| /* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials provided |
| * with the distribution. |
| * * Neither the name of The Linux Foundation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED |
| * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS |
| * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
| * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE |
| * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN |
| * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include <libfdt.h> |
| #include <dev_tree.h> |
| #include <lib/ptable.h> |
| #include <malloc.h> |
| #include <qpic_nand.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <platform.h> |
| #include <board.h> |
| |
| struct dt_entry_v1 |
| { |
| uint32_t platform_id; |
| uint32_t variant_id; |
| uint32_t soc_rev; |
| uint32_t offset; |
| uint32_t size; |
| }; |
| |
| static struct dt_mem_node_info mem_node; |
| |
| static int platform_dt_match(struct dt_entry *cur_dt_entry, uint32_t target_variant_id, uint32_t subtype_mask); |
| extern int target_is_emmc_boot(void); |
| extern uint32_t target_dev_tree_mem(void *fdt, uint32_t memory_node_offset); |
| /* TODO: This function needs to be moved to target layer to check violations |
| * against all the other regions as well. |
| */ |
| extern int check_aboot_addr_range_overlap(uint32_t start, uint32_t size); |
| |
| /* Returns soc version if platform id and hardware id matches |
| otherwise return 0xFFFFFFFF */ |
| #define INVALID_SOC_REV_ID 0XFFFFFFFF |
| static uint32_t dev_tree_compatible(void *dtb) |
| { |
| int root_offset; |
| const void *prop = NULL; |
| const char *plat_prop = NULL; |
| const char *board_prop = NULL; |
| char *model = NULL; |
| struct dt_entry cur_dt_entry; |
| struct dt_entry *dt_entry_v2 = NULL; |
| struct board_id *board_data = NULL; |
| struct plat_id *platform_data = NULL; |
| int len; |
| int len_board_id; |
| int len_plat_id; |
| int min_plat_id_len = 0; |
| uint32_t target_variant_id; |
| uint32_t dtb_ver; |
| uint32_t num_entries = 0; |
| uint32_t i, j, k; |
| uint32_t found = 0; |
| uint32_t msm_data_count; |
| uint32_t board_data_count; |
| uint32_t soc_rev; |
| |
| root_offset = fdt_path_offset(dtb, "/"); |
| if (root_offset < 0) |
| return false; |
| |
| prop = fdt_getprop(dtb, root_offset, "model", &len); |
| if (prop && len > 0) { |
| model = (char *) malloc(sizeof(char) * len); |
| ASSERT(model); |
| strlcpy(model, prop, len); |
| } else { |
| model[0] = '\0'; |
| } |
| |
| /* Find the board-id prop from DTB , if board-id is present then |
| * the DTB is version 2 */ |
| board_prop = (const char *)fdt_getprop(dtb, root_offset, "qcom,board-id", &len_board_id); |
| if (board_prop) |
| { |
| dtb_ver = DEV_TREE_VERSION_V2; |
| min_plat_id_len = PLAT_ID_SIZE; |
| } |
| else |
| { |
| dtb_ver = DEV_TREE_VERSION_V1; |
| min_plat_id_len = DT_ENTRY_V1_SIZE; |
| } |
| |
| /* Get the msm-id prop from DTB */ |
| plat_prop = (const char *)fdt_getprop(dtb, root_offset, "qcom,msm-id", &len_plat_id); |
| if (!plat_prop || len_plat_id <= 0) { |
| dprintf(INFO, "qcom,msm-id entry not found\n"); |
| return false; |
| } else if (len_plat_id % min_plat_id_len) { |
| dprintf(INFO, "qcom,msm-id in device tree is (%d) not a multiple of (%d)\n", |
| len_plat_id, min_plat_id_len); |
| return false; |
| } |
| |
| /* |
| * If DTB version is '1' look for <x y z> pair in the DTB |
| * x: platform_id |
| * y: variant_id |
| * z: SOC rev |
| */ |
