blob: a739f9b79067f5b0b6933857be90ac98c049575d [file] [log] [blame]
/*
* Copyright (c) 2008, Google Inc.
* All rights reserved.
*
* Copyright (c) 2009-2014, The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <stdlib.h>
#include <debug.h>
#include <platform.h>
#include <platform/iomap.h>
#include <platform/irqs.h>
#include <platform/interrupts.h>
#include <platform/timer.h>
#include <kernel/thread.h>
#include <reg.h>
#include <dev/udc.h>
#include "hsusb.h"
#define MAX_TD_XFER_SIZE (16 * 1024)
/* common code - factor out into a shared file */
struct udc_descriptor {
struct udc_descriptor *next;
unsigned short tag; /* ((TYPE << 8) | NUM) */
unsigned short len; /* total length */
unsigned char data[0];
};
struct udc_descriptor *udc_descriptor_alloc(unsigned type, unsigned num,
unsigned len)
{
struct udc_descriptor *desc;
if ((len > 255) || (len < 2) || (num > 255) || (type > 255))
return 0;
if (!(desc = malloc(sizeof(struct udc_descriptor) + len)))
return 0;
desc->next = 0;
desc->tag = (type << 8) | num;
desc->len = len;
desc->data[0] = len;
desc->data[1] = type;
return desc;
}
static struct udc_descriptor *desc_list = 0;
static unsigned next_string_id = 1;
void udc_descriptor_register(struct udc_descriptor *desc)
{
desc->next = desc_list;
desc_list = desc;
}
unsigned udc_string_desc_alloc(const char *str)
{
unsigned len;
struct udc_descriptor *desc;
unsigned char *data;
if (next_string_id > 255)
return 0;
if (!str)
return 0;
len = strlen(str);
desc = udc_descriptor_alloc(TYPE_STRING, next_string_id, len * 2 + 2);
if (!desc)
return 0;
next_string_id++;
/* expand ascii string to utf16 */
data = desc->data + 2;
while (len-- > 0) {
*data++ = *str++;
*data++ = 0;
}
udc_descriptor_register(desc);
return desc->tag & 0xff;
}
/* end of common code */
__WEAK void hsusb_clock_init(void)
{
return;
}
#if 1
#define DBG(x...) do {} while(0)
#else
#define DBG(x...) dprintf(ALWAYS, x)
#endif
#define usb_status(a,b)
struct usb_request {
struct udc_request req;
struct ept_queue_item *item;
};
struct udc_endpoint {
struct udc_endpoint *next;
unsigned bit;
struct ept_queue_head *head;
struct usb_request *req;
unsigned char num;
unsigned char in;
unsigned short maxpkt;
};
struct udc_endpoint *ept_list = 0;
struct ept_queue_head *epts = 0;
static int usb_online = 0;
static int usb_highspeed = 0;
static struct udc_device *the_device;
static struct udc_gadget *the_gadget;
static unsigned test_mode = 0;
struct udc_endpoint *_udc_endpoint_alloc(unsigned num, unsigned in,
unsigned max_pkt)
{
struct udc_endpoint *ept;
unsigned cfg;
ept = memalign(CACHE_LINE, ROUNDUP(sizeof(*ept), CACHE_LINE));
ept->maxpkt = max_pkt;
ept->num = num;
ept->in = !!in;
ept->req = 0;
cfg = CONFIG_MAX_PKT(max_pkt) | CONFIG_ZLT;
if (ept->in) {
ept->bit = EPT_TX(ept->num);
} else {
ept->bit = EPT_RX(ept->num);
if (num == 0)
cfg |= CONFIG_IOS;
}
ept->head = epts + (num * 2) + (ept->in);
ept->head->config = cfg;
ept->next = ept_list;
ept_list = ept;
DBG("ept%d %s @%p/%p max=%d bit=%x\n",
num, in ? "in" : "out", ept, ept->head, max_pkt, ept->bit);
return ept;
}
static unsigned ept_alloc_table = EPT_TX(0) | EPT_RX(0);
struct udc_endpoint *udc_endpoint_alloc(unsigned type, unsigned maxpkt)
{
struct udc_endpoint *ept;
unsigned n;
unsigned in;
if (type == UDC_TYPE_BULK_IN) {
in = 1;
} else if (type == UDC_TYPE_BULK_OUT) {
in = 0;
} else {
return 0;
}
for (n = 1; n < 16; n++) {
unsigned bit = in ? EPT_TX(n) : EPT_RX(n);
if (ept_alloc_table & bit)
continue;
ept = _udc_endpoint_alloc(n, in, maxpkt);
if (ept)
ept_alloc_table |= bit;
return ept;
}
return 0;
}
void udc_endpoint_free(struct udc_endpoint *ept)
{
/* todo */
}
static void endpoint_enable(struct udc_endpoint *ept, unsigned yes)
{
unsigned n = readl(USB_ENDPTCTRL(ept->num));
if (yes) {
if (ept->in) {
n |= (CTRL_TXE | CTRL_TXR | CTRL_TXT_BULK);
} else {
n |= (CTRL_RXE | CTRL_RXR | CTRL_RXT_BULK);
}
if (ept->num != 0) {
/* XXX should be more dynamic... */
