return -1;
}
// Realloc new memory
alloc_data data;
data.base = 0;
data.fd = -1;
data.offset = 0;
data.size = mReqSize;
data.align = getpagesize();
data.uncached = true;
int allocFlags = usage;
switch (hnd->format) {
case HAL_PIXEL_FORMAT_YCbCr_420_SP_TILED:
case (HAL_PIXEL_FORMAT_YCbCr_420_SP_TILED^HAL_PIXEL_FORMAT_INTERLACE): {
data.align = 8192;
} break;
default: break;
}
ret = sAlloc->allocate(data, allocFlags, 0);
if (ret == 0) {
hnd->fd = data.fd;
hnd->base = (int)data.base;
hnd->offset = data.offset;
hnd->size = data.size;
} else {
LOGE("%s: allocate failed", __FUNCTION__);
return -EINVAL;
}
#endif
return ret;
}
}; // ANONYNMOUS NAMESPACE
/*
* Gets the number of arguments required for this operation.
*
* @param: operation whose argument count is required.
*
* @return -EINVAL if the operation is invalid.
*/
int getNumberOfArgsForOperation(int operation) {
int num_args = -EINVAL;
switch(operation) {
case NATIVE_WINDOW_SET_BUFFERS_SIZE:
num_args = 1;
break;
case NATIVE_WINDOW_UPDATE_BUFFERS_GEOMETRY:
num_args = 3;
break;
case NATIVE_WINDOW_SET_PIXEL_ASPECT_RATIO:
num_args = 2;
break;
default: LOGE("%s: invalid operation(0x%x)", __FUNCTION__, operation);
break;
};
return num_args;
}
/*
* Checks if the format is supported by the GPU.
*
* @param: format to check
*
* @return true if the format is supported by the GPU.
*/
bool isGPUSupportedFormat(int format) {
if (format == HAL_PIXEL_FORMAT_YV12) {
// We check the YV12 formats, since some Qcom specific formats
// could have the bits set.
return true;
} else if ((format == HAL_PIXEL_FORMAT_RGB_888) ||
(format == HAL_PIXEL_FORMAT_YCrCb_422_SP) ||
(format == HAL_PIXEL_FORMAT_YCbCr_422_SP)){
return false;
} else if (format & INTERLACE_MASK) {
// Interlaced content
return false;
} else if (format & S3D_FORMAT_MASK) {
// S3D Formats are not supported by the GPU
return false;
}
return true;
}
/*
* Function to check if the allocated buffer is of the correct size.
* Reallocate the buffer with the correct size, if the size doesn't
* match
*
* @param: handle of the allocated buffer
* @param: requested size for the buffer
* @param: usage flags
*
* return 0 on success
*/
int checkBuffer(native_handle_t *buffer_handle, int size, int usage)
{
// If the client hasn't set a size, return
if (0 >= size) {
return 0;
}
// Validate the handle
if (private_handle_t::validate(buffer_handle)) {
LOGE("%s: handle is invalid", __FUNCTION__);
return -EINVAL;
}
// Obtain the private_handle from the native handle
private_handle_t *hnd = reinterpret_cast<private_handle_t*>(buffer_handle);
if (hnd->size != size) {
return reallocate_memory(hnd, size, usage);
}
return 0;
}
/*
* Checks if memory needs to be reallocated for this buffer.
*
* @param: Geometry of the current buffer.
* @param: Required Geometry.
* @param: Geometry of the updated buffer.
*
* @return True if a memory reallocation is required.
*/
bool needNewBuffer(const qBufGeometry currentGeometry,
const qBufGeometry requiredGeometry,
const qBufGeometry updatedGeometry)
{
// If the current buffer info matches the updated info,
// we do not require any memory allocation.
if (updatedGeometry.width && updatedGeometry.height &&
updatedGeometry.format) {
return false;
}
if (currentGeometry.width != requiredGeometry.width ||
currentGeometry.height != requiredGeometry.height ||
currentGeometry.format != requiredGeometry.format) {
// Current and required geometry do not match. Allocation
// required.
return true;
}
return false;
}
/*
* Update the geometry of this buffer without reallocation.