| if (dtb_ver == DEV_TREE_VERSION_V1) |
| { |
| while (len_plat_id) |
| { |
| cur_dt_entry.platform_id = fdt32_to_cpu(((const struct dt_entry_v1 *)plat_prop)->platform_id); |
| cur_dt_entry.variant_id = fdt32_to_cpu(((const struct dt_entry_v1 *)plat_prop)->variant_id); |
| cur_dt_entry.soc_rev = fdt32_to_cpu(((const struct dt_entry_v1 *)plat_prop)->soc_rev); |
| cur_dt_entry.board_hw_subtype = board_hardware_subtype(); |
| |
| target_variant_id = board_hardware_id(); |
| |
| dprintf(SPEW, "Found an appended flattened device tree (%s - %u %u 0x%x)\n", |
| *model ? model : "unknown", |
| cur_dt_entry.platform_id, cur_dt_entry.variant_id, cur_dt_entry.soc_rev); |
| |
| if (platform_dt_match(&cur_dt_entry, target_variant_id, 0) == 1) |
| { |
| dprintf(SPEW, "Device tree's msm_id doesn't match the board: <%u %u 0x%x> != <%u %u 0x%x>\n", |
| cur_dt_entry.platform_id, |
| cur_dt_entry.variant_id, |
| cur_dt_entry.soc_rev, |
| board_platform_id(), |
| board_hardware_id(), |
| board_soc_version()); |
| plat_prop += DT_ENTRY_V1_SIZE; |
| len_plat_id -= DT_ENTRY_V1_SIZE; |
| continue; |
| } |
| else |
| { |
| found = 1; |
| break; |
| } |
| } |
| } |
| /* |
| * If DTB Version is '2' then we have split DTB with board & msm data |
| * populated saperately in board-id & msm-id prop respectively. |
| * Extract the data & prepare a look up table |
| */ |
| else if (dtb_ver == DEV_TREE_VERSION_V2) |
| { |
| board_data_count = (len_board_id / BOARD_ID_SIZE); |
| msm_data_count = (len_plat_id / PLAT_ID_SIZE); |
| |
| /* If we are using dtb v2.0, then we have split board & msm data in the DTB */ |
| board_data = (struct board_id *) malloc(sizeof(struct board_id) * (len_board_id / BOARD_ID_SIZE)); |
| ASSERT(board_data); |
| platform_data = (struct plat_id *) malloc(sizeof(struct plat_id) * (len_plat_id / PLAT_ID_SIZE)); |
| ASSERT(platform_data); |
| i = 0; |
| |
| /* Extract board data from DTB */ |
| for(i = 0 ; i < board_data_count; i++) |
| { |
| board_data[i].variant_id = fdt32_to_cpu(((struct board_id *)board_prop)->variant_id); |
| board_data[i].platform_subtype = fdt32_to_cpu(((struct board_id *)board_prop)->platform_subtype); |
| len_board_id -= sizeof(struct board_id); |
| board_prop += sizeof(struct board_id); |
| } |
| |
| /* Extract platform data from DTB */ |
| for(i = 0 ; i < msm_data_count; i++) |
| { |
| platform_data[i].platform_id = fdt32_to_cpu(((struct plat_id *)plat_prop)->platform_id); |
| platform_data[i].soc_rev = fdt32_to_cpu(((struct plat_id *)plat_prop)->soc_rev); |
| len_plat_id -= sizeof(struct plat_id); |
| plat_prop += sizeof(struct plat_id); |
| } |
| |
| /* We need to merge board & platform data into dt entry structure */ |
| num_entries = msm_data_count * board_data_count; |
| dt_entry_v2 = (struct dt_entry*) malloc(sizeof(struct dt_entry) * num_entries); |
| ASSERT(dt_entry_v2); |
| |
| /* If we have '<X>; <Y>; <Z>' as platform data & '<A>; <B>; <C>' as board data. |
| * Then dt entry should look like |
| * <X ,A >;<X, B>;<X, C>; |
| * <Y ,A >;<Y, B>;<Y, C>; |
| * <Z ,A >;<Z, B>;<Z, C>; |
| */ |
| i = 0; |
| k = 0; |
| for (i = 0; i < msm_data_count; i++) |
| { |
| for (j = 0; j < board_data_count; j++) |
| { |
| dt_entry_v2[k].platform_id = platform_data[i].platform_id; |
| dt_entry_v2[k].soc_rev = platform_data[i].soc_rev; |
| dt_entry_v2[k].variant_id = board_data[j].variant_id; |
| dt_entry_v2[k].board_hw_subtype = board_data[j].platform_subtype; |
| k++; |
| } |
| } |
| |
