blob: e131185b39327c1051512d89355ae8240670f464 [file] [log] [blame]
/* Copyright (c) 2011, Code Aurora Forum. All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Code Aurora Forum, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdlib.h>
#include <string.h>
#include "mmc.h"
#include "partition_parser.h"
char *ext3_partitions[] = {"system", "userdata", "persist", "cache", "tombstones"};
char *vfat_partitions[] = {"modem", "mdm", "NONE"};
unsigned int ext3_count = 0;
unsigned int vfat_count = 0;
struct partition_entry partition_entries[NUM_PARTITIONS];
unsigned gpt_partitions_exist = 0;
unsigned partition_count = 0;
//TODO: Remove the dependency of mmc in these functions
unsigned int partition_read_table( struct mmc_boot_host * mmc_host,
struct mmc_boot_card * mmc_card)
{
unsigned int ret;
/* Read MBR of the card */
ret = mmc_boot_read_mbr( mmc_host, mmc_card );
if( ret != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "MMC Boot: MBR read failed!\n" );
return MMC_BOOT_E_FAILURE;
}
/* Read GPT of the card if exist */
if(gpt_partitions_exist){
ret = mmc_boot_read_gpt(mmc_host, mmc_card);
if( ret != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "MMC Boot: GPT read failed!\n" );
return MMC_BOOT_E_FAILURE;
}
}
return MMC_BOOT_E_SUCCESS;
}
/*
* Read MBR from MMC card and fill partition table.
*/
unsigned int mmc_boot_read_mbr( struct mmc_boot_host * mmc_host,
struct mmc_boot_card * mmc_card)
{
unsigned char buffer[BLOCK_SIZE];
unsigned int dtype;
unsigned int dfirstsec;
unsigned int EBR_first_sec;
unsigned int EBR_current_sec;
int ret = MMC_BOOT_E_SUCCESS;
int idx, i;
/* Print out the MBR first */
ret = mmc_boot_read_from_card( mmc_host, mmc_card, 0,
BLOCK_SIZE,
(unsigned int *)buffer);
if (ret)
{
dprintf(CRITICAL, "Could not read partition from mmc\n");
return ret;
}
/* Check to see if signature exists */
ret = partition_verify_mbr_signature(BLOCK_SIZE, buffer);
if (ret)
{
return ret;
}
/*
* Process each of the four partitions in the MBR by reading the table
* information into our mbr table.
*/
partition_count = 0;
idx = TABLE_ENTRY_0;
for (i = 0; i < 4; i++)
{
/* Type 0xEE indicates end of MBR and GPT partitions exist */
dtype = buffer[idx + i * TABLE_ENTRY_SIZE + OFFSET_TYPE];
if (dtype == MBR_PROTECTED_TYPE){
gpt_partitions_exist = 1;
return ret;
}
partition_entries[partition_count].dtype = dtype;
partition_entries[partition_count].attribute_flag =
buffer[idx + i * TABLE_ENTRY_SIZE + OFFSET_STATUS];
partition_entries[partition_count].first_lba =
GET_LWORD_FROM_BYTE(&buffer[idx +
i * TABLE_ENTRY_SIZE +
OFFSET_FIRST_SEC]);
partition_entries[partition_count].size =
GET_LWORD_FROM_BYTE(&buffer[idx +
i * TABLE_ENTRY_SIZE +
OFFSET_SIZE]);
dfirstsec = partition_entries[partition_count].first_lba;
mbr_fill_name(&partition_entries[partition_count],