*
* @param: buffer whose geometry needs to be updated.
* @param: Updated width
* @param: Updated height
* @param: Updated format
*/
int updateBufferGeometry(sp<GraphicBuffer> buffer, const qBufGeometry updatedGeometry)
{
if (buffer == 0) {
LOGE("%s: graphic buffer is NULL", __FUNCTION__);
return -EINVAL;
}
if (!updatedGeometry.width || !updatedGeometry.height ||
!updatedGeometry.format) {
// No update required. Return.
return 0;
}
if (buffer->width == updatedGeometry.width &&
buffer->height == updatedGeometry.height &&
buffer->format == updatedGeometry.format) {
// The buffer has already been updated. Return.
return 0;
}
// Validate the handle
if (private_handle_t::validate(buffer->handle)) {
LOGE("%s: handle is invalid", __FUNCTION__);
return -EINVAL;
}
buffer->width = updatedGeometry.width;
buffer->height = updatedGeometry.height;
buffer->format = updatedGeometry.format;
private_handle_t *hnd = (private_handle_t*)(buffer->handle);
if (hnd) {
hnd->width = updatedGeometry.width;
hnd->height = updatedGeometry.height;
hnd->format = updatedGeometry.format;
} else {
LOGE("%s: hnd is NULL", __FUNCTION__);
return -EINVAL;
}
return 0;
}
/* Update the S3D format of this buffer.
*
* @param: buffer whosei S3D format needs to be updated.
* @param: Updated buffer S3D format
*/
int updateBufferS3DFormat(sp<GraphicBuffer> buffer, const int s3dFormat)
{
if (buffer == 0) {
LOGE("%s: graphic buffer is NULL", __FUNCTION__);
return -EINVAL;
}
buffer->format |= s3dFormat;
return 0;
}
/*
* Updates the flags for the layer
*
* @param: Attribute
* @param: Identifies if the attribute was enabled or disabled.
*
* @return: -EINVAL if the attribute is invalid
*/
int updateLayerQcomFlags(eLayerAttrib attribute, bool enable, int& currentFlags)
{
int ret = 0;
switch (attribute) {
case LAYER_UPDATE_STATUS: {
if (enable)
currentFlags |= LAYER_UPDATING;
else
currentFlags &= ~LAYER_UPDATING;
} break;
case LAYER_ASYNCHRONOUS_STATUS: {
if (enable)
currentFlags |= LAYER_ASYNCHRONOUS;
else
currentFlags &= ~LAYER_ASYNCHRONOUS;
} break;
default: LOGE("%s: invalid attribute(0x%x)", __FUNCTION__, attribute);
break;
}
return ret;
}
/*
* Gets the per frame HWC flags for this layer.
*
* @param: current hwcl flags
* @param: current layerFlags
*
* @return: the per frame flags.
*/
int getPerFrameFlags(int hwclFlags, int layerFlags) {
int flags = hwclFlags;
if (layerFlags & LAYER_UPDATING)
flags &= ~HWC_LAYER_NOT_UPDATING;
else
flags |= HWC_LAYER_NOT_UPDATING;
if (layerFlags & LAYER_ASYNCHRONOUS)
flags |= HWC_LAYER_ASYNCHRONOUS;
else
flags &= ~HWC_LAYER_ASYNCHRONOUS;
return flags;
}
/*
* Checks if FB is updated by this composition type
*
* @param: composition type
* @return: true if FB is updated, false if not
*/
bool isUpdatingFB(HWCCompositionType compositionType)
{
switch(compositionType)
{
case HWC_USE_COPYBIT:
return true;
default:
LOGE("%s: invalid composition type(%d)", __FUNCTION__, compositionType);
return false;
};
}
/*
* Clear Region implementation for C2D/MDP versions.