if (usb_highspeed) {
ept->head->config =
CONFIG_MAX_PKT(512) | CONFIG_ZLT;
} else {
ept->head->config =
CONFIG_MAX_PKT(64) | CONFIG_ZLT;
}
}
}
writel(n, USB_ENDPTCTRL(ept->num));
}
struct udc_request *udc_request_alloc(void)
{
struct usb_request *req;
req = memalign(CACHE_LINE, ROUNDUP(sizeof(*req), CACHE_LINE));
req->req.buf = 0;
req->req.length = 0;
req->item = memalign(CACHE_LINE, ROUNDUP(sizeof(struct ept_queue_item),
CACHE_LINE));
return &req->req;
}
void udc_request_free(struct udc_request *req)
{
free(req);
}
/*
* Assumes that TDs allocated already are not freed.
* But it can handle case where TDs are freed as well.
*/
int udc_request_queue(struct udc_endpoint *ept, struct udc_request *_req)
{
unsigned xfer = 0;
struct ept_queue_item *item, *curr_item;
struct usb_request *req = (struct usb_request *)_req;
unsigned phys = (unsigned)req->req.buf;
unsigned len = req->req.length;
unsigned int count = 0;
curr_item = NULL;
xfer = (len > MAX_TD_XFER_SIZE) ? MAX_TD_XFER_SIZE : len;
/*
* First TD allocated during request allocation
*/
item = req->item;
item->info = INFO_BYTES(xfer) | INFO_ACTIVE;
item->page0 = phys;
item->page1 = (phys & 0xfffff000) + 0x1000;
item->page2 = (phys & 0xfffff000) + 0x2000;
item->page3 = (phys & 0xfffff000) + 0x3000;
item->page4 = (phys & 0xfffff000) + 0x4000;
phys += xfer;
curr_item = item;
len -= xfer;
/*
* If transfer length is more then
* accomodate by 1 TD
* we add more transfer descriptors
*/
while (len > 0) {
xfer = (len > MAX_TD_XFER_SIZE) ? MAX_TD_XFER_SIZE : len;
if (curr_item->next == TERMINATE) {
/*
* Allocate new TD only if chain doesnot
* exist already
*/
item = memalign(CACHE_LINE,
ROUNDUP(sizeof(struct ept_queue_item), CACHE_LINE));
if (!item) {
dprintf(ALWAYS, "allocate USB item fail ept%d"
"%s queue\n",
"td count = %d\n",
ept->num,
ept->in ? "in" : "out",
count);
return -1;
} else {
count ++;
curr_item->next = PA(item);
item->next = TERMINATE;
}
} else
/* Since next TD in chain already exists */
item = VA(curr_item->next);
/* Update TD with transfer information */
item->info = INFO_BYTES(xfer) | INFO_ACTIVE;
item->page0 = phys;
item->page1 = (phys & 0xfffff000) + 0x1000;
item->page2 = (phys & 0xfffff000) + 0x2000;
item->page3 = (phys & 0xfffff000) + 0x3000;
item->page4 = (phys & 0xfffff000) + 0x4000;
curr_item = item;
len -= xfer;
phys += xfer;
}
/* Terminate and set interrupt for last TD */
curr_item->next = TERMINATE;
curr_item->info |= INFO_IOC;
enter_critical_section();
ept->head->next = PA(req->item);
ept->head->info = 0;
ept->req = req;
arch_clean_invalidate_cache_range((addr_t) ept,
sizeof(struct udc_endpoint));
arch_clean_invalidate_cache_range((addr_t) ept->head,
sizeof(struct ept_queue_head));
arch_clean_invalidate_cache_range((addr_t) ept->req,
sizeof(struct usb_request));
arch_clean_invalidate_cache_range((addr_t) VA(req->req.buf),
req->req.length);
item = req->item;
/* Write all TD's to memory from cache */
while (item != NULL) {
curr_item = item;
if (curr_item->next == TERMINATE)
item = NULL;
else
item = curr_item->next;
arch_clean_invalidate_cache_range((addr_t) curr_item,
sizeof(struct ept_queue_item));
}
DBG("ept%d %s queue req=%p\n", ept->num, ept->in ? "in" : "out", req);
writel(ept->bit, USB_ENDPTPRIME);
exit_critical_section();
return 0;
}
static void handle_ept_complete(struct udc_endpoint *ept)
{
struct ept_queue_item *item;
unsigned actual, total_len;
int status, len;
struct usb_request *req;
void *buf;
DBG("ept%d %s complete req=%p\n",
ept->num, ept->in ? "in" : "out", ept->req);
arch_invalidate_cache_range((addr_t) ept,
sizeof(struct udc_endpoint));
req = VA(ept->req);
arch_invalidate_cache_range((addr_t) ept->req,
sizeof(struct usb_request));
if (req) {
item = VA(req->item);
/* total transfer length for transacation */
total_len = req->req.length;
ept->req = 0;
actual = 0;
while(1) {
do {
/*
* Must clean/invalidate cached item
* data before checking the status
* every time.
