blob: 1995c270bc7e371b68f2cfb1be8a8e5a805477d8 [file] [log] [blame]
/* Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <debug.h>
#include <platform/iomap.h>
#include <platform/irqs.h>
#include <reg.h>
#include <target.h>
#include <platform.h>
#include <dload_util.h>
#include <uart_dm.h>
#include <mmc_sdhci.h>
#include <platform/clock.h>
#include <platform/gpio.h>
#include <spmi.h>
#include <board.h>
#include <smem.h>
#include <baseband.h>
#include <dev/keys.h>
#include <pm8x41.h>
#include <crypto5_wrapper.h>
#include <hsusb.h>
#include <scm.h>
#include <stdlib.h>
#include <partition_parser.h>
#include <shutdown_detect.h>
#include <vibrator.h>
extern bool target_use_signed_kernel(void);
static void set_sdc_power_ctrl(void);
#define PMIC_ARB_CHANNEL_NUM 0
#define PMIC_ARB_OWNER_ID 0
#define CRYPTO_ENGINE_INSTANCE 1
#define CRYPTO_ENGINE_EE 1
#define CRYPTO_ENGINE_FIFO_SIZE 64
#define CRYPTO_ENGINE_READ_PIPE 3
#define CRYPTO_ENGINE_WRITE_PIPE 2
#define CRYPTO_READ_PIPE_LOCK_GRP 0
#define CRYPTO_WRITE_PIPE_LOCK_GRP 0
#define CRYPTO_ENGINE_CMD_ARRAY_SIZE 20
#define TLMM_VOL_UP_BTN_GPIO 106
#define VIBRATE_TIME 250
#define SSD_CE_INSTANCE 1
enum target_subtype {
HW_PLATFORM_SUBTYPE_SKUAA = 1,
HW_PLATFORM_SUBTYPE_SKUF = 2,
HW_PLATFORM_SUBTYPE_SKUAB = 3,
HW_PLATFORM_SUBTYPE_SKUG = 5,
};
static uint32_t mmc_pwrctl_base[] =
{ MSM_SDC1_BASE, MSM_SDC2_BASE, MSM_SDC3_BASE };
static uint32_t mmc_sdhci_base[] =
{ MSM_SDC1_SDHCI_BASE, MSM_SDC2_SDHCI_BASE, MSM_SDC3_SDHCI_BASE };
static uint32_t mmc_sdc_pwrctl_irq[] =
{ SDCC1_PWRCTL_IRQ, SDCC2_PWRCTL_IRQ, SDCC3_PWRCTL_IRQ };
struct mmc_device *dev;
void target_load_ssd_keystore(void)
{
uint64_t ptn;
int index;
uint64_t size;
uint32_t *buffer;
if (!target_is_ssd_enabled())
return;
index = partition_get_index("ssd");
ptn = partition_get_offset(index);
if (ptn == 0){
dprintf(CRITICAL, "Error: ssd partition not found\n");
return;
}
size = partition_get_size(index);
if (size == 0) {
dprintf(CRITICAL, "Error: invalid ssd partition size\n");
return;
}
buffer = memalign(CACHE_LINE, ROUNDUP(size, CACHE_LINE));
if (!buffer) {
dprintf(CRITICAL, "Error: allocating memory for ssd buffer\n");
return;
}
if (mmc_read(ptn, buffer, size)) {
dprintf(CRITICAL, "Error: cannot read data\n");
free(buffer);
return;
}
clock_ce_enable(SSD_CE_INSTANCE);
scm_protect_keystore(buffer, size);
clock_ce_disable(SSD_CE_INSTANCE);
free(buffer);
}
void target_early_init(void)
{
#if WITH_DEBUG_UART
uart_dm_init(1, 0, BLSP1_UART2_BASE);
#endif
}
/* Return 1 if vol_up pressed */
static int target_volume_up()
{
uint8_t status = 0;
gpio_tlmm_config(TLMM_VOL_UP_BTN_GPIO, 0, GPIO_INPUT, GPIO_PULL_UP, GPIO_2MA, GPIO_ENABLE);
thread_sleep(10);
/* Get status of GPIO */
status = gpio_status(TLMM_VOL_UP_BTN_GPIO);
/* Active low signal. */
return !status;
}
/* Return 1 if vol_down pressed */
uint32_t target_volume_down()
{
/* Volume down button tied in with PMIC RESIN. */
return pm8x41_resin_status();
}
static void target_keystatus()
{
keys_init();