*
* @param: region to be cleared
* @param: EGL Display
* @param: EGL Surface
*
* @return 0 on success
*/
int qcomuiClearRegion(Region region, EGLDisplay dpy, EGLSurface sur)
{
int ret = 0;
int compositionType = QCCompositionType::getInstance().getCompositionType();
if (compositionType & COMPOSITION_TYPE_GPU ||
(compositionType == COMPOSITION_TYPE_DYN|COMPOSITION_TYPE_C2D))
{
// For GPU or DYN comp. with C2D, return an error, so that SF can use
// the GPU to draw the wormhole.
return -1;
}
android_native_buffer_t *renderBuffer = (android_native_buffer_t *)
eglGetRenderBufferANDROID(dpy, sur);
if (!renderBuffer) {
LOGE("%s: eglGetRenderBufferANDROID returned NULL buffer",
__FUNCTION__);
return -1;
}
private_handle_t *fbHandle = (private_handle_t *)renderBuffer->handle;
if(!fbHandle) {
LOGE("%s: Framebuffer handle is NULL", __FUNCTION__);
return -1;
}
int bytesPerPixel = 4;
if (HAL_PIXEL_FORMAT_RGB_565 == fbHandle->format) {
bytesPerPixel = 2;
}
Region::const_iterator it = region.begin();
Region::const_iterator const end = region.end();
const int32_t stride = renderBuffer->stride*bytesPerPixel;
while (it != end) {
const Rect& r = *it++;
uint8_t* dst = (uint8_t*) fbHandle->base +
(r.left + r.top*renderBuffer->stride)*bytesPerPixel;
int w = r.width()*bytesPerPixel;
int h = r.height();
do {
if(4 == bytesPerPixel)
android_memset32((uint32_t*)dst, 0, w);
else
android_memset16((uint16_t*)dst, 0, w);
dst += stride;
} while(--h);
}
return 0;
}
/*
* Handles the externalDisplay event
* HDMI has highest priority compared to WifiDisplay
* Based on the current and the new display type, decides the
* external display to be enabled
*
* @param: disp - external display type(wfd/hdmi)
* @param: value - external event(0/1)
* @param: currdispType - Current enabled external display Type
* @return: external display type to be enabled
*
*/
external_display_type handleEventHDMI(external_display_type disp, int value,
external_display_type currDispType)
{
external_display_type retDispType = currDispType;
switch(disp) {
case EXT_TYPE_HDMI:
if(value)
retDispType = EXT_TYPE_HDMI;
else
retDispType = EXT_TYPE_NONE;
break;
case EXT_TYPE_WIFI:
if(currDispType != EXT_TYPE_HDMI) {
if(value)
retDispType = EXT_TYPE_WIFI;
else
retDispType = EXT_TYPE_NONE;
}
break;
default:
LOGE("%s: Unknown External Display Type!!");
break;
}
return retDispType;
}
// Using global variables for layer dumping since "property_set("debug.sf.dump",
// property)" does not work.
int sfdump_countlimit_raw = 0;
int sfdump_counter_raw = 1;
char sfdump_propstr_persist_raw[PROPERTY_VALUE_MAX] = "";
char sfdumpdir_raw[256] = "";
int sfdump_countlimit_png = 0;
int sfdump_counter_png = 1;
char sfdump_propstr_persist_png[PROPERTY_VALUE_MAX] = "";
char sfdumpdir_png[256] = "";
bool needToDumpLayers()
{
bool bDumpLayer = false;
char sfdump_propstr[PROPERTY_VALUE_MAX];
time_t timenow;
tm sfdump_time;
time(&timenow);
localtime_r(&timenow, &sfdump_time);
if ((property_get("debug.sf.dump.png", sfdump_propstr, NULL) > 0) &&