*/
arch_invalidate_cache_range((addr_t)(item),
sizeof(
struct ept_queue_item));
} while(readl(&item->info) & INFO_ACTIVE);
if ((item->info) & 0xff) {
/* error */
status = -1;
dprintf(INFO, "EP%d/%s FAIL nfo=%x pg0=%x\n",
ept->num, ept->in ? "in" : "out",
item->info,
item->page0);
goto out;
}
/* Check if we are processing last TD */
if (item->next == TERMINATE) {
/*
* Record the data transferred for the last TD
*/
actual += total_len - (item->info >> 16)
& 0x7FFF;
total_len = 0;
break;
} else {
/*
* Since we are not in last TD
* the total assumed transfer ascribed to this
* TD woulb the max possible TD transfer size
* (16K)
*/
actual += MAX_TD_XFER_SIZE - (item->info >> 16) & 0x7FFF;
total_len -= MAX_TD_XFER_SIZE - (item->info >> 16) & 0x7FFF;
/*Move to next item in chain*/
item = VA(item->next);
}
}
status = 0;
out:
if (req->req.complete)
req->req.complete(&req->req, actual, status);
}
}
static const char *reqname(unsigned r)
{
switch (r) {
case GET_STATUS:
return "GET_STATUS";
case CLEAR_FEATURE:
return "CLEAR_FEATURE";
case SET_FEATURE:
return "SET_FEATURE";
case SET_ADDRESS:
return "SET_ADDRESS";
case GET_DESCRIPTOR:
return "GET_DESCRIPTOR";
case SET_DESCRIPTOR:
return "SET_DESCRIPTOR";
case GET_CONFIGURATION:
return "GET_CONFIGURATION";
case SET_CONFIGURATION:
return "SET_CONFIGURATION";
case GET_INTERFACE:
return "GET_INTERFACE";
case SET_INTERFACE:
return "SET_INTERFACE";
default:
return "*UNKNOWN*";
}
}
static struct udc_endpoint *ep0in, *ep0out;
static struct udc_request *ep0req;
static void
ep0_setup_ack_complete()
{
uint32_t mode;
if (!test_mode)
return;
switch (test_mode) {
case TEST_PACKET:
dprintf(INFO, "Entering test mode for TST_PKT\n");
mode = readl(USB_PORTSC) & (~PORTSC_PTC);
writel(mode | PORTSC_PTC_TST_PKT, USB_PORTSC);
break;
case TEST_SE0_NAK:
dprintf(INFO, "Entering test mode for SE0-NAK\n");
mode = readl(USB_PORTSC) & (~PORTSC_PTC);
writel(mode | PORTSC_PTC_SE0_NAK, USB_PORTSC);
break;
}
}
static void setup_ack(void)
{
ep0req->complete = ep0_setup_ack_complete;
ep0req->length = 0;
udc_request_queue(ep0in, ep0req);
}
static void ep0in_complete(struct udc_request *req, unsigned actual, int status)
{
DBG("ep0in_complete %p %d %d\n", req, actual, status);
if (status == 0) {
req->length = 0;
req->complete = 0;
udc_request_queue(ep0out, req);
}
}
static void setup_tx(void *buf, unsigned len)
{
DBG("setup_tx %p %d\n", buf, len);
memcpy(ep0req->buf, buf, len);
ep0req->buf = PA((addr_t)ep0req->buf);
ep0req->complete = ep0in_complete;
ep0req->length = len;
udc_request_queue(ep0in, ep0req);
}
static unsigned char usb_config_value = 0;
#define SETUP(type,request) (((type) << 8) | (request))
static void handle_setup(struct udc_endpoint *ept)
{
struct setup_packet s;
arch_clean_invalidate_cache_range((addr_t) ept->head->setup_data,
sizeof(struct ept_queue_head));
memcpy(&s, ept->head->setup_data, sizeof(s));
writel(ept->bit, USB_ENDPTSETUPSTAT);
DBG("handle_setup type=0x%02x req=0x%02x val=%d idx=%d len=%d (%s)\n",
