| /* |
| * Copyright (c) 2009, Google Inc. |
| * All rights reserved. |
| * |
| * Copyright (c) 2009-2014, The Linux Foundation. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * * Neither the name of The Linux Foundation nor |
| * the names of its contributors may be used to endorse or promote |
| * products derived from this software without specific prior written |
| * permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; |
| * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR |
| * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF |
| * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| */ |
| |
| #include <app.h> |
| #include <debug.h> |
| #include <arch/arm.h> |
| #include <string.h> |
| #include <stdlib.h> |
| #include <kernel/thread.h> |
| #include <arch/ops.h> |
| |
| #include <dev/flash.h> |
| #include <lib/ptable.h> |
| #include <dev/keys.h> |
| #include <dev/fbcon.h> |
| #include <baseband.h> |
| #include <target.h> |
| #include <mmc.h> |
| #include <partition_parser.h> |
| #include <platform.h> |
| #include <crypto_hash.h> |
| #include <malloc.h> |
| #include <boot_stats.h> |
| #include <sha.h> |
| #include <platform/iomap.h> |
| |
| #if DEVICE_TREE |
| #include <libfdt.h> |
| #include <dev_tree.h> |
| #endif |
| |
| #include "image_verify.h" |
| #include "recovery.h" |
| #include "bootimg.h" |
| #include "fastboot.h" |
| #include "sparse_format.h" |
| #include "mmc.h" |
| #include "devinfo.h" |
| #include "board.h" |
| #include "scm.h" |
| |
| extern bool target_use_signed_kernel(void); |
| extern void platform_uninit(void); |
| extern void target_uninit(void); |
| extern int get_target_boot_params(const char *cmdline, const char *part, |
| char *buf, int buflen); |
| |
| void write_device_info_mmc(device_info *dev); |
| void write_device_info_flash(device_info *dev); |
| |
| #define EXPAND(NAME) #NAME |
| #define TARGET(NAME) EXPAND(NAME) |
| |
| #ifdef MEMBASE |
| #define EMMC_BOOT_IMG_HEADER_ADDR (0xFF000+(MEMBASE)) |
| #else |
| #define EMMC_BOOT_IMG_HEADER_ADDR 0xFF000 |
| #endif |
| |
| #ifndef MEMSIZE |
| #define MEMSIZE 1024*1024 |
| #endif |
| |
| #define MAX_TAGS_SIZE 1024 |
| |
| #define RECOVERY_MODE 0x77665502 |
| #define FASTBOOT_MODE 0x77665500 |
| |
| /* make 4096 as default size to ensure EFS,EXT4's erasing */ |
| #define DEFAULT_ERASE_SIZE 4096 |
| #define MAX_PANEL_BUF_SIZE 128 |
| |
| #define UBI_MAGIC "UBI#" |
| #define UBI_MAGIC_SIZE 0x04 |
| |
| #define IS_ARM64(ptr) (ptr->magic_64 == KERNEL64_HDR_MAGIC) ? true : false |
| |
| #if UFS_SUPPORT |
| static const char *emmc_cmdline = " androidboot.bootdevice=msm_sdcc.1"; |
| static const char *ufs_cmdline = " androidboot.bootdevice=msm_ufs.1"; |
| #else |
| static const char *emmc_cmdline = " androidboot.emmc=true"; |
| #endif |
| static const char *usb_sn_cmdline = " androidboot.serialno="; |
| static const char *androidboot_mode = " androidboot.mode="; |