(strncmp(sfdump_propstr, sfdump_propstr_persist_png,
PROPERTY_VALUE_MAX - 1))) {
// Strings exist & not equal implies it has changed, so trigger a dump
strncpy(sfdump_propstr_persist_png, sfdump_propstr,
PROPERTY_VALUE_MAX - 1);
sfdump_countlimit_png = atoi(sfdump_propstr);
sfdump_countlimit_png = (sfdump_countlimit_png < 0) ? 0:
(sfdump_countlimit_png >= LONG_MAX) ? (LONG_MAX - 1):
sfdump_countlimit_png;
if (sfdump_countlimit_png) {
sprintf(sfdumpdir_png,"/data/sfdump.png%04d%02d%02d.%02d%02d%02d",
sfdump_time.tm_year + 1900, sfdump_time.tm_mon + 1,
sfdump_time.tm_mday, sfdump_time.tm_hour,
sfdump_time.tm_min, sfdump_time.tm_sec);
if (0 == mkdir(sfdumpdir_png, 0777))
sfdump_counter_png = 0;
else
LOGE("sfdump: Error: %s. Failed to create sfdump directory"
": %s", strerror(errno), sfdumpdir_png);
}
}
if (sfdump_counter_png <= sfdump_countlimit_png)
sfdump_counter_png++;
if ((property_get("debug.sf.dump", sfdump_propstr, NULL) > 0) &&
(strncmp(sfdump_propstr, sfdump_propstr_persist_raw,
PROPERTY_VALUE_MAX - 1))) {
// Strings exist & not equal implies it has changed, so trigger a dump
strncpy(sfdump_propstr_persist_raw, sfdump_propstr,
PROPERTY_VALUE_MAX - 1);
sfdump_countlimit_raw = atoi(sfdump_propstr);
sfdump_countlimit_raw = (sfdump_countlimit_raw < 0) ? 0:
(sfdump_countlimit_raw >= LONG_MAX) ? (LONG_MAX - 1):
sfdump_countlimit_raw;
if (sfdump_countlimit_raw) {
sprintf(sfdumpdir_raw,"/data/sfdump.raw%04d%02d%02d.%02d%02d%02d",
sfdump_time.tm_year + 1900, sfdump_time.tm_mon + 1,
sfdump_time.tm_mday, sfdump_time.tm_hour,
sfdump_time.tm_min, sfdump_time.tm_sec);
if (0 == mkdir(sfdumpdir_raw, 0777))
sfdump_counter_raw = 0;
else
LOGE("sfdump: Error: %s. Failed to create sfdump directory"
": %s", strerror(errno), sfdumpdir_raw);
}
}
if (sfdump_counter_raw <= sfdump_countlimit_raw)
sfdump_counter_raw++;
bDumpLayer = (sfdump_countlimit_png || sfdump_countlimit_raw)? true : false;
return bDumpLayer;
}
inline void getHalPixelFormatStr(int format, char pixelformatstr[])
{
if (!pixelformatstr)
return;
switch(format) {
case HAL_PIXEL_FORMAT_RGBA_8888:
strcpy(pixelformatstr, "RGBA_8888");
break;
case HAL_PIXEL_FORMAT_RGBX_8888:
strcpy(pixelformatstr, "RGBX_8888");
break;
case HAL_PIXEL_FORMAT_RGB_888:
strcpy(pixelformatstr, "RGB_888");
break;
case HAL_PIXEL_FORMAT_RGB_565:
strcpy(pixelformatstr, "RGB_565");
break;
case HAL_PIXEL_FORMAT_BGRA_8888:
strcpy(pixelformatstr, "BGRA_8888");
break;
case HAL_PIXEL_FORMAT_RGBA_5551:
strcpy(pixelformatstr, "RGBA_5551");
break;
case HAL_PIXEL_FORMAT_RGBA_4444:
strcpy(pixelformatstr, "RGBA_4444");
break;
case HAL_PIXEL_FORMAT_YV12:
strcpy(pixelformatstr, "YV12");
break;
case HAL_PIXEL_FORMAT_YCbCr_422_SP:
strcpy(pixelformatstr, "YCbCr_422_SP_NV16");
break;
case HAL_PIXEL_FORMAT_YCrCb_420_SP:
strcpy(pixelformatstr, "YCrCb_420_SP_NV21");
break;
case HAL_PIXEL_FORMAT_YCbCr_422_I:
strcpy(pixelformatstr, "YCbCr_422_I_YUY2");
break;
case HAL_PIXEL_FORMAT_NV12_ENCODEABLE:
strcpy(pixelformatstr, "NV12_ENCODEABLE");