if(target_volume_down())
keys_post_event(KEY_VOLUMEDOWN, 1);
if(target_volume_up())
keys_post_event(KEY_VOLUMEUP, 1);
}
/* Set up params for h/w CRYPTO_ENGINE. */
void target_crypto_init_params()
{
struct crypto_init_params ce_params;
/* Set up base addresses and instance. */
ce_params.crypto_instance = CRYPTO_ENGINE_INSTANCE;
ce_params.crypto_base = MSM_CE1_BASE;
ce_params.bam_base = MSM_CE1_BAM_BASE;
/* Set up BAM config. */
ce_params.bam_ee = CRYPTO_ENGINE_EE;
ce_params.pipes.read_pipe = CRYPTO_ENGINE_READ_PIPE;
ce_params.pipes.write_pipe = CRYPTO_ENGINE_WRITE_PIPE;
ce_params.pipes.read_pipe_grp = CRYPTO_READ_PIPE_LOCK_GRP;
ce_params.pipes.write_pipe_grp = CRYPTO_WRITE_PIPE_LOCK_GRP;
/* Assign buffer sizes. */
ce_params.num_ce = CRYPTO_ENGINE_CMD_ARRAY_SIZE;
ce_params.read_fifo_size = CRYPTO_ENGINE_FIFO_SIZE;
ce_params.write_fifo_size = CRYPTO_ENGINE_FIFO_SIZE;
ce_params.do_bam_init = 0;
crypto_init_params(&ce_params);
}
void target_sdc_init()
{
struct mmc_config_data config = {0};
/*
* Set drive strength & pull ctrl for emmc
*/
set_sdc_power_ctrl();
config.bus_width = DATA_BUS_WIDTH_8BIT;
config.max_clk_rate = MMC_CLK_200MHZ;
/* Trying Slot 1*/
config.slot = 1;
config.sdhc_base = mmc_sdhci_base[config.slot - 1];
config.pwrctl_base = mmc_pwrctl_base[config.slot - 1];
config.pwr_irq = mmc_sdc_pwrctl_irq[config.slot - 1];
config.hs400_support = 0;
if (!(dev = mmc_init(&config)))
{
/* Trying Slot 2 next */
config.slot = 2;
config.sdhc_base = mmc_sdhci_base[config.slot - 1];
config.pwrctl_base = mmc_pwrctl_base[config.slot - 1];
config.pwr_irq = mmc_sdc_pwrctl_irq[config.slot - 1];
if (!(dev = mmc_init(&config))) {
dprintf(CRITICAL, "mmc init failed!");
ASSERT(0);
}
}
/*
* MMC initialization is complete, read the partition table info
*/
if (partition_read_table()) {
dprintf(CRITICAL, "Error reading the partition table info\n");
ASSERT(0);
}
}
void target_init(void)
{
int ret = 0;
dprintf(INFO, "target_init()\n");
spmi_init(PMIC_ARB_CHANNEL_NUM, PMIC_ARB_OWNER_ID);
target_keystatus();
target_sdc_init();
clock_ce_enable(SSD_CE_INSTANCE);
if (target_use_signed_kernel())
target_crypto_init_params();
#if VERIFIED_BOOT
/* Initialize Qseecom */
ret = qseecom_init();
if (ret < 0)
{
dprintf(CRITICAL, "Failed to initialize qseecom, error: %d\n", ret);
ASSERT(0);
}
/* Start Qseecom */
ret = qseecom_tz_init();
if (ret < 0)
{
dprintf(CRITICAL, "Failed to start qseecom, error: %d\n", ret);
ASSERT(0);
}
/*
* Load the sec app for first time
*/
if (load_sec_app() < 0)
{
dprintf(CRITICAL, "Failed to load App for verified\n");
ASSERT(0);
}
#endif
shutdown_detect();
/* turn on vibrator to indicate that phone is booting up to end user */
vib_timed_turn_on(VIBRATE_TIME);
}
/* Do any target specific intialization needed before entering fastboot mode */
void target_fastboot_init(void)
{
/* Set the BOOT_DONE flag in PM8026 */
pm8x41_set_boot_done();
if (target_is_ssd_enabled()) {
clock_ce_enable(SSD_CE_INSTANCE);
target_load_ssd_keystore();
}
}
/* Detect the target type */