partition_entries[partition_count].dtype);
partition_count++;
if (partition_count == NUM_PARTITIONS)
return ret;
}
/* See if the last partition is EBR, if not, parsing is done */
if (dtype != MBR_EBR_TYPE)
{
return ret;
}
EBR_first_sec = dfirstsec;
EBR_current_sec = dfirstsec;
ret = mmc_boot_read_from_card( mmc_host, mmc_card,
(EBR_first_sec * 512),
BLOCK_SIZE,
(unsigned int *)buffer);
if (ret)
{
return ret;
}
/* Loop to parse the EBR */
for (i = 0;; i++)
{
ret = partition_verify_mbr_signature(BLOCK_SIZE, buffer);
if (ret)
{
ret = MMC_BOOT_E_SUCCESS;
break;
}
partition_entries[partition_count].attribute_flag =
buffer[TABLE_ENTRY_0 + OFFSET_STATUS];
partition_entries[partition_count].dtype =
buffer[TABLE_ENTRY_0 + OFFSET_TYPE];
partition_entries[partition_count].first_lba =
GET_LWORD_FROM_BYTE(&buffer[TABLE_ENTRY_0 +
OFFSET_FIRST_SEC]) +
EBR_current_sec;
partition_entries[partition_count].size =
GET_LWORD_FROM_BYTE(&buffer[TABLE_ENTRY_0 +
OFFSET_SIZE]);
mbr_fill_name(&(partition_entries[partition_count]),
partition_entries[partition_count].dtype);
partition_count++;
if (partition_count == NUM_PARTITIONS)
return ret;
dfirstsec =
GET_LWORD_FROM_BYTE(&buffer[TABLE_ENTRY_1 + OFFSET_FIRST_SEC]);
if(dfirstsec == 0)
{
/* Getting to the end of the EBR tables */
break;
}
/* More EBR to follow - read in the next EBR sector */
dprintf(SPEW, "Reading EBR block from 0x%X\n", EBR_first_sec
+ dfirstsec);
ret = mmc_boot_read_from_card( mmc_host, mmc_card,
((EBR_first_sec + dfirstsec) * 512),
BLOCK_SIZE,
(unsigned int *)buffer);
if (ret)
{
return ret;
}
EBR_current_sec = EBR_first_sec + dfirstsec;
}
return ret;
}
/*
* Read GPT from MMC and fill partition table
*/
unsigned int mmc_boot_read_gpt( struct mmc_boot_host * mmc_host,
struct mmc_boot_card * mmc_card)
{
int ret = MMC_BOOT_E_SUCCESS;
unsigned int header_size;
unsigned long long first_usable_lba;
unsigned long long backup_header_lba;
unsigned int max_partition_count = 0;
unsigned int partition_entry_size;
unsigned char data[BLOCK_SIZE];
unsigned int i = 0; /* Counter for each 512 block */
unsigned int j = 0; /* Counter for each 128 entry in the 512 block */
unsigned int n = 0; /* Counter for UTF-16 -> 8 conversion */
unsigned char UTF16_name[MAX_GPT_NAME_SIZE];
/* LBA of first partition -- 1 Block after Protected MBR + 1 for PT */
unsigned long long partition_0 = 2;
partition_count = 0;
/* Print out the GPT first */
ret = mmc_boot_read_from_card( mmc_host, mmc_card,
PROTECTIVE_MBR_SIZE,
BLOCK_SIZE,
(unsigned int *)data);
if (ret)
dprintf(CRITICAL, "GPT: Could not read primary gpt from mmc\n");
ret = partition_parse_gpt_header(data, &first_usable_lba,
&partition_entry_size, &header_size,
&max_partition_count);
if (ret)
{
dprintf(INFO, "GPT: (WARNING) Primary signature invalid\n" );