break;
case HAL_PIXEL_FORMAT_YCbCr_420_SP_TILED:
strcpy(pixelformatstr, "YCbCr_420_SP_TILED_TILE_4x2");
break;
case HAL_PIXEL_FORMAT_YCbCr_420_SP:
strcpy(pixelformatstr, "YCbCr_420_SP");
break;
case HAL_PIXEL_FORMAT_YCrCb_420_SP_ADRENO:
strcpy(pixelformatstr, "YCrCb_420_SP_ADRENO");
break;
case HAL_PIXEL_FORMAT_YCrCb_422_SP:
strcpy(pixelformatstr, "YCrCb_422_SP");
break;
case HAL_PIXEL_FORMAT_R_8:
strcpy(pixelformatstr, "R_8");
break;
case HAL_PIXEL_FORMAT_RG_88:
strcpy(pixelformatstr, "RG_88");
break;
case HAL_PIXEL_FORMAT_INTERLACE:
strcpy(pixelformatstr, "INTERLACE");
break;
default:
sprintf(pixelformatstr, "Unknown0x%X", format);
break;
}
}
void dumpLayer(int moduleCompositionType, int listFlags, size_t layerIndex,
hwc_layer_t hwLayers[])
{
char dumplogstr_png[128] = "";
char dumplogstr_raw[128] = "";
if (sfdump_counter_png <= sfdump_countlimit_png) {
sprintf(dumplogstr_png, "[png-dump-frame: %03d of %03d] ",
sfdump_counter_png, sfdump_countlimit_png);
}
if (sfdump_counter_raw <= sfdump_countlimit_raw) {
sprintf(dumplogstr_raw, "[raw-dump-frame: %03d of %03d]",
sfdump_counter_raw, sfdump_countlimit_raw);
}
if (NULL == hwLayers) {
LOGE("sfdump: Error.%s%sLayer[%d] No hwLayers to dump.",
dumplogstr_raw, dumplogstr_png, layerIndex);
return;
}
hwc_layer *layer = &hwLayers[layerIndex];
hwc_rect_t sourceCrop = layer->sourceCrop;
hwc_rect_t displayFrame = layer->displayFrame;
private_handle_t *hnd = (private_handle_t *)layer->handle;
char pixelformatstr[32] = "None";
uint32_t transform = layer->transform & FINAL_TRANSFORM_MASK;
if (hnd)
getHalPixelFormatStr(hnd->format, pixelformatstr);
LOGE("sfdump: %s%s[%s]-Composition, Layer[%d] SrcBuff[%dx%d] "
"SrcCrop[%dl, %dt, %dr, %db] "
"DispFrame[%dl, %dt, %dr, %db] Composition-type = %s, Format = %s, "
"Orientation = %s, Flags = %s%s%s%s%s%s%s%s%s%s",
dumplogstr_raw, dumplogstr_png,
(moduleCompositionType == COMPOSITION_TYPE_GPU)? "GPU":
(moduleCompositionType == COMPOSITION_TYPE_MDP)? "MDP":
(moduleCompositionType == COMPOSITION_TYPE_C2D)? "C2D":
(moduleCompositionType == COMPOSITION_TYPE_CPU)? "CPU":
(moduleCompositionType == COMPOSITION_TYPE_DYN)? "DYN": "???",
layerIndex,
(hnd)? hnd->width : -1, (hnd)? hnd->height : -1,
sourceCrop.left, sourceCrop.top,
sourceCrop.right, sourceCrop.bottom,
displayFrame.left, displayFrame.top,
displayFrame.right, displayFrame.bottom,
(layer->compositionType == HWC_FRAMEBUFFER)? "Framebuffer (OpenGL ES)":
(layer->compositionType == HWC_OVERLAY)? "Overlay":
(layer->compositionType == HWC_USE_COPYBIT)? "Copybit": "???",
pixelformatstr,
(transform == Transform::ROT_0)? "ROT_0":
(transform == Transform::FLIP_H)? "FLIP_H":
(transform == Transform::FLIP_V)? "FLIP_V":
(transform == Transform::ROT_90)? "ROT_90":
(transform == Transform::ROT_180)? "ROT_180":
(transform == Transform::ROT_270)? "ROT_270":
(transform == Transform::ROT_INVALID)? "ROT_INVALID":"???",
(layer->flags == 0)? "[None]":"",
(layer->flags & HWC_SKIP_LAYER)? "[Skip layer]":"",