void target_detect(struct board_data *board)
{
/*
* already fill the board->target on board.c
*/
}
/* Detect the modem type */
void target_baseband_detect(struct board_data *board)
{
uint32_t platform;
uint32_t platform_subtype;
platform = board->platform;
platform_subtype = board->platform_subtype;
/*
* Look for platform subtype if present, else
* check for platform type to decide on the
* baseband type
*/
switch(platform_subtype)
{
case HW_PLATFORM_SUBTYPE_UNKNOWN:
break;
case HW_PLATFORM_SUBTYPE_SKUAA:
break;
case HW_PLATFORM_SUBTYPE_SKUF:
break;
case HW_PLATFORM_SUBTYPE_SKUAB:
break;
case HW_PLATFORM_SUBTYPE_SKUG:
break;
default:
dprintf(CRITICAL, "Platform Subtype : %u is not supported\n", platform_subtype);
ASSERT(0);
};
switch(platform)
{
case MSM8826:
case MSM8626:
case MSM8226:
case MSM8926:
case MSM8126:
case MSM8326:
case MSM8528:
case MSM8628:
case MSM8228:
case MSM8928:
case MSM8128:
board->baseband = BASEBAND_MSM;
break;
case APQ8026:
case APQ8028:
board->baseband = BASEBAND_APQ;
break;
default:
dprintf(CRITICAL, "Platform type: %u is not supported\n", platform);
ASSERT(0);
};
}
void target_serialno(unsigned char *buf)
{
uint32_t serialno;
if (target_is_emmc_boot()) {
serialno = mmc_get_psn();
snprintf((char *)buf, 13, "%x", serialno);
}
}
unsigned check_reboot_mode(void)
{
uint32_t restart_reason = 0;
/* Read reboot reason and scrub it */
restart_reason = readl(RESTART_REASON_ADDR);
writel(0x00, RESTART_REASON_ADDR);
return restart_reason;
}
void reboot_device(unsigned reboot_reason)
{
int ret = 0;
writel(reboot_reason, RESTART_REASON_ADDR);
/* Configure PMIC for warm reset */
pm8x41_reset_configure(PON_PSHOLD_WARM_RESET);
ret = scm_halt_pmic_arbiter();
if (ret)
dprintf(CRITICAL , "Failed to halt pmic arbiter: %d\n", ret);
/* Drop PS_HOLD for MSM */
writel(0x00, MPM2_MPM_PS_HOLD);
mdelay(5000);
dprintf(CRITICAL, "Rebooting failed\n");
}
/* Configure PMIC and Drop PS_HOLD for shutdown */
void shutdown_device()
{
dprintf(CRITICAL, "Going down for shutdown.\n");
/* Configure PMIC for shutdown */
pm8x41_reset_configure(PON_PSHOLD_SHUTDOWN);
/* Drop PS_HOLD for MSM */
writel(0x00, MPM2_MPM_PS_HOLD);
mdelay(5000);
dprintf(CRITICAL, "shutdown failed\n");
ASSERT(0);
}
crypto_engine_type board_ce_type(void)
{
return CRYPTO_ENGINE_TYPE_HW;
}
unsigned board_machtype(void)
{
return 0;
}
void target_usb_stop(void)
{
/* Disable VBUS mimicing in the controller. */
ulpi_write(ULPI_MISC_A_VBUSVLDEXTSEL | ULPI_MISC_A_VBUSVLDEXT, ULPI_MISC_A_CLEAR);
}
void target_uninit(void)
{
/* wait for the vibrator timer is expried */
wait_vib_timeout();
mmc_put_card_to_sleep(dev);
clock_ce_disable(SSD_CE_INSTANCE);
if (crypto_initialized())
crypto_eng_cleanup();
#if VERIFIED_BOOT
if (is_sec_app_loaded())
{
if (send_milestone_call_to_tz() < 0)
{
dprintf(CRITICAL, "Failed to send milestone call\n");
ASSERT(0);
}
}
#endif
}
void target_usb_init(void)
{
uint32_t val;
/* Select and enable external configuration with USB PHY */