/* Check the backup gpt */
backup_header_lba = GET_LLWORD_FROM_BYTE(&data[BACKUP_HEADER_OFFSET]);
ret = mmc_boot_read_from_card( mmc_host, mmc_card,
(backup_header_lba * BLOCK_SIZE),
BLOCK_SIZE,
(unsigned int *)data);
if (ret)
{
dprintf(CRITICAL, "GPT: Could not read backup gpt from mmc\n");
return ret;
}
ret = partition_parse_gpt_header(data, &first_usable_lba,
&partition_entry_size, &header_size,
&max_partition_count);
if (ret)
{
dprintf(CRITICAL, "GPT: Primary and backup signatures invalid\n");
return ret;
}
partition_0 = backup_header_lba - (max_partition_count / 4);
}
/* Read GPT Entries */
for(i = 0; i < (max_partition_count/4); i++)
{
ret = mmc_boot_read_from_card( mmc_host, mmc_card,
(partition_0 * BLOCK_SIZE) +
(i * BLOCK_SIZE),
BLOCK_SIZE,
(uint32_t *)data);
if (ret)
{
dprintf(CRITICAL,
"GPT: mmc read card failed reading partition entries.\n" );
return ret;
}
for(j=0; j < 4; j++)
{
memcpy(&(partition_entries[partition_count].type_guid),
&data[(j * partition_entry_size)],
PARTITION_TYPE_GUID_SIZE);
if (partition_entries[partition_count].type_guid[0] == 0x00 &&
partition_entries[partition_count].type_guid[1] == 0x00)
{
i = max_partition_count;
break;
}
memcpy(&(partition_entries[partition_count].unique_partition_guid),
&data[(j * partition_entry_size) +
UNIQUE_GUID_OFFSET], UNIQUE_PARTITION_GUID_SIZE);
partition_entries[partition_count].first_lba =
GET_LLWORD_FROM_BYTE(&data[(j * partition_entry_size) +
FIRST_LBA_OFFSET]);
partition_entries[partition_count].last_lba =
GET_LLWORD_FROM_BYTE(&data[(j * partition_entry_size) +
LAST_LBA_OFFSET]);
partition_entries[partition_count].size =
partition_entries[partition_count].last_lba -
partition_entries[partition_count].first_lba;
partition_entries[partition_count].attribute_flag =
GET_LLWORD_FROM_BYTE(&data[(j * partition_entry_size) +
ATTRIBUTE_FLAG_OFFSET]);
memset(&UTF16_name, 0x00, MAX_GPT_NAME_SIZE);
memcpy(UTF16_name, &data[(j * partition_entry_size) +
PARTITION_NAME_OFFSET],
MAX_GPT_NAME_SIZE);
/*
* Currently partition names in *.xml are UTF-8 and lowercase
* Only supporting english for now so removing 2nd byte of UTF-16
*/
for(n = 0; n < MAX_GPT_NAME_SIZE/2; n++){
partition_entries[partition_count].name[n] = UTF16_name[n*2];
}
partition_count++;
}
}
return ret;
}
static unsigned int write_mbr_in_blocks(unsigned size, unsigned char *mbrImage)
{
unsigned int dtype;
unsigned int dfirstsec;
unsigned int ebrSectorOffset;
unsigned char *ebrImage;
unsigned char *lastAddress;
int idx, i;
unsigned int ret;
/* Write the first block */
ret = mmc_write(0, BLOCK_SIZE, (unsigned int *) mbrImage);
if (ret)
{
dprintf(CRITICAL, "Failed to write mbr partition\n");
goto end;
}
dprintf(SPEW, "write of first MBR block ok\n");
/*
Loop through the MBR table to see if there is an EBR.