(layer->flags & HWC_LAYER_NOT_UPDATING)? "[Layer not updating]":"",
(layer->flags & HWC_COMP_BYPASS)? "[Bypass]":"",
(layer->flags & HWC_BYPASS_RESERVE_0)? "[Bypass Reserve 0]":"",
(layer->flags & HWC_BYPASS_RESERVE_1)? "[Bypass Reserve 1]":"",
(listFlags & HWC_GEOMETRY_CHANGED)? "[List: Geometry Changed]":"",
(listFlags & HWC_SKIP_COMPOSITION)? "[List: Skip Composition]":"");
if (NULL == hnd) {
LOGE("sfdump: %s%sLayer[%d] private-handle is invalid.",
dumplogstr_raw, dumplogstr_png, layerIndex);
return;
}
if ((sfdump_counter_png <= sfdump_countlimit_png) && hnd->base) {
bool bResult = false;
char sfdumpfile_name[256];
SkBitmap *tempSkBmp = new SkBitmap();
SkBitmap::Config tempSkBmpConfig = SkBitmap::kNo_Config;
sprintf(sfdumpfile_name, "%s/sfdump%03d_layer%d.png", sfdumpdir_png,
sfdump_counter_png, layerIndex);
switch (hnd->format) {
case HAL_PIXEL_FORMAT_RGBA_8888:
case HAL_PIXEL_FORMAT_RGBX_8888:
case HAL_PIXEL_FORMAT_BGRA_8888:
tempSkBmpConfig = SkBitmap::kARGB_8888_Config;
break;
case HAL_PIXEL_FORMAT_RGB_565:
case HAL_PIXEL_FORMAT_RGBA_5551:
case HAL_PIXEL_FORMAT_RGBA_4444:
tempSkBmpConfig = SkBitmap::kRGB_565_Config;
break;
case HAL_PIXEL_FORMAT_RGB_888:
default:
tempSkBmpConfig = SkBitmap::kNo_Config;
break;
}
if (SkBitmap::kNo_Config != tempSkBmpConfig) {
tempSkBmp->setConfig(tempSkBmpConfig, hnd->width, hnd->height);
tempSkBmp->setPixels((void*)hnd->base);
bResult = SkImageEncoder::EncodeFile(sfdumpfile_name,
*tempSkBmp, SkImageEncoder::kPNG_Type, 100);
LOGE("sfdump: %sDumped Layer[%d] to %s: %s", dumplogstr_png,
layerIndex, sfdumpfile_name, bResult ? "Success" : "Fail");
}
else {
LOGE("sfdump: %sSkipping Layer[%d] dump: Unsupported layer "
"format %s for png encoder.", dumplogstr_png, layerIndex,
pixelformatstr);
}
delete tempSkBmp; // Calls SkBitmap::freePixels() internally.
}
if ((sfdump_counter_raw <= sfdump_countlimit_raw) && hnd->base) {
char sfdumpfile_name[256];
bool bResult = false;
sprintf(sfdumpfile_name, "%s/sfdump%03d_layer%d_%dx%d_%s.raw",
sfdumpdir_raw,
sfdump_counter_raw, layerIndex, hnd->width, hnd->height,
pixelformatstr);
FILE* fp = fopen(sfdumpfile_name, "w+");
if (fp != NULL) {
bResult = (bool) fwrite((void*)hnd->base, hnd->size, 1, fp);
fclose(fp);
}
LOGE("sfdump: %s Dumped Layer[%d] to %s: %s", dumplogstr_raw,
layerIndex, sfdumpfile_name, bResult ? "Success" : "Fail");
}
}
bool needsAspectRatio (int wRatio, int hRatio) {
return ((wRatio != DEFAULT_WIDTH_RATIO) || (hRatio != DEFAULT_HEIGHT_RATIO));
}
void applyPixelAspectRatio (int wRatio, int hRatio, int orientation, int maxWidth,
int maxHeight, Rect& visibleRect, GLfloat mVertices[][2]) {
if ((wRatio == 0) || (hRatio == 0))
return;
float wDelta = 0;
float hDelta = 0;
float aspectRatio;
float displayRatio;
float new_width, new_height;
float old_width = abs(visibleRect.right - visibleRect.left);
float old_height = abs(visibleRect.bottom - visibleRect.top);
if (orientation == Transform::ROT_INVALID) {
// During animation, no defined orientation, rely on mTransformedBounds