| /* Now find the matching entry in the merged list */ |
| if (board_hardware_id() == HW_PLATFORM_QRD) |
| target_variant_id = board_target_id(); |
| else |
| target_variant_id = board_hardware_id() | ((board_hardware_subtype() & 0xff) << 24); |
| |
| for (i=0 ;i < num_entries; i++) |
| { |
| dprintf(SPEW, "Found an appended flattened device tree (%s - %u %u %u 0x%x)\n", |
| *model ? model : "unknown", |
| dt_entry_v2[i].platform_id, dt_entry_v2[i].variant_id, dt_entry_v2[i].board_hw_subtype, dt_entry_v2[i].soc_rev); |
| |
| if (platform_dt_match(&dt_entry_v2[i], target_variant_id, 0xff) == 1) |
| { |
| dprintf(SPEW, "Device tree's msm_id doesn't match the board: <%u %u %u 0x%x> != <%u %u %u 0x%x>\n", |
| dt_entry_v2[i].platform_id, |
| dt_entry_v2[i].variant_id, |
| dt_entry_v2[i].soc_rev, |
| dt_entry_v2[i].board_hw_subtype, |
| board_platform_id(), |
| board_hardware_id(), |
| board_hardware_subtype(), |
| board_soc_version()); |
| continue; |
| } |
| else |
| { |
| /* If found a match, return the cur_dt_entry */ |
| found = 1; |
| cur_dt_entry = dt_entry_v2[i]; |
| break; |
| } |
| } |
| } |
| |
| if (!found) |
| { |
| soc_rev = INVALID_SOC_REV_ID; |
| goto end; |
| } |
| else |
| soc_rev = cur_dt_entry.soc_rev; |
| |
| dprintf(INFO, "Device tree's msm_id matches the board: <%u %u %u 0x%x> == <%u %u %u 0x%x>\n", |
| cur_dt_entry.platform_id, |
| cur_dt_entry.variant_id, |
| cur_dt_entry.board_hw_subtype, |
| cur_dt_entry.soc_rev, |
| board_platform_id(), |
| board_hardware_id(), |
| board_hardware_subtype(), |
| board_soc_version()); |
| |
| end: |
| free(board_data); |
| free(platform_data); |
| free(dt_entry_v2); |
| free(model); |
| |
| return soc_rev; |
| } |
| |
| /* |
| * Will relocate the DTB to the tags addr if the device tree is found and return |
| * its address |
| * |
| * Arguments: kernel - Start address of the kernel loaded in RAM |
| * tags - Start address of the tags loaded in RAM |
| * kernel_size - Size of the kernel in bytes |
| * |
| * Return Value: DTB address : If appended device tree is found |
| * 'NULL' : Otherwise |
| */ |
| void *dev_tree_appended(void *kernel, uint32_t kernel_size, void *tags) |
| { |
| void *kernel_end = kernel + kernel_size; |
| uint32_t app_dtb_offset = 0; |
| void *dtb; |
| void *bestmatch_tag = NULL; |
| uint32_t bestmatch_tag_size; |
| uint32_t bestmatch_soc_rev_id = INVALID_SOC_REV_ID; |
| |
| memcpy((void*) &app_dtb_offset, (void*) (kernel + DTB_OFFSET), sizeof(uint32_t)); |
| |
| dtb = kernel + app_dtb_offset; |
| while (dtb + sizeof(struct fdt_header) < kernel_end) { |
| uint32_t dtb_soc_rev_id; |
| struct fdt_header dtb_hdr; |
| uint32_t dtb_size; |
| |
| /* the DTB could be unaligned, so extract the header, |
| * and operate on it separately */ |
| memcpy(&dtb_hdr, dtb, sizeof(struct fdt_header)); |
| if (fdt_check_header((const void *)&dtb_hdr) != 0 || |
| (dtb + fdt_totalsize((const void *)&dtb_hdr) > kernel_end)) |
| break; |
| dtb_size = fdt_totalsize(&dtb_hdr); |
| |
| /* now that we know we have a valid DTB, we need to copy |
| * it somewhere aligned, like tags */ |
| memcpy(tags, dtb, dtb_size); |
| |
| dtb_soc_rev_id = dev_tree_compatible(tags); |
| if (dtb_soc_rev_id == board_soc_version()) { |
| /* clear out the old DTB magic so kernel doesn't find it */ |
| *((uint32_t *)(kernel + app_dtb_offset)) = 0; |
| return tags; |
| } else if ((dtb_soc_rev_id != INVALID_SOC_REV_ID) && |
| (dtb_soc_rev_id < board_soc_version())) { |