If found, then figure out where to write the first EBR
*/
idx = TABLE_ENTRY_0;
for (i = 0; i < 4; i++)
{
dtype = mbrImage[idx + i * TABLE_ENTRY_SIZE + OFFSET_TYPE];
if (MBR_EBR_TYPE == dtype)
{
dprintf(SPEW, "EBR found.\n");
break;
}
}
if (MBR_EBR_TYPE != dtype)
{
dprintf(SPEW, "No EBR in this image\n");
goto end;
}
/* EBR exists. Write each EBR block to mmc */
ebrImage = mbrImage + BLOCK_SIZE;
ebrSectorOffset= GET_LWORD_FROM_BYTE(&mbrImage[idx + i * TABLE_ENTRY_SIZE + OFFSET_FIRST_SEC]);
dfirstsec = 0;
dprintf(SPEW, "first EBR to be written at sector 0x%X\n", dfirstsec);
lastAddress = mbrImage + size;
while (ebrImage < lastAddress)
{
dprintf(SPEW, "writing to 0x%X\n", (ebrSectorOffset + dfirstsec) * BLOCK_SIZE);
ret = mmc_write((ebrSectorOffset + dfirstsec) * BLOCK_SIZE,
BLOCK_SIZE, (unsigned int *) ebrImage);
if (ret)
{
dprintf(CRITICAL, "Failed to write EBR block to sector 0x%X\n", dfirstsec);
goto end;
}
dfirstsec = GET_LWORD_FROM_BYTE(&ebrImage[TABLE_ENTRY_1 + OFFSET_FIRST_SEC]);
ebrImage += BLOCK_SIZE;
}
dprintf(INFO, "MBR written to mmc successfully\n");
end:
return ret;
}
/* Write the MBR/EBR to the MMC. */
unsigned int write_mbr(unsigned size, unsigned char *mbrImage,
struct mmc_boot_host * mmc_host,
struct mmc_boot_card * mmc_card)
{
unsigned int ret;
/* Verify that passed in block is a valid MBR */
ret = partition_verify_mbr_signature(size, mbrImage);
if (ret)
{
goto end;
}
/* Write the MBR/EBR to mmc */
ret = write_mbr_in_blocks(size, mbrImage);
if (ret)
{
dprintf(CRITICAL, "Failed to write MBR block to mmc.\n" );
goto end;
}
/* Re-read the MBR partition into mbr table */
ret = mmc_boot_read_mbr( mmc_host, mmc_card );
if (ret)
{
dprintf(CRITICAL, "Failed to re-read mbr partition.\n");
goto end;
}
partition_dump();
end:
return ret;
}
/*
* A8h reflected is 15h, i.e. 10101000 <--> 00010101
*/
int reflect(int data, int len)
{
int ref = 0;
for(int i=0; i < len; i++) {
if(data & 0x1) {
ref |= (1 << ((len - 1) - i));
}
data = (data >> 1);
}
return ref;
}
/*
* Function to calculate the CRC32
*/
unsigned int calculate_crc32(unsigned char *buffer, int len)
{
int byte_length = 8; /*length of unit (i.e. byte)*/
int msb = 0;
int polynomial = 0x104C11DB7; /* IEEE 32bit polynomial*/
unsigned int regs = 0xFFFFFFFF; /* init to all ones */
int regs_mask = 0xFFFFFFFF; /* ensure only 32 bit answer */
int regs_msb = 0;
unsigned int reflected_regs;
for( int i=0; i < len; i++)
{
int data_byte = buffer[i];
data_byte = reflect(data_byte,8);
for(int j=0; j < byte_length; j++)
{
msb = data_byte >> (byte_length-1); /* get MSB */
msb &= 1; /* ensure just 1 bit */
regs_msb = (regs>>31) & 1; /* MSB of regs */
regs = regs<<1; /* shift regs for CRC-CCITT */
if(regs_msb ^ msb) /* MSB is a 1 */
{
regs = regs ^ polynomial; /* XOR with generator poly */
}
regs = regs & regs_mask; /* Mask off excess upper bits */
data_byte <<= 1; /* get to next bit */
}
}
regs = regs & regs_mask;
reflected_regs = reflect(regs, 32) ^ 0xFFFFFFFF;
return reflected_regs;
}
/*
* Write the GPT Partition Entry Array to the MMC.
