| #!/usr/bin/env perl |
| |
| # ==================================================================== |
| # [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL |
| # project. The module is, however, dual licensed under OpenSSL and |
| # CRYPTOGAMS licenses depending on where you obtain it. For further |
| # details see http://www.openssl.org/~appro/cryptogams/. |
| # ==================================================================== |
| |
| # "[Re]written" was achieved in two major overhauls. In 2004 BODY_* |
| # functions were re-implemented to address P4 performance issue [see |
| # commentary below], and in 2006 the rest was rewritten in order to |
| # gain freedom to liberate licensing terms. |
| |
| # It was noted that Intel IA-32 C compiler generates code which |
| # performs ~30% *faster* on P4 CPU than original *hand-coded* |
| # SHA1 assembler implementation. To address this problem (and |
| # prove that humans are still better than machines:-), the |
| # original code was overhauled, which resulted in following |
| # performance changes: |
| # |
| # compared with original compared with Intel cc |
| # assembler impl. generated code |
| # Pentium -16% +48% |
| # PIII/AMD +8% +16% |
| # P4 +85%(!) +45% |
| # |
| # As you can see Pentium came out as looser:-( Yet I reckoned that |
| # improvement on P4 outweights the loss and incorporate this |
| # re-tuned code to 0.9.7 and later. |
| # ---------------------------------------------------------------- |
| # <appro@fy.chalmers.se> |
| |
| $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; |
| push(@INC,"${dir}","${dir}../../perlasm"); |
| require "x86asm.pl"; |
| |
| &asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386"); |
| |
| $A="eax"; |
| $B="ebx"; |
| $C="ecx"; |
| $D="edx"; |
| $E="edi"; |
| $T="esi"; |
| $tmp1="ebp"; |
| |
| @V=($A,$B,$C,$D,$E,$T); |
| |
| sub BODY_00_15 |
| { |
| local($n,$a,$b,$c,$d,$e,$f)=@_; |
| |
| &comment("00_15 $n"); |
| |
| &mov($f,$c); # f to hold F_00_19(b,c,d) |
| if ($n==0) { &mov($tmp1,$a); } |
| else { &mov($a,$tmp1); } |
| &rotl($tmp1,5); # tmp1=ROTATE(a,5) |
| &xor($f,$d); |
| &add($tmp1,$e); # tmp1+=e; |
| &and($f,$b); |
| &mov($e,&swtmp($n%16)); # e becomes volatile and is loaded |
| # with xi, also note that e becomes |
| # f in next round... |
| &xor($f,$d); # f holds F_00_19(b,c,d) |
| &rotr($b,2); # b=ROTATE(b,30) |
| &lea($tmp1,&DWP(0x5a827999,$tmp1,$e)); # tmp1+=K_00_19+xi |
| |
| if ($n==15) { &add($f,$tmp1); } # f+=tmp1 |
| else { &add($tmp1,$f); } # f becomes a in next round |
| } |
| |
| sub BODY_16_19 |
| { |
| local($n,$a,$b,$c,$d,$e,$f)=@_; |
| |
| &comment("16_19 $n"); |
| |
| &mov($f,&swtmp($n%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) |
| &mov($tmp1,$c); # tmp1 to hold F_00_19(b,c,d) |
| &xor($f,&swtmp(($n+2)%16)); |
| &xor($tmp1,$d); |
| &xor($f,&swtmp(($n+8)%16)); |
| &and($tmp1,$b); # tmp1 holds F_00_19(b,c,d) |
| &rotr($b,2); # b=ROTATE(b,30) |
| &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd |
| &rotl($f,1); # f=ROTATE(f,1) |
| &xor($tmp1,$d); # tmp1=F_00_19(b,c,d) |
| &mov(&swtmp($n%16),$f); # xi=f |
| &lea($f,&DWP(0x5a827999,$f,$e));# f+=K_00_19+e |
| &mov($e,$a); # e becomes volatile |
| &rotl($e,5); # e=ROTATE(a,5) |
| &add($f,$tmp1); # f+=F_00_19(b,c,d) |
| &add($f,$e); # f+=ROTATE(a,5) |
| } |
| |
| sub BODY_20_39 |
| { |
| local($n,$a,$b,$c,$d,$e,$f)=@_; |
| local $K=($n<40)?0x6ed9eba1:0xca62c1d6; |
| |
| &comment("20_39 $n"); |
| |
| &mov($tmp1,$b); # tmp1 to hold F_20_39(b,c,d) |
| &mov($f,&swtmp($n%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) |