| static const char *loglevel = " quiet"; |
| static const char *battchg_pause = " androidboot.mode=charger"; |
| static const char *auth_kernel = " androidboot.authorized_kernel=true"; |
| static const char *secondary_gpt_enable = " gpt"; |
| |
| static const char *baseband_apq = " androidboot.baseband=apq"; |
| static const char *baseband_msm = " androidboot.baseband=msm"; |
| static const char *baseband_csfb = " androidboot.baseband=csfb"; |
| static const char *baseband_svlte2a = " androidboot.baseband=svlte2a"; |
| static const char *baseband_mdm = " androidboot.baseband=mdm"; |
| static const char *baseband_mdm2 = " androidboot.baseband=mdm2"; |
| static const char *baseband_sglte = " androidboot.baseband=sglte"; |
| static const char *baseband_dsda = " androidboot.baseband=dsda"; |
| static const char *baseband_dsda2 = " androidboot.baseband=dsda2"; |
| static const char *baseband_sglte2 = " androidboot.baseband=sglte2"; |
| static const char *warmboot_cmdline = " qpnp-power-on.warm_boot=1"; |
| |
| static unsigned page_size = 0; |
| static unsigned page_mask = 0; |
| static char ffbm_mode_string[FFBM_MODE_BUF_SIZE]; |
| static bool boot_into_ffbm; |
| static char target_boot_params[64]; |
| |
| /* Assuming unauthorized kernel image by default */ |
| static int auth_kernel_img = 0; |
| |
| static device_info device = {DEVICE_MAGIC, 0, 0, 0, 0}; |
| |
| struct atag_ptbl_entry |
| { |
| char name[16]; |
| unsigned offset; |
| unsigned size; |
| unsigned flags; |
| }; |
| |
| /* |
| * Partition info, required to be published |
| * for fastboot |
| */ |
| struct getvar_partition_info { |
| const char part_name[MAX_GPT_NAME_SIZE]; /* Partition name */ |
| char getvar_size[MAX_GET_VAR_NAME_SIZE]; /* fastboot get var name for size */ |
| char getvar_type[MAX_GET_VAR_NAME_SIZE]; /* fastboot get var name for type */ |
| char size_response[MAX_RSP_SIZE]; /* fastboot response for size */ |
| char type_response[MAX_RSP_SIZE]; /* fastboot response for type */ |
| }; |
| |
| /* |
| * Right now, we are publishing the info for only |
| * three partitions |
| */ |
| struct getvar_partition_info part_info[] = |
| { |
| { "system" , "partition-size:", "partition-type:", "", "ext4" }, |
| { "userdata", "partition-size:", "partition-type:", "", "ext4" }, |
| { "cache" , "partition-size:", "partition-type:", "", "ext4" }, |
| }; |
| |
| char max_download_size[MAX_RSP_SIZE]; |
| char charger_screen_enabled[MAX_RSP_SIZE]; |
| char sn_buf[13]; |
| char display_panel_buf[MAX_PANEL_BUF_SIZE]; |
| char panel_display_mode[MAX_RSP_SIZE]; |
| |
| extern int emmc_recovery_init(void); |
| |
| #if NO_KEYPAD_DRIVER |
| extern int fastboot_trigger(void); |
| #endif |
| |
| static void update_ker_tags_rdisk_addr(struct boot_img_hdr *hdr, bool is_arm64) |
| { |
| /* overwrite the destination of specified for the project */ |
| #ifdef ABOOT_IGNORE_BOOT_HEADER_ADDRS |
| if (is_arm64) |