| /* if current bestmatch is less than new dtb_soc_rev_id then update |
| bestmatch_tag */ |
| if((bestmatch_soc_rev_id == INVALID_SOC_REV_ID) || |
| (bestmatch_soc_rev_id < dtb_soc_rev_id)) { |
| bestmatch_tag = dtb; |
| bestmatch_tag_size = dtb_size; |
| bestmatch_soc_rev_id = dtb_soc_rev_id; |
| } |
| } |
| |
| /* goto the next device tree if any */ |
| dtb += dtb_size; |
| } |
| |
| if(bestmatch_tag) { |
| dprintf(INFO,"DTB found with bestmatch soc rev id 0x%x.Board soc rev id 0x%x\n", |
| bestmatch_soc_rev_id, board_soc_version()); |
| memcpy(tags, bestmatch_tag, bestmatch_tag_size); |
| /* clear out the old DTB magic so kernel doesn't find it */ |
| *((uint32_t *)(kernel + app_dtb_offset)) = 0; |
| return tags; |
| } |
| |
| dprintf(CRITICAL, "DTB offset is incorrect, kernel image does not have appended DTB\n"); |
| |
| return NULL; |
| } |
| |
| /* Returns 0 if the device tree is valid. */ |
| int dev_tree_validate(struct dt_table *table, unsigned int page_size, uint32_t *dt_hdr_size) |
| { |
| int dt_entry_size; |
| uint32_t hdr_size; |
| |
| /* Validate the device tree table header */ |
| if(table->magic != DEV_TREE_MAGIC) { |
| dprintf(CRITICAL, "ERROR: Bad magic in device tree table \n"); |
| return -1; |
| } |
| |
| if (table->version == DEV_TREE_VERSION_V1) { |
| dt_entry_size = sizeof(struct dt_entry_v1); |
| } else if (table->version == DEV_TREE_VERSION_V2) { |
| dt_entry_size = sizeof(struct dt_entry); |
| } else { |
| dprintf(CRITICAL, "ERROR: Unsupported version (%d) in DT table \n", |
| table->version); |
| return -1; |
| } |
| |
| hdr_size = table->num_entries * dt_entry_size + DEV_TREE_HEADER_SIZE; |
| /* Roundup to page_size. */ |
| hdr_size = ROUNDUP(hdr_size, page_size); |
| |
| *dt_hdr_size = hdr_size; |
| |
| return 0; |
| } |
| |
| static int platform_dt_match(struct dt_entry *cur_dt_entry, uint32_t target_variant_id, uint32_t subtype_mask) |
| { |
| /* 1. must match the platform_id, hardware_id, platform_version |
| * 2. soc rev number equal then return 0 |
| * 3. dt soc rev number less than cdt return -1 |
| * 4. otherwise return 1 |
| */ |
| uint32_t cur_dt_target_id ; |
| |
| cur_dt_target_id = cur_dt_entry->variant_id | ((cur_dt_entry->board_hw_subtype & subtype_mask & 0xff) << 24); |
| |
| if((cur_dt_entry->platform_id == board_platform_id()) && |
| (cur_dt_target_id == target_variant_id)) { |
| if(cur_dt_entry->soc_rev == board_soc_version()) { |
| return 0; |
| } else if(cur_dt_entry->soc_rev < board_soc_version()) { |
| return -1; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static int __dev_tree_get_entry_info(struct dt_table *table, struct dt_entry *dt_entry_info, |
| uint32_t target_variant_id, uint32_t subtype_mask) |
| { |
| uint32_t i; |
| unsigned char *table_ptr; |
| struct dt_entry dt_entry_buf_1; |
| struct dt_entry dt_entry_buf_2; |
| struct dt_entry *cur_dt_entry; |
| struct dt_entry *best_match_dt_entry; |
| struct dt_entry_v1 *dt_entry_v1; |
| uint32_t found = 0; |
| |
| if (!dt_entry_info) { |
| dprintf(CRITICAL, "ERROR: Bad parameter passed to %s \n", |
| __func__); |
| return -1; |
| } |
| |
| table_ptr = (unsigned char *)table + DEV_TREE_HEADER_SIZE; |
| cur_dt_entry = &dt_entry_buf_1; |
| best_match_dt_entry = NULL; |
| |
| for(i = 0; found == 0 && i < table->num_entries; i++) |
| { |
| memset(cur_dt_entry, 0, sizeof(struct dt_entry)); |
| switch(table->version) { |
| case DEV_TREE_VERSION_V1: |
| dt_entry_v1 = (struct dt_entry_v1 *)table_ptr; |