| &rotr($b,2); # b=ROTATE(b,30) |
| &xor($f,&swtmp(($n+2)%16)); |
| &xor($tmp1,$c); |
| &xor($f,&swtmp(($n+8)%16)); |
| &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d) |
| &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd |
| &rotl($f,1); # f=ROTATE(f,1) |
| &add($tmp1,$e); |
| &mov(&swtmp($n%16),$f); # xi=f |
| &mov($e,$a); # e becomes volatile |
| &rotl($e,5); # e=ROTATE(a,5) |
| &lea($f,&DWP($K,$f,$tmp1)); # f+=K_20_39+e |
| &add($f,$e); # f+=ROTATE(a,5) |
| } |
| |
| sub BODY_40_59 |
| { |
| local($n,$a,$b,$c,$d,$e,$f)=@_; |
| |
| &comment("40_59 $n"); |
| |
| &mov($f,&swtmp($n%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) |
| &mov($tmp1,&swtmp(($n+2)%16)); |
| &xor($f,$tmp1); |
| &mov($tmp1,&swtmp(($n+8)%16)); |
| &xor($f,$tmp1); |
| &mov($tmp1,&swtmp(($n+13)%16)); |
| &xor($f,$tmp1); # f holds xa^xb^xc^xd |
| &mov($tmp1,$b); # tmp1 to hold F_40_59(b,c,d) |
| &rotl($f,1); # f=ROTATE(f,1) |
| &or($tmp1,$c); |
| &mov(&swtmp($n%16),$f); # xi=f |
| &and($tmp1,$d); |
| &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e |
| &mov($e,$b); # e becomes volatile and is used |
| # to calculate F_40_59(b,c,d) |
| &rotr($b,2); # b=ROTATE(b,30) |
| &and($e,$c); |
| &or($tmp1,$e); # tmp1 holds F_40_59(b,c,d) |
| &mov($e,$a); |
| &rotl($e,5); # e=ROTATE(a,5) |
| &add($f,$tmp1); # f+=tmp1; |
| &add($f,$e); # f+=ROTATE(a,5) |
| } |
| |
| &function_begin("sha1_block_data_order"); |
| &mov($tmp1,&wparam(0)); # SHA_CTX *c |
| &mov($T,&wparam(1)); # const void *input |
| &mov($A,&wparam(2)); # size_t num |
| &stack_push(16); # allocate X[16] |
| &shl($A,6); |
| &add($A,$T); |
| &mov(&wparam(2),$A); # pointer beyond the end of input |
| &mov($E,&DWP(16,$tmp1));# pre-load E |
| |
| &set_label("loop",16); |
| |
| # copy input chunk to X, but reversing byte order! |
| for ($i=0; $i<16; $i+=4) |
| { |
| &mov($A,&DWP(4*($i+0),$T)); |
| &mov($B,&DWP(4*($i+1),$T)); |
| &mov($C,&DWP(4*($i+2),$T)); |
| &mov($D,&DWP(4*($i+3),$T)); |
| &bswap($A); |
| &bswap($B); |
| &bswap($C); |
| &bswap($D); |
| &mov(&swtmp($i+0),$A); |
| &mov(&swtmp($i+1),$B); |
| &mov(&swtmp($i+2),$C); |
| &mov(&swtmp($i+3),$D); |
| } |
| &mov(&wparam(1),$T); # redundant in 1st spin |
| |
| &mov($A,&DWP(0,$tmp1)); # load SHA_CTX |
| &mov($B,&DWP(4,$tmp1)); |
| &mov($C,&DWP(8,$tmp1)); |
| &mov($D,&DWP(12,$tmp1)); |
| # E is pre-loaded |
| |
| for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); } |
| for(;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); } |
| for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } |
| for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); } |
| for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } |
| |
| (($V[5] eq $D) and ($V[0] eq $E)) or die; # double-check |
| |
| &mov($tmp1,&wparam(0)); # re-load SHA_CTX* |
| &mov($D,&wparam(1)); # D is last "T" and is discarded |
| |
| &add($E,&DWP(0,$tmp1)); # E is last "A"... |
| &add($T,&DWP(4,$tmp1)); |
| &add($A,&DWP(8,$tmp1)); |
| &add($B,&DWP(12,$tmp1)); |
| &add($C,&DWP(16,$tmp1)); |
| |
| &mov(&DWP(0,$tmp1),$E); # update SHA_CTX |
| &add($D,64); # advance input pointer |
| &mov(&DWP(4,$tmp1),$T); |
| &cmp($D,&wparam(2)); # have we reached the end yet? |
| &mov(&DWP(8,$tmp1),$A); |
| &mov($E,$C); # C is last "E" which needs to be "pre-loaded" |
| &mov(&DWP(12,$tmp1),$B); |
| &mov($T,$D); # input pointer |
| &mov(&DWP(16,$tmp1),$C); |
| &jb(&label("loop")); |
| |
| &stack_pop(16); |
| &function_end("sha1_block_data_order"); |
| &asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>"); |
| |
| &asm_finish(); |