| hdr->kernel_addr = ABOOT_FORCE_KERNEL64_ADDR; |
| else |
| hdr->kernel_addr = ABOOT_FORCE_KERNEL_ADDR; |
| hdr->ramdisk_addr = ABOOT_FORCE_RAMDISK_ADDR; |
| hdr->tags_addr = ABOOT_FORCE_TAGS_ADDR; |
| #endif |
| } |
| |
| static void ptentry_to_tag(unsigned **ptr, struct ptentry *ptn) |
| { |
| struct atag_ptbl_entry atag_ptn; |
| |
| memcpy(atag_ptn.name, ptn->name, 16); |
| atag_ptn.name[15] = '\0'; |
| atag_ptn.offset = ptn->start; |
| atag_ptn.size = ptn->length; |
| atag_ptn.flags = ptn->flags; |
| memcpy(*ptr, &atag_ptn, sizeof(struct atag_ptbl_entry)); |
| *ptr += sizeof(struct atag_ptbl_entry) / sizeof(unsigned); |
| } |
| |
| #if UFS_SUPPORT |
| char* get_boot_dev_cmdline() |
| { |
| const char *boot_device; |
| uint32_t val = 0; |
| |
| val = target_get_boot_device(); |
| switch(val) |
| { |
| case BOOT_DEFAULT: |
| case BOOT_EMMC: |
| boot_device = emmc_cmdline; |
| break; |
| case BOOT_UFS: |
| boot_device = ufs_cmdline; |
| break; |
| default: |
| dprintf(CRITICAL,"ERROR: Unexpected boot_device val=%x",val); |
| ASSERT(0); |
| }; |
| |
| return boot_device; |
| } |
| #endif |
| |
| unsigned char *update_cmdline(const char * cmdline) |
| { |
| int cmdline_len = 0; |
| int have_cmdline = 0; |
| unsigned char *cmdline_final = NULL; |
| #if UFS_SUPPORT |
| const char *boot_dev_cmdline = NULL; |
| #endif |
| int pause_at_bootup = 0; |
| bool warm_boot = false; |
| bool gpt_exists = partition_gpt_exists(); |
| int have_target_boot_params = 0; |
| |
| if (cmdline && cmdline[0]) { |
| cmdline_len = strlen(cmdline); |
| have_cmdline = 1; |
| } |
| if (target_is_emmc_boot()) { |
| #if UFS_SUPPORT |
| boot_dev_cmdline = get_boot_dev_cmdline(); |
| cmdline_len += strlen(boot_dev_cmdline); |
| #else |
| cmdline_len += strlen(emmc_cmdline); |
| #endif |
| } |
| |
| cmdline_len += strlen(usb_sn_cmdline); |
| cmdline_len += strlen(sn_buf); |
| |
| if (boot_into_recovery && gpt_exists) |
| cmdline_len += strlen(secondary_gpt_enable); |
| |
| if (boot_into_ffbm) { |
| cmdline_len += strlen(androidboot_mode); |
| cmdline_len += strlen(ffbm_mode_string); |
| /* reduce kernel console messages to speed-up boot */ |
| cmdline_len += strlen(loglevel); |
| } else if (device.charger_screen_enabled && |
| target_pause_for_battery_charge()) { |
| pause_at_bootup = 1; |
| cmdline_len += strlen(battchg_pause); |
| } |
| |
| if(target_use_signed_kernel() && auth_kernel_img) { |
| cmdline_len += strlen(auth_kernel); |
| } |
| |
| if (get_target_boot_params(cmdline, boot_into_recovery ? "recoveryfs" : |
| "system", |
| target_boot_params, |
| sizeof(target_boot_params)) == 0) { |
| have_target_boot_params = 1; |
| cmdline_len += strlen(target_boot_params); |
| } |
| |
| /* Determine correct androidboot.baseband to use */ |
| switch(target_baseband()) |
| { |
| case BASEBAND_APQ: |
| cmdline_len += strlen(baseband_apq); |
| break; |
| |
| case BASEBAND_MSM: |
| cmdline_len += strlen(baseband_msm); |
| break; |