s.type, s.request, s.value, s.index, s.length, reqname(s.request));
switch (SETUP(s.type, s.request)) {
case SETUP(DEVICE_READ, GET_STATUS):
{
unsigned zero = 0;
if (s.length == 2) {
setup_tx(&zero, 2);
return;
}
break;
}
case SETUP(DEVICE_READ, GET_DESCRIPTOR):
{
struct udc_descriptor *desc;
/* usb_highspeed? */
for (desc = desc_list; desc; desc = desc->next) {
if (desc->tag == s.value) {
unsigned len = desc->len;
if (len > s.length)
len = s.length;
setup_tx(desc->data, len);
return;
}
}
break;
}
case SETUP(DEVICE_READ, GET_CONFIGURATION):
/* disabling this causes data transaction failures on OSX. Why? */
if ((s.value == 0) && (s.index == 0) && (s.length == 1)) {
setup_tx(&usb_config_value, 1);
return;
}
break;
case SETUP(DEVICE_WRITE, SET_CONFIGURATION):
if (s.value == 1) {
struct udc_endpoint *ept;
/* enable endpoints */
for (ept = ept_list; ept; ept = ept->next) {
if (ept->num == 0)
continue;
endpoint_enable(ept, s.value);
}
usb_config_value = 1;
the_gadget->notify(the_gadget, UDC_EVENT_ONLINE);
} else {
writel(0, USB_ENDPTCTRL(1));
usb_config_value = 0;
the_gadget->notify(the_gadget, UDC_EVENT_OFFLINE);
}
setup_ack();
usb_online = s.value ? 1 : 0;
usb_status(s.value ? 1 : 0, usb_highspeed);
return;
case SETUP(DEVICE_WRITE, SET_ADDRESS):
/* write address delayed (will take effect
** after the next IN txn)
*/
writel((s.value << 25) | (1 << 24), USB_DEVICEADDR);
setup_ack();
return;
case SETUP(INTERFACE_WRITE, SET_INTERFACE):
/* if we ack this everything hangs */
/* per spec, STALL is valid if there is not alt func */
goto stall;
case SETUP(DEVICE_WRITE, SET_FEATURE):
test_mode = s.index;
setup_ack();
return;
case SETUP(ENDPOINT_WRITE, CLEAR_FEATURE):
{
struct udc_endpoint *ept;
unsigned num = s.index & 15;
unsigned in = !!(s.index & 0x80);
if ((s.value == 0) && (s.length == 0)) {
DBG("clr feat %d %d\n", num, in);
for (ept = ept_list; ept; ept = ept->next) {
if ((ept->num == num)
&& (ept->in == in)) {
endpoint_enable(ept, 1);
setup_ack();
return;
}
}
}
break;
}
}
dprintf(INFO, "STALL %s %d %d %d %d %d\n",
reqname(s.request),
s.type, s.request, s.value, s.index, s.length);
stall:
writel((1 << 16) | (1 << 0), USB_ENDPTCTRL(ept->num));
}
unsigned ulpi_read(unsigned reg)
{
/* initiate read operation */
writel(ULPI_RUN | ULPI_READ | ULPI_ADDR(reg), USB_ULPI_VIEWPORT);
/* wait for completion */
while (readl(USB_ULPI_VIEWPORT) & ULPI_RUN) ;
return ULPI_DATA_READ(readl(USB_ULPI_VIEWPORT));
}
void ulpi_write(unsigned val, unsigned reg)
{
/* initiate write operation */
writel(ULPI_RUN | ULPI_WRITE |
ULPI_ADDR(reg) | ULPI_DATA(val), USB_ULPI_VIEWPORT);
/* wait for completion */
while (readl(USB_ULPI_VIEWPORT) & ULPI_RUN) ;
}
int udc_init(struct udc_device *dev)
{
DBG("udc_init():\n");
hsusb_clock_init();
/* RESET */
writel(0x00080002, USB_USBCMD);
thread_sleep(20);
while((readl(USB_USBCMD)&2));
/* select ULPI phy */
writel(0x80000000, USB_PORTSC);
/* Do any target specific intialization like GPIO settings,
* LDO, PHY configuration etc. needed before USB port can be used.