*/
static unsigned int write_gpt_partition_array(unsigned char * header,
unsigned int partition_array_start,
unsigned int array_size)
{
unsigned int ret = MMC_BOOT_E_INVAL;
unsigned long long partition_entry_lba;
unsigned long long partition_entry_array_start_location;
partition_entry_lba = GET_LLWORD_FROM_BYTE(&header[PARTITION_ENTRIES_OFFSET]);
partition_entry_array_start_location = partition_entry_lba * BLOCK_SIZE;
ret = mmc_write( partition_entry_array_start_location, array_size,
(unsigned int *) partition_array_start);
if( ret )
{
dprintf(CRITICAL, "GPT: FAILED to write the partition entry array\n");
goto end;
}
end:
return ret;
}
static void patch_gpt(unsigned char *gptImage,
struct mmc_boot_card * mmc_card,
unsigned int array_size,
unsigned int max_part_count,
unsigned int part_entry_size)
{
unsigned int partition_entry_array_start;
unsigned char * primary_gpt_header;
unsigned char * secondary_gpt_header;
unsigned int offset;
unsigned long long card_size_sec;
int total_part=0;
unsigned int last_part_offset;
unsigned int crc_value;
/* Get size of MMC */
card_size_sec = (mmc_card->capacity)/512;
/* Working around cap at 4GB */
if( card_size_sec == 0 )
{
card_size_sec = 4*1024*1024*2 - 1;
}
/* Patching primary header */
primary_gpt_header = (gptImage + PROTECTIVE_MBR_SIZE);
PUT_LONG_LONG( primary_gpt_header + BACKUP_HEADER_OFFSET,
((long long)(card_size_sec - 1)) );
PUT_LONG_LONG( primary_gpt_header + LAST_USABLE_LBA_OFFSET,
((long long)(card_size_sec - 34)) );
/* Patching backup GPT */
offset = (2 * array_size );
secondary_gpt_header = offset + BLOCK_SIZE + primary_gpt_header;
PUT_LONG_LONG( secondary_gpt_header + PRIMARY_HEADER_OFFSET,
((long long)(card_size_sec - 1)) );
PUT_LONG_LONG( secondary_gpt_header + LAST_USABLE_LBA_OFFSET,
((long long)(card_size_sec - 34)) );
PUT_LONG_LONG( secondary_gpt_header + PARTITION_ENTRIES_OFFSET,
((long long)(card_size_sec - 33)) );
/* Find last partition */
while(*(primary_gpt_header +BLOCK_SIZE+ total_part* ENTRY_SIZE)!= 0)
{
total_part++;
}
/* Patching last partition */
last_part_offset = (total_part-1)*ENTRY_SIZE +
PARTITION_ENTRY_LAST_LBA;
PUT_LONG_LONG( primary_gpt_header + BLOCK_SIZE + last_part_offset,
(long long)(card_size_sec - 34) );
PUT_LONG_LONG( primary_gpt_header + BLOCK_SIZE + last_part_offset+
array_size,
(long long)(card_size_sec - 34) );
/* Updating CRC of the Partition entry array in both headers */
partition_entry_array_start = primary_gpt_header + BLOCK_SIZE;
crc_value = calculate_crc32( partition_entry_array_start,
max_part_count * part_entry_size);
PUT_LONG ( primary_gpt_header + PARTITION_CRC_OFFSET, crc_value);
crc_value = calculate_crc32( partition_entry_array_start + array_size,
max_part_count * part_entry_size);
PUT_LONG ( secondary_gpt_header + PARTITION_CRC_OFFSET, crc_value);
/* Clearing CRC fields to calculate */
PUT_LONG ( primary_gpt_header + HEADER_CRC_OFFSET,0 );
crc_value = calculate_crc32( primary_gpt_header, 92);
PUT_LONG ( primary_gpt_header + HEADER_CRC_OFFSET, crc_value);
PUT_LONG ( secondary_gpt_header + HEADER_CRC_OFFSET, 0);
crc_value = (calculate_crc32( secondary_gpt_header, 92));
PUT_LONG ( secondary_gpt_header + HEADER_CRC_OFFSET, crc_value);
}
/*
* Write the GPT to the MMC.