| |
| case BASEBAND_CSFB: |
| cmdline_len += strlen(baseband_csfb); |
| break; |
| |
| case BASEBAND_SVLTE2A: |
| cmdline_len += strlen(baseband_svlte2a); |
| break; |
| |
| case BASEBAND_MDM: |
| cmdline_len += strlen(baseband_mdm); |
| break; |
| |
| case BASEBAND_MDM2: |
| cmdline_len += strlen(baseband_mdm2); |
| break; |
| |
| case BASEBAND_SGLTE: |
| cmdline_len += strlen(baseband_sglte); |
| break; |
| |
| case BASEBAND_SGLTE2: |
| cmdline_len += strlen(baseband_sglte2); |
| break; |
| |
| case BASEBAND_DSDA: |
| cmdline_len += strlen(baseband_dsda); |
| break; |
| |
| case BASEBAND_DSDA2: |
| cmdline_len += strlen(baseband_dsda2); |
| break; |
| } |
| |
| if (target_display_panel_node(device.display_panel, |
| display_panel_buf, MAX_PANEL_BUF_SIZE) && |
| strlen(display_panel_buf)) { |
| cmdline_len += strlen(display_panel_buf); |
| } |
| |
| if (target_warm_boot()) { |
| warm_boot = true; |
| cmdline_len += strlen(warmboot_cmdline); |
| } |
| |
| if (cmdline_len > 0) { |
| const char *src; |
| unsigned char *dst = (unsigned char*) malloc((cmdline_len + 4) & (~3)); |
| ASSERT(dst != NULL); |
| |
| /* Save start ptr for debug print */ |
| cmdline_final = dst; |
| if (have_cmdline) { |
| src = cmdline; |
| while ((*dst++ = *src++)); |
| } |
| if (target_is_emmc_boot()) { |
| #if UFS_SUPPORT |
| src = boot_dev_cmdline; |
| #else |
| src = emmc_cmdline; |
| #endif |
| if (have_cmdline) --dst; |
| have_cmdline = 1; |
| while ((*dst++ = *src++)); |
| } |
| |
| src = usb_sn_cmdline; |
| if (have_cmdline) --dst; |
| have_cmdline = 1; |
| while ((*dst++ = *src++)); |
| src = sn_buf; |
| if (have_cmdline) --dst; |
| have_cmdline = 1; |
| while ((*dst++ = *src++)); |
| if (warm_boot) { |
| if (have_cmdline) --dst; |
| src = warmboot_cmdline; |
| while ((*dst++ = *src++)); |
| } |
| |
| if (boot_into_recovery && gpt_exists) { |
| src = secondary_gpt_enable; |
| if (have_cmdline) --dst; |
| while ((*dst++ = *src++)); |
| } |
| |
| if (boot_into_ffbm) { |
| src = androidboot_mode; |
| if (have_cmdline) --dst; |
| while ((*dst++ = *src++)); |
| src = ffbm_mode_string; |
| if (have_cmdline) --dst; |
| while ((*dst++ = *src++)); |
| src = loglevel; |
| if (have_cmdline) --dst; |
| while ((*dst++ = *src++)); |
| } else if (pause_at_bootup) { |
| src = battchg_pause; |
| if (have_cmdline) --dst; |
| while ((*dst++ = *src++)); |
| } |
| |
| if(target_use_signed_kernel() && auth_kernel_img) { |
| src = auth_kernel; |
| if (have_cmdline) --dst; |
| while ((*dst++ = *src++)); |
| } |
| |
| switch(target_baseband()) |
| { |
| case BASEBAND_APQ: |
| src = baseband_apq; |
| if (have_cmdline) --dst; |
| while ((*dst++ = *src++)); |
| break; |
| |
| case BASEBAND_MSM: |
| src = baseband_msm; |
| if (have_cmdline) --dst; |
| while ((*dst++ = *src++)); |
| break; |
| |
| case BASEBAND_CSFB: |
| src = baseband_csfb; |
| if (have_cmdline) --dst; |
| while ((*dst++ = *src++)); |
| break; |