*/
target_usb_init();
/* USB_OTG_HS_AHB_BURST */
writel(0x0, USB_SBUSCFG);
/* USB_OTG_HS_AHB_MODE: HPROT_MODE */
/* Bus access related config. */
writel(0x08, USB_AHB_MODE);
epts = memalign(lcm(4096, CACHE_LINE), ROUNDUP(4096, CACHE_LINE));
dprintf(INFO, "USB init ept @ %p\n", epts);
memset(epts, 0, 32 * sizeof(struct ept_queue_head));
arch_clean_invalidate_cache_range((addr_t) epts,
32 * sizeof(struct ept_queue_head));
writel((unsigned)PA((addr_t)epts), USB_ENDPOINTLISTADDR);
/* select DEVICE mode */
writel(0x02, USB_USBMODE);
writel(0xffffffff, USB_ENDPTFLUSH);
thread_sleep(20);
ep0out = _udc_endpoint_alloc(0, 0, 64);
ep0in = _udc_endpoint_alloc(0, 1, 64);
ep0req = udc_request_alloc();
ep0req->buf = memalign(CACHE_LINE, ROUNDUP(4096, CACHE_LINE));
{
/* create and register a language table descriptor */
/* language 0x0409 is US English */
struct udc_descriptor *desc =
udc_descriptor_alloc(TYPE_STRING, 0, 4);
desc->data[2] = 0x09;
desc->data[3] = 0x04;
udc_descriptor_register(desc);
}
the_device = dev;
return 0;
}
enum handler_return udc_interrupt(void *arg)
{
struct udc_endpoint *ept;
unsigned ret = INT_NO_RESCHEDULE;
unsigned n = readl(USB_USBSTS);
writel(n, USB_USBSTS);
DBG("\nudc_interrupt(): status = 0x%x\n", n);
n &= (STS_SLI | STS_URI | STS_PCI | STS_UI | STS_UEI);
if (n == 0) {
DBG("n = 0\n");
return ret;
}
if (n & STS_URI) {
DBG("STS_URI\n");
writel(readl(USB_ENDPTCOMPLETE), USB_ENDPTCOMPLETE);
writel(readl(USB_ENDPTSETUPSTAT), USB_ENDPTSETUPSTAT);
writel(0xffffffff, USB_ENDPTFLUSH);
writel(0, USB_ENDPTCTRL(1));
dprintf(INFO, "-- reset --\n");
usb_online = 0;
usb_config_value = 0;
the_gadget->notify(the_gadget, UDC_EVENT_OFFLINE);
/* error out any pending reqs */
for (ept = ept_list; ept; ept = ept->next) {
/* ensure that ept_complete considers
* this to be an error state
*/
if (ept->req) {
ept->req->item->info = INFO_HALTED;
handle_ept_complete(ept);
}
}
usb_status(0, usb_highspeed);
}
if (n & STS_SLI) {
DBG("-- suspend --\n");
}
if (n & STS_PCI) {
dprintf(INFO, "-- portchange --\n");
unsigned spd = (readl(USB_PORTSC) >> 26) & 3;
if (spd == 2) {
usb_highspeed = 1;
} else {
usb_highspeed = 0;
}
}
if (n & STS_UEI) {
DBG("STS_UEI\n");
dprintf(INFO, "<UEI %x>\n", readl(USB_ENDPTCOMPLETE));
}
if ((n & STS_UI) || (n & STS_UEI)) {
if (n & STS_UEI)
DBG("ERROR ");
if (n & STS_UI)
DBG("USB ");
n = readl(USB_ENDPTSETUPSTAT);
if (n & EPT_RX(0)) {
handle_setup(ep0out);
ret = INT_RESCHEDULE;
}
n = readl(USB_ENDPTCOMPLETE);
if (n != 0) {
writel(n, USB_ENDPTCOMPLETE);
}
for (ept = ept_list; ept; ept = ept->next) {
if (n & ept->bit) {
handle_ept_complete(ept);
ret = INT_RESCHEDULE;
}
}
}
return ret;
}
int udc_register_gadget(struct udc_gadget *gadget)
{
if (the_gadget) {
dprintf(CRITICAL, "only one gadget supported\n");
return -1;
}
the_gadget = gadget;
return 0;
}
static void udc_ept_desc_fill(struct udc_endpoint *ept, unsigned char *data)
{
data[0] = 7;
data[1] = TYPE_ENDPOINT;
data[2] = ept->num | (ept->in ? 0x80 : 0x00);