| cur_dt_entry->platform_id = dt_entry_v1->platform_id; |
| cur_dt_entry->variant_id = dt_entry_v1->variant_id; |
| cur_dt_entry->soc_rev = dt_entry_v1->soc_rev; |
| cur_dt_entry->board_hw_subtype = board_hardware_subtype(); |
| cur_dt_entry->offset = dt_entry_v1->offset; |
| cur_dt_entry->size = dt_entry_v1->size; |
| table_ptr += sizeof(struct dt_entry_v1); |
| break; |
| case DEV_TREE_VERSION_V2: |
| memcpy(cur_dt_entry, (struct dt_entry *)table_ptr, |
| sizeof(struct dt_entry)); |
| table_ptr += sizeof(struct dt_entry); |
| break; |
| default: |
| dprintf(CRITICAL, "ERROR: Unsupported version (%d) in DT table \n", |
| table->version); |
| return -1; |
| } |
| |
| /* DTBs are stored in the ascending order of soc revision. |
| * For eg: Rev0..Rev1..Rev2 & so on. |
| * we pickup the DTB with highest soc rev number which is less |
| * than or equal to actual hardware |
| */ |
| switch(platform_dt_match(cur_dt_entry, target_variant_id, subtype_mask)) { |
| case 0: |
| best_match_dt_entry = cur_dt_entry; |
| found = 1; |
| break; |
| case -1: |
| if (!best_match_dt_entry) { |
| /* copy structure */ |
| best_match_dt_entry = cur_dt_entry; |
| cur_dt_entry = &dt_entry_buf_2; |
| } else { |
| /* Swap dt_entry buffers */ |
| struct dt_entry *temp = cur_dt_entry; |
| cur_dt_entry = best_match_dt_entry; |
| best_match_dt_entry = temp; |
| } |
| default: |
| break; |
| } |
| } |
| |
| if (best_match_dt_entry) { |
| *dt_entry_info = *best_match_dt_entry; |
| found = 1; |
| } |
| |
| if (found != 0) { |
| dprintf(INFO, "Using DTB entry %u/%08x/%u/%u for device %u/%08x/%u/%u\n", |
| dt_entry_info->platform_id, dt_entry_info->soc_rev, |
| dt_entry_info->variant_id, dt_entry_info->board_hw_subtype, |
| board_platform_id(), board_soc_version(), |
| board_hardware_id(), board_hardware_subtype()); |
| return 0; |
| } |
| |
| dprintf(CRITICAL, "ERROR: Unable to find suitable device tree for device (%u/0x%08x/%u/%u)\n", |
| board_platform_id(), board_soc_version(), |
| board_hardware_id(), board_hardware_subtype()); |
| return -1; |
| } |
| |
| /* Function to obtain the index information for the correct device tree |
| * based on the platform data. |
| * If a matching device tree is found, the information is returned in the |
| * "dt_entry_info" out parameter and a function value of 0 is returned, otherwise |
| * a non-zero function value is returned. |
| */ |
| int dev_tree_get_entry_info(struct dt_table *table, struct dt_entry *dt_entry_info) |
| { |
| uint32_t target_variant_id; |
| |
| if(board_hardware_id() == HW_PLATFORM_QRD) { |
| target_variant_id = board_target_id(); |
| if (__dev_tree_get_entry_info(table, dt_entry_info, target_variant_id, 0xff) == 0) { |
| return 0; |
| } |
| } |
| /* |
| * for compatible with version 1 and version 2 dtbtool |
| * will compare the subtype inside the variant id |
| */ |
| target_variant_id = board_hardware_id() | ((board_hardware_subtype() & 0xff) << 24); |
| if (__dev_tree_get_entry_info(table, dt_entry_info, target_variant_id, 0xff) == 0) { |
| return 0; |
| } |
| |
| /* |
| * add compatible with old device selection method which don't compare subtype |
| */ |
| target_variant_id = board_hardware_id(); |
| return __dev_tree_get_entry_info(table, dt_entry_info, target_variant_id, 0); |
| } |
| |
| /* Function to add the first RAM partition info to the device tree. |
| * Note: The function replaces the reg property in the "/memory" node |