*/
unsigned int write_gpt(unsigned size, unsigned char *gptImage,
struct mmc_boot_host * mmc_host,
struct mmc_boot_card * mmc_card)
{
unsigned int ret = MMC_BOOT_E_INVAL;
unsigned int header_size;
unsigned long long first_usable_lba;
unsigned long long backup_header_lba;
unsigned int max_partition_count = 0;
unsigned int partition_entry_size;
unsigned int partition_entry_array_start;
unsigned char * primary_gpt_header;
unsigned char * secondary_gpt_header;
unsigned int offset;
unsigned int partition_entry_array_size;
unsigned long long primary_header_location; /* address on the emmc card */
unsigned long long secondary_header_location; /* address on the emmc card */
/* Verify that passed block has a valid GPT primary header */
primary_gpt_header = (gptImage + PROTECTIVE_MBR_SIZE);
ret = partition_parse_gpt_header(primary_gpt_header, &first_usable_lba,
&partition_entry_size, &header_size,
&max_partition_count);
if( ret )
{
dprintf(CRITICAL, "GPT: Primary signature invalid cannot write GPT\n");
goto end;
}
/* Verify that passed block has a valid backup GPT HEADER */
partition_entry_array_size = partition_entry_size * max_partition_count;
if(partition_entry_array_size < MIN_PARTITION_ARRAY_SIZE)
{
partition_entry_array_size = MIN_PARTITION_ARRAY_SIZE;
}
offset = (2 * partition_entry_array_size );
secondary_gpt_header = offset + BLOCK_SIZE + primary_gpt_header;
ret = partition_parse_gpt_header ( secondary_gpt_header , &first_usable_lba,
&partition_entry_size, &header_size,
&max_partition_count);
if( ret )
{
dprintf(CRITICAL, "GPT: Backup signature invalid cannot write GPT\n");
goto end;
}
/* Patching the primary and the backup header of the GPT table */
patch_gpt(gptImage ,mmc_card ,partition_entry_array_size ,
max_partition_count, partition_entry_size);
/* Erasing the eMMC card before writing */
ret = mmc_erase_card (0x00000000 , mmc_card->capacity);
if(ret)
{
dprintf(CRITICAL , "Failed to erase the eMMC card\n");
goto end;
}
/* Writing protective MBR*/
ret = mmc_write(0 ,PROTECTIVE_MBR_SIZE ,(unsigned int *) gptImage);
if(ret)
{
dprintf(CRITICAL, "Failed to write Protective MBR\n");
goto end;
}
/* Writing the primary GPT header */
primary_header_location = PROTECTIVE_MBR_SIZE;
ret = mmc_write(primary_header_location , BLOCK_SIZE ,
(unsigned int *)primary_gpt_header);
if (ret)
{
dprintf(CRITICAL, "Failed to write GPT header\n");
goto end;
}
/* Writing the backup GPT header */
backup_header_lba = GET_LLWORD_FROM_BYTE
(&primary_gpt_header[BACKUP_HEADER_OFFSET]);
secondary_header_location = backup_header_lba * BLOCK_SIZE;
ret = mmc_write(secondary_header_location, BLOCK_SIZE ,
(unsigned int *)secondary_gpt_header);
if (ret)
{
dprintf(CRITICAL, "Failed to write GPT backup header\n");
goto end;
}
/* Writing the partition entries array for the primary header */
partition_entry_array_start = primary_gpt_header + BLOCK_SIZE;
ret =write_gpt_partition_array( primary_gpt_header ,
partition_entry_array_start,
partition_entry_array_size);
if( ret )
{
dprintf(CRITICAL, "GPT: Could not write GPT Partition entries array\n");
goto end;
}
/*Writing the partition entries array for the backup header */
partition_entry_array_start =primary_gpt_header + BLOCK_SIZE+
partition_entry_array_size;
ret = write_gpt_partition_array( secondary_gpt_header ,