data[3] = 0x02; /* bulk -- the only kind we support */
data[4] = ept->maxpkt;
data[5] = ept->maxpkt >> 8;
data[6] = ept->in ? 0x00 : 0x01;
}
static unsigned udc_ifc_desc_size(struct udc_gadget *g)
{
return 9 + g->ifc_endpoints * 7;
}
static void udc_ifc_desc_fill(struct udc_gadget *g, unsigned char *data)
{
unsigned n;
data[0] = 0x09;
data[1] = TYPE_INTERFACE;
data[2] = 0x00; /* ifc number */
data[3] = 0x00; /* alt number */
data[4] = g->ifc_endpoints;
data[5] = g->ifc_class;
data[6] = g->ifc_subclass;
data[7] = g->ifc_protocol;
data[8] = udc_string_desc_alloc(g->ifc_string);
data += 9;
for (n = 0; n < g->ifc_endpoints; n++) {
udc_ept_desc_fill(g->ept[n], data);
data += 7;
}
}
int udc_start(void)
{
struct udc_descriptor *desc;
unsigned char *data;
unsigned size;
uint32_t val;
dprintf(ALWAYS, "udc_start()\n");
if (!the_device) {
dprintf(CRITICAL, "udc cannot start before init\n");
return -1;
}
if (!the_gadget) {
dprintf(CRITICAL, "udc has no gadget registered\n");
return -1;
}
/* create our device descriptor */
desc = udc_descriptor_alloc(TYPE_DEVICE, 0, 18);
data = desc->data;
data[2] = 0x00; /* usb spec minor rev */
data[3] = 0x02; /* usb spec major rev */
data[4] = 0x00; /* class */
data[5] = 0x00; /* subclass */
data[6] = 0x00; /* protocol */
data[7] = 0x40; /* max packet size on ept 0 */
memcpy(data + 8, &the_device->vendor_id, sizeof(short));
memcpy(data + 10, &the_device->product_id, sizeof(short));
memcpy(data + 12, &the_device->version_id, sizeof(short));
data[14] = udc_string_desc_alloc(the_device->manufacturer);
data[15] = udc_string_desc_alloc(the_device->product);
data[16] = udc_string_desc_alloc(the_device->serialno);
data[17] = 1; /* number of configurations */
udc_descriptor_register(desc);
/* create our configuration descriptor */
size = 9 + udc_ifc_desc_size(the_gadget);
desc = udc_descriptor_alloc(TYPE_CONFIGURATION, 0, size);
data = desc->data;
data[0] = 0x09;
data[2] = size;
data[3] = size >> 8;
data[4] = 0x01; /* number of interfaces */
data[5] = 0x01; /* configuration value */
data[6] = 0x00; /* configuration string */
data[7] = 0x80; /* attributes */
data[8] = 0x80; /* max power (250ma) -- todo fix this */
udc_ifc_desc_fill(the_gadget, data + 9);
udc_descriptor_register(desc);
register_int_handler(INT_USB_HS, udc_interrupt, (void *)0);
writel(STS_URI | STS_SLI | STS_UI | STS_PCI, USB_USBINTR);
unmask_interrupt(INT_USB_HS);
/* go to RUN mode (D+ pullup enable) */
val = readl(USB_USBCMD);
writel(val | 0x00080001, USB_USBCMD);
return 0;
}
int udc_stop(void)
{
uint32_t val;
/* Flush all primed end points. */
writel(0xffffffff, USB_ENDPTFLUSH);
/* Stop controller. */
val = readl(USB_USBCMD);
writel(val & ~USBCMD_ATTACH, USB_USBCMD);
/* Mask the interrupts. */
writel(0, USB_USBINTR);
mask_interrupt(INT_USB_HS);
/* Perform any target specific clean up. */
target_usb_stop();
/* Reset the controller. */
writel(USBCMD_RESET, USB_USBCMD);
/* Wait until reset completes. */
while(readl(USB_USBCMD) & USBCMD_RESET);
return 0;
}