| * with the addr and size provided. |
| */ |
| int dev_tree_add_first_mem_info(uint32_t *fdt, uint32_t offset, uint32_t addr, uint32_t size) |
| { |
| int ret; |
| |
| ret = fdt_setprop_u32(fdt, offset, "reg", addr); |
| |
| if (ret) |
| { |
| dprintf(CRITICAL, "Failed to add the memory information addr: %d\n", |
| ret); |
| } |
| |
| ret = fdt_appendprop_u32(fdt, offset, "reg", size); |
| |
| if (ret) |
| { |
| dprintf(CRITICAL, "Failed to add the memory information size: %d\n", |
| ret); |
| } |
| |
| return ret; |
| } |
| |
| static int dev_tree_query_memory_cell_sizes(void *fdt, struct dt_mem_node_info *mem_node, uint32_t mem_node_offset) |
| { |
| int len; |
| uint32_t *valp; |
| int ret; |
| uint32_t offset; |
| |
| mem_node->offset = mem_node_offset; |
| |
| /* Get offset of the root node */ |
| ret = fdt_path_offset(fdt, "/"); |
| if (ret < 0) |
| { |
| dprintf(CRITICAL, "Could not find memory node.\n"); |
| return ret; |
| } |
| |
| offset = ret; |
| |
| /* Find the #address-cells size. */ |
| valp = (uint32_t*)fdt_getprop(fdt, offset, "#address-cells", &len); |
| if (len <= 0) |
| { |
| if (len == -FDT_ERR_NOTFOUND) |
| { |
| /* Property not found. |
| * Assume standard sizes. |
| */ |
| mem_node->addr_cell_size = 2; |
| dprintf(CRITICAL, "Using default #addr_cell_size: %u\n", mem_node->addr_cell_size); |
| } |
| else |
| { |
| dprintf(CRITICAL, "Error finding the #address-cells property\n"); |
| return len; |
| } |
| } |
| else |
| mem_node->addr_cell_size = fdt32_to_cpu(*valp); |
| |
| /* Find the #size-cells size. */ |
| valp = (uint32_t*)fdt_getprop(fdt, offset, "#size-cells", &len); |
| if (len <= 0) |
| { |
| if (len == -FDT_ERR_NOTFOUND) |
| { |
| /* Property not found. |
| * Assume standard sizes. |
| */ |
| mem_node->size_cell_size = 1; |
| dprintf(CRITICAL, "Using default #size_cell_size: %u\n", mem_node->size_cell_size); |
| } |
| else |
| { |
| dprintf(CRITICAL, "Error finding the #size-cells property\n"); |
| return len; |
| } |
| } |
| else |
| mem_node->size_cell_size = fdt32_to_cpu(*valp); |
| |
| return 0; |
| } |
| |
| static void dev_tree_update_memory_node(uint32_t offset) |
| { |
| mem_node.offset = offset; |
| mem_node.addr_cell_size = 1; |
| mem_node.size_cell_size = 1; |
| } |
| |
| /* Function to add the subsequent RAM partition info to the device tree. */ |
| int dev_tree_add_mem_info(void *fdt, uint32_t offset, uint64_t addr, uint64_t size) |
| { |
| int ret = 0; |
| |
| if(smem_get_ram_ptable_version() >= 1) |
| { |
| ret = dev_tree_query_memory_cell_sizes(fdt, &mem_node, offset); |
| if (ret < 0) |
| { |
| dprintf(CRITICAL, "Could not find #address-cells and #size-cells properties: ret %d\n", ret); |
| return ret; |
| } |
| |
| } |
| else |
| { |
| dev_tree_update_memory_node(offset); |
| } |
| |
| if (!(mem_node.mem_info_cnt)) |
| { |
| /* Replace any other reg prop in the memory node. */ |
| |
| /* cell_size is the number of 32 bit words used to represent an address/length in the device tree. |
| * memory node in DT can be either 32-bit(cell-size = 1) or 64-bit(cell-size = 2).So when updating |
| * the memory node in the device tree, we write one word or two words based on cell_size = 1 or 2. |
| */ |
| |
| if(mem_node.addr_cell_size == 2) |
| { |
| ret = fdt_setprop_u32(fdt, mem_node.offset, "reg", addr >> 32); |
| if(ret) |
| { |
| dprintf(CRITICAL, "ERROR: Could not set prop reg for memory node\n"); |
| return ret; |
| } |
| |