ulpi_write(ULPI_MISC_A_VBUSVLDEXTSEL | ULPI_MISC_A_VBUSVLDEXT, ULPI_MISC_A_SET);
/* Enable sess_vld */
val = readl(USB_GENCONFIG_2) | GEN2_SESS_VLD_CTRL_EN;
writel(val, USB_GENCONFIG_2);
/* Enable external vbus configuration in the LINK */
val = readl(USB_USBCMD);
val |= SESS_VLD_CTRL;
writel(val, USB_USBCMD);
}
uint8_t target_panel_auto_detect_enabled()
{
uint8_t ret = 0;
uint32_t hw_subtype = board_hardware_subtype();
switch(board_hardware_id())
{
case HW_PLATFORM_QRD:
if (hw_subtype != HW_PLATFORM_SUBTYPE_SKUF
&& hw_subtype != HW_PLATFORM_SUBTYPE_SKUG) {
/* Enable autodetect for 8x26 DVT boards only */
if (((board_target_id() >> 16) & 0xFF) == 0x2)
ret = 1;
else
ret = 0;
}
break;
case HW_PLATFORM_SURF:
case HW_PLATFORM_MTP:
default:
ret = 0;
}
return ret;
}
static uint8_t splash_override;
/* Returns 1 if target supports continuous splash screen. */
int target_cont_splash_screen()
{
uint8_t splash_screen = 0;
if(!splash_override) {
switch(board_hardware_id())
{
case HW_PLATFORM_MTP:
case HW_PLATFORM_QRD:
case HW_PLATFORM_SURF:
dprintf(SPEW, "Target_cont_splash=1\n");
splash_screen = 1;
break;
default:
dprintf(SPEW, "Target_cont_splash=0\n");
splash_screen = 0;
}
}
return splash_screen;
}
void target_force_cont_splash_disable(uint8_t override)
{
splash_override = override;
}
unsigned target_pause_for_battery_charge(void)
{
uint8_t pon_reason = pm8x41_get_pon_reason();
uint8_t is_cold_boot = pm8x41_get_is_cold_boot();
dprintf(INFO, "%s : pon_reason is %d cold_boot:%d\n", __func__,
pon_reason, is_cold_boot);
/* In case of fastboot reboot,adb reboot or if we see the power key
* pressed we do not want go into charger mode.
* fastboot reboot is warm boot with PON hard reset bit not set
* adb reboot is a cold boot with PON hard reset bit set
*/
if (is_cold_boot &&
(!(pon_reason & HARD_RST)) &&
(!(pon_reason & KPDPWR_N)) &&
((pon_reason & USB_CHG) || (pon_reason & DC_CHG)))
return 1;
else
return 0;
}
unsigned target_baseband()
{
return board_baseband();
}
int emmc_recovery_init(void)
{
return _emmc_recovery_init();
}
int set_download_mode(enum dload_mode mode)
{
dload_util_write_cookie(mode == NORMAL_DLOAD ?
DLOAD_MODE_ADDR : EMERGENCY_DLOAD_MODE_ADDR, mode);
pm8x41_clear_pmic_watchdog();
return 0;
}
static void set_sdc_power_ctrl()
{
/* Drive strength configs for sdc pins */
struct tlmm_cfgs sdc1_hdrv_cfg[] =
{
{ SDC1_CLK_HDRV_CTL_OFF, TLMM_CUR_VAL_16MA, TLMM_HDRV_MASK },
{ SDC1_CMD_HDRV_CTL_OFF, TLMM_CUR_VAL_10MA, TLMM_HDRV_MASK },
{ SDC1_DATA_HDRV_CTL_OFF, TLMM_CUR_VAL_6MA, TLMM_HDRV_MASK },
};
/* Pull configs for sdc pins */
struct tlmm_cfgs sdc1_pull_cfg[] =
{
{ SDC1_CLK_PULL_CTL_OFF, TLMM_NO_PULL, TLMM_PULL_MASK },
{ SDC1_CMD_PULL_CTL_OFF, TLMM_PULL_UP, TLMM_PULL_MASK },
{ SDC1_DATA_PULL_CTL_OFF, TLMM_PULL_UP, TLMM_PULL_MASK },
};
/* Set the drive strength & pull control values */
tlmm_set_hdrive_ctrl(sdc1_hdrv_cfg, ARRAY_SIZE(sdc1_hdrv_cfg));
tlmm_set_pull_ctrl(sdc1_pull_cfg, ARRAY_SIZE(sdc1_pull_cfg));
}
struct mmc_device *target_mmc_device()
{
return dev;
}