if (old_width >= old_height)
orientation = Transform::ROT_0;
else
orientation = Transform::ROT_90;
}
switch (orientation) {
case Transform::ROT_0:
case Transform::ROT_180:
// Calculated Aspect Ratio = Original Aspect Ratio x Pixel Aspect Ratio
aspectRatio = (old_width * wRatio) / (old_height * hRatio);
displayRatio = (float)maxWidth / (float)maxHeight;
if (aspectRatio >= displayRatio) {
new_height = old_width / aspectRatio;
if (new_height > maxHeight) {
new_height = maxHeight;
new_width = new_height * aspectRatio;
wDelta = (new_width - old_width) / 2;
}
hDelta = (new_height - old_height) / 2;
} else {
new_width = old_height * aspectRatio;
if (new_width > maxWidth) {
new_width = maxWidth;
new_height = new_width / aspectRatio;
hDelta = (new_height - old_height) / 2;
}
wDelta = (new_width - old_width) / 2;
}
if (hDelta != 0) {
visibleRect.top -= hDelta;
visibleRect.bottom += hDelta;
// Set mVertices for GPU fallback (During rotation)
if (orientation == Transform::ROT_0) {
mVertices[1][1] = mVertices[2][1] = visibleRect.top;
mVertices[0][1] = mVertices[3][1] = visibleRect.bottom;
} else {
mVertices[0][1] = mVertices[3][1] = visibleRect.top;
mVertices[1][1] = mVertices[2][1] = visibleRect.bottom;
}
}
if (wDelta != 0) {
visibleRect.left -= wDelta;
visibleRect.right += wDelta;
// Set mVertices for GPU fallback (During rotation)
mVertices[0][0] = mVertices[1][0] = visibleRect.left;
mVertices[2][0] = mVertices[3][0] = visibleRect.right;
}
break;
case Transform::ROT_90:
case Transform::ROT_270:
// Calculated Aspect Ratio = Original Aspect Ratio x Pixel Aspect Ratio
aspectRatio = (old_height * wRatio) / (old_width * hRatio);
displayRatio = (float)maxHeight / (float)maxWidth;
if (aspectRatio >= displayRatio) {
new_height = old_width * aspectRatio;
if (new_height > maxHeight) {
new_height = maxHeight;
new_width = new_height / aspectRatio;
wDelta = (new_width - old_width) / 2;
}
hDelta = (new_height - old_height) / 2;
} else {
new_width = old_height / aspectRatio;
if (new_width > maxWidth) {
new_width = maxWidth;
new_height = new_width * aspectRatio;
hDelta = (new_height - old_height) / 2;
}
wDelta = (new_width - old_width) / 2;
}
if (hDelta != 0) {
visibleRect.top -= hDelta;
visibleRect.bottom += hDelta;
// Set mVertices for GPU fallback (During rotation)
if (orientation == Transform::ROT_90) {
mVertices[2][1] = mVertices[3][1] = visibleRect.top;
mVertices[0][1] = mVertices[1][1] = visibleRect.bottom;
} else {
mVertices[0][1] = mVertices[1][1] = visibleRect.top;
mVertices[2][1] = mVertices[3][1] = visibleRect.bottom;
}
}
if (wDelta != 0) {
visibleRect.left -= wDelta;
visibleRect.right += wDelta;
// Set mVertices for GPU fallback (During rotation)
if (orientation == Transform::ROT_90) {
mVertices[1][0] = mVertices[2][0] = visibleRect.left;
mVertices[0][0] = mVertices[3][0] = visibleRect.right;
} else {
mVertices[0][0] = mVertices[3][0] = visibleRect.left;
mVertices[1][0] = mVertices[2][0] = visibleRect.right;
}
}
break;
default: // Handled above.
break;
}
}