| ret = fdt_appendprop_u32(fdt, mem_node.offset, "reg", (uint32_t)addr); |
| if(ret) |
| { |
| dprintf(CRITICAL, "ERROR: Could not append prop reg for memory node\n"); |
| return ret; |
| } |
| } |
| else |
| { |
| ret = fdt_setprop_u32(fdt, mem_node.offset, "reg", (uint32_t)addr); |
| if(ret) |
| { |
| dprintf(CRITICAL, "ERROR: Could not set prop reg for memory node\n"); |
| return ret; |
| } |
| } |
| |
| mem_node.mem_info_cnt = 1; |
| } |
| else |
| { |
| /* Append the mem info to the reg prop for subsequent nodes. */ |
| if(mem_node.addr_cell_size == 2) |
| { |
| ret = fdt_appendprop_u32(fdt, mem_node.offset, "reg", addr >> 32); |
| if(ret) |
| { |
| dprintf(CRITICAL, "ERROR: Could not append prop reg for memory node\n"); |
| return ret; |
| } |
| } |
| |
| ret = fdt_appendprop_u32(fdt, mem_node.offset, "reg", (uint32_t)addr); |
| if(ret) |
| { |
| dprintf(CRITICAL, "ERROR: Could not append prop reg for memory node\n"); |
| return ret; |
| } |
| } |
| |
| if(mem_node.size_cell_size == 2) |
| { |
| ret = fdt_appendprop_u32(fdt, mem_node.offset, "reg", size>>32); |
| if(ret) |
| { |
| dprintf(CRITICAL, "ERROR: Could not append prop reg for memory node\n"); |
| return ret; |
| } |
| } |
| |
| ret = fdt_appendprop_u32(fdt, mem_node.offset, "reg", (uint32_t)size); |
| |
| if (ret) |
| { |
| dprintf(CRITICAL, "Failed to add the memory information size: %d\n", |
| ret); |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| /* Top level function that updates the device tree. */ |
| int update_device_tree(void *fdt, const char *cmdline, |
| void *ramdisk, uint32_t ramdisk_size) |
| { |
| int ret = 0; |
| uint32_t offset; |
| |
| /* Check the device tree header */ |
| ret = fdt_check_header(fdt); |
| if (ret) |
| { |
| dprintf(CRITICAL, "Invalid device tree header \n"); |
| return ret; |
| } |
| |
| /* Add padding to make space for new nodes and properties. */ |
| ret = fdt_open_into(fdt, fdt, fdt_totalsize(fdt) + DTB_PAD_SIZE); |
| if (ret!= 0) |
| { |
| dprintf(CRITICAL, "Failed to move/resize dtb buffer: %d\n", ret); |
| return ret; |
| } |
| |
| /* Get offset of the memory node */ |
| ret = fdt_path_offset(fdt, "/memory"); |
| if (ret < 0) |
| { |
| dprintf(CRITICAL, "Could not find memory node.\n"); |
| return ret; |
| } |
| |
| offset = ret; |
| |
| ret = target_dev_tree_mem(fdt, offset); |
| if(ret) |
| { |
| dprintf(CRITICAL, "ERROR: Cannot update memory node\n"); |
| return ret; |
| } |
| |
| /* Get offset of the chosen node */ |
| ret = fdt_path_offset(fdt, "/chosen"); |
| if (ret < 0) |
| { |
| dprintf(CRITICAL, "Could not find chosen node.\n"); |
| return ret; |
| } |
| |
| offset = ret; |
| /* Adding the cmdline to the chosen node */ |
| ret = fdt_setprop_string(fdt, offset, (const char*)"bootargs", (const void*)cmdline); |
| if (ret) |
| { |
| dprintf(CRITICAL, "ERROR: Cannot update chosen node [bootargs]\n"); |
| return ret; |
| } |
| |
| /* Adding the initrd-start to the chosen node */ |
| ret = fdt_setprop_u32(fdt, offset, "linux,initrd-start", (uint32_t)ramdisk); |
| if (ret) |
| { |
| dprintf(CRITICAL, "ERROR: Cannot update chosen node [linux,initrd-start]\n"); |
| return ret; |
| } |
| |
| /* Adding the initrd-end to the chosen node */ |
| ret = fdt_setprop_u32(fdt, offset, "linux,initrd-end", ((uint32_t)ramdisk + ramdisk_size)); |
| if (ret) |
| { |
| dprintf(CRITICAL, "ERROR: Cannot update chosen node [linux,initrd-end]\n"); |
| return ret; |
| } |
| |
| fdt_pack(fdt); |
| |
| return ret; |
| } |
| |