partition_entry_array_start,
partition_entry_array_size);
if( ret )
{
dprintf(CRITICAL, "GPT: Could not write GPT Partition entries array\n");
goto end;
}
/* Re-read the GPT partition table */
dprintf(INFO, "Re-reading the GPT Partition Table\n");
ret = mmc_boot_read_gpt( mmc_host, mmc_card);
if( ret )
{
dprintf( CRITICAL , "GPT: Failure to re- read the GPT Partition table\n");
goto end;
}
partition_dump();
dprintf( CRITICAL, "GPT: Partition Table written\n");
memset(primary_gpt_header , 0x00 , size);
end:
return ret;
}
unsigned int write_partition(unsigned size, unsigned char* partition)
{
unsigned int ret = MMC_BOOT_E_INVAL;
unsigned int partition_type;
struct mmc_boot_host* mmc_host;
struct mmc_boot_card* mmc_card;
if (partition == 0)
{
dprintf(CRITICAL, "NULL partition\n");
goto end;
}
ret = partition_get_type(size, partition, &partition_type);
if (ret != MMC_BOOT_E_SUCCESS)
{
goto end;
}
mmc_host = get_mmc_host();
mmc_card = get_mmc_card();
switch (partition_type)
{
case PARTITION_TYPE_MBR:
dprintf(INFO, "Writing MBR partition\n");
ret = write_mbr(size, partition, mmc_host, mmc_card);
break;
case PARTITION_TYPE_GPT:
dprintf(INFO, "Writing GPT partition\n");
ret = write_gpt(size, partition, mmc_host, mmc_card);
dprintf( CRITICAL, "Re-Flash all the partitions\n");
break;
default:
dprintf(CRITICAL, "Invalid partition\n");
ret = MMC_BOOT_E_INVAL;
goto end;
}
end:
return ret;
}
/*
* Fill name for android partition found.
*/
static void mbr_fill_name (struct partition_entry *partition_ent,
unsigned int type)
{
switch(type)
{
memset(partition_ent->name, 0, MAX_GPT_NAME_SIZE);
case MBR_MODEM_TYPE:
case MBR_MODEM_TYPE2:
/* if already assigned last name available then return */
if(!strcmp((const char *)vfat_partitions[vfat_count], "NONE"))
return;
strlcpy((char *)partition_ent->name,
(const char *)vfat_partitions[vfat_count],
sizeof(partition_ent->name));
vfat_count++;
break;
case MBR_SBL1_TYPE:
memcpy(partition_ent->name,"sbl1",4);
break;
case MBR_SBL2_TYPE:
memcpy(partition_ent->name,"sbl2",4);
break;
case MBR_SBL3_TYPE:
memcpy(partition_ent->name,"sbl3",4);
break;
case MBR_RPM_TYPE:
memcpy(partition_ent->name,"rpm",3);
break;
case MBR_TZ_TYPE:
memcpy(partition_ent->name,"tz",2);
break;
case MBR_ABOOT_TYPE:
memcpy(partition_ent->name,"aboot",5);
break;
case MBR_BOOT_TYPE:
memcpy(partition_ent->name,"boot",4);
break;
case MBR_MODEM_ST1_TYPE:
memcpy(partition_ent->name,"modem_st1",9);
break;
case MBR_MODEM_ST2_TYPE:
memcpy(partition_ent->name,"modem_st2",9);
break;
case MBR_EFS2_TYPE:
memcpy(partition_ent->name,"efs2",4);
break;
case MBR_USERDATA_TYPE:
if (ext3_count == sizeof(ext3_partitions) / sizeof(char*))
return;
strlcpy((char *)partition_ent->name,
(const char *)ext3_partitions[ext3_count],
sizeof(partition_ent->name));
ext3_count++;
break;
case MBR_RECOVERY_TYPE:
memcpy(partition_ent->name,"recovery",8);
break;
case MBR_MISC_TYPE:
memcpy(partition_ent->name,"misc",4);
break;
};
}
/*
* Find index of parition in array of partition entries
*/
unsigned partition_get_index (const char * name)
{
unsigned int input_string_length = strlen(name);
unsigned n;
for(n = 0; n < partition_count; n++){
if(!memcmp(name, &partition_entries[n].name, input_string_length) &&
input_string_length == strlen((const char *)&partition_entries[n].name))
{
return n;
}
}