| |
| case BASEBAND_SVLTE2A: |
| src = baseband_svlte2a; |
| if (have_cmdline) --dst; |
| while ((*dst++ = *src++)); |
| break; |
| |
| case BASEBAND_MDM: |
| src = baseband_mdm; |
| if (have_cmdline) --dst; |
| while ((*dst++ = *src++)); |
| break; |
| |
| case BASEBAND_MDM2: |
| src = baseband_mdm2; |
| if (have_cmdline) --dst; |
| while ((*dst++ = *src++)); |
| break; |
| |
| case BASEBAND_SGLTE: |
| src = baseband_sglte; |
| if (have_cmdline) --dst; |
| while ((*dst++ = *src++)); |
| break; |
| |
| case BASEBAND_SGLTE2: |
| src = baseband_sglte2; |
| if (have_cmdline) --dst; |
| while ((*dst++ = *src++)); |
| break; |
| |
| case BASEBAND_DSDA: |
| src = baseband_dsda; |
| if (have_cmdline) --dst; |
| while ((*dst++ = *src++)); |
| break; |
| |
| case BASEBAND_DSDA2: |
| src = baseband_dsda2; |
| if (have_cmdline) --dst; |
| while ((*dst++ = *src++)); |
| break; |
| } |
| |
| if (strlen(display_panel_buf)) { |
| src = display_panel_buf; |
| if (have_cmdline) --dst; |
| while ((*dst++ = *src++)); |
| } |
| |
| if (have_target_boot_params) { |
| if (have_cmdline) --dst; |
| src = target_boot_params; |
| while ((*dst++ = *src++)); |
| } |
| } |
| |
| |
| dprintf(INFO, "cmdline: %s\n", cmdline_final); |
| return cmdline_final; |
| } |
| |
| unsigned *atag_core(unsigned *ptr) |
| { |
| /* CORE */ |
| *ptr++ = 2; |
| *ptr++ = 0x54410001; |
| |
| return ptr; |
| |
| } |
| |
| unsigned *atag_ramdisk(unsigned *ptr, void *ramdisk, |
| unsigned ramdisk_size) |
| { |
| if (ramdisk_size) { |
| *ptr++ = 4; |
| *ptr++ = 0x54420005; |
| *ptr++ = (unsigned)ramdisk; |
| *ptr++ = ramdisk_size; |
| } |
| |
| return ptr; |
| } |
| |
| unsigned *atag_ptable(unsigned **ptr_addr) |
| { |
| int i; |
| struct ptable *ptable; |
| |
| if ((ptable = flash_get_ptable()) && (ptable->count != 0)) { |
| *(*ptr_addr)++ = 2 + (ptable->count * (sizeof(struct atag_ptbl_entry) / |
| sizeof(unsigned))); |
| *(*ptr_addr)++ = 0x4d534d70; |
| for (i = 0; i < ptable->count; ++i) |
| ptentry_to_tag(ptr_addr, ptable_get(ptable, i)); |
| } |
| |
| return (*ptr_addr); |
| } |
| |
| unsigned *atag_cmdline(unsigned *ptr, const char *cmdline) |
| { |
| int cmdline_length = 0; |
| int n; |
| char *dest; |
| |
| cmdline_length = strlen((const char*)cmdline); |
| n = (cmdline_length + 4) & (~3); |
| |
| *ptr++ = (n / 4) + 2; |
| *ptr++ = 0x54410009; |
| dest = (char *) ptr; |
| while ((*dest++ = *cmdline++)); |
| ptr += (n / 4); |
| |
| return ptr; |
| } |
| |
| unsigned *atag_end(unsigned *ptr) |
| { |
| /* END */ |
| *ptr++ = 0; |
| *ptr++ = 0; |
| |
| return ptr; |
| } |
| |
| void generate_atags(unsigned *ptr, const char *cmdline, |
| void *ramdisk, unsigned ramdisk_size) |
| { |
| |
| ptr = atag_core(ptr); |
| ptr = atag_ramdisk(ptr, ramdisk, ramdisk_size); |
| ptr = target_atag_mem(ptr); |
| |
| /* Skip NAND partition ATAGS for eMMC boot */ |
| if (!target_is_emmc_boot()){ |
| ptr = atag_ptable(&ptr); |
| } |