return INVALID_PTN;
}
/* Get size of the partition */
unsigned long long partition_get_size (int index)
{
if (index == INVALID_PTN)
return 0;
else{
return partition_entries[index].size * BLOCK_SIZE;
}
}
/* Get offset of the partition */
unsigned long long partition_get_offset (int index)
{
if (index == INVALID_PTN)
return 0;
else{
return partition_entries[index].first_lba * BLOCK_SIZE;
}
}
/* Debug: Print all parsed partitions */
void partition_dump()
{
unsigned i = 0;
for (i=0; i< partition_count; i++){
dprintf(SPEW,
"ptn[%d]:Name[%s] Size[%llu] Type[%u] First[%llu] Last[%llu]\n",
i, partition_entries[i].name, partition_entries[i].size,
partition_entries[i].dtype, partition_entries[i].first_lba,
partition_entries[i].last_lba);
}
}
unsigned int partition_verify_mbr_signature(unsigned size,
unsigned char* buffer)
{
/* Avoid checking past end of buffer */
if ((TABLE_SIGNATURE + 1) > size)
{
return MMC_BOOT_E_FAILURE;
}
/* Check to see if signature exists */
if ((buffer[TABLE_SIGNATURE] != MMC_MBR_SIGNATURE_BYTE_0) ||
(buffer[TABLE_SIGNATURE + 1] != MMC_MBR_SIGNATURE_BYTE_1))
{
dprintf(CRITICAL, "MBR signature does not match.\n" );
return MMC_BOOT_E_FAILURE;
}
return MMC_BOOT_E_SUCCESS;
}
unsigned int mbr_partition_get_type(unsigned size, unsigned char* partition,
unsigned int *partition_type)
{
unsigned int type_offset = TABLE_ENTRY_0 + OFFSET_TYPE;
if (size < type_offset)
{
goto end;
}
*partition_type = partition[type_offset];
end:
return MMC_BOOT_E_SUCCESS;
}
unsigned int partition_get_type(unsigned size, unsigned char* partition,
unsigned int *partition_type)
{
unsigned int ret = MMC_BOOT_E_SUCCESS;
/*
* If the block contains the MBR signature, then it's likely either
* MBR or MBR with protective type (GPT). If the MBR signature is
* not there, then it could be the GPT backup.
*/
/* First check the MBR signature */
ret = partition_verify_mbr_signature(size, partition);
if (ret == MMC_BOOT_E_SUCCESS)
{
unsigned int mbr_partition_type = PARTITION_TYPE_MBR;
/* MBR signature verified. This could be MBR, MBR + EBR, or GPT */
ret = mbr_partition_get_type(size, partition, &mbr_partition_type);
if (ret != MMC_BOOT_E_SUCCESS)
{
dprintf(CRITICAL, "Cannot get TYPE of partition");
}
else if (MBR_PROTECTED_TYPE == mbr_partition_type)
{
*partition_type = PARTITION_TYPE_GPT;
}
else
{
*partition_type = PARTITION_TYPE_MBR;
}
}
else
{
/*
* This could be the GPT backup. Make that assumption for now.
* Anybody who treats the block as GPT backup should check the
* signature.
*/
*partition_type = PARTITION_TYPE_GPT_BACKUP;
}
return ret;
}
/*
* Parse the gpt header and get the required header fields
* Return 0 on valid signature
*/
unsigned int partition_parse_gpt_header(unsigned char * buffer,
unsigned long long * first_usable_lba,
unsigned int * partition_entry_size,
unsigned int * header_size,
unsigned int * max_partition_count)
{
/* Check GPT Signature */
if( ((uint32_t *) buffer)[0] != GPT_SIGNATURE_2 ||
((uint32_t *) buffer)[1] != GPT_SIGNATURE_1 )
return 1;
*header_size = GET_LWORD_FROM_BYTE(&buffer[HEADER_SIZE_OFFSET]);
*first_usable_lba = GET_LLWORD_FROM_BYTE(&buffer[FIRST_USABLE_LBA_OFFSET]);
*max_partition_count = GET_LWORD_FROM_BYTE(&buffer[PARTITION_COUNT_OFFSET]);
*partition_entry_size = GET_LWORD_FROM_BYTE(&buffer[PENTRY_SIZE_OFFSET]);
return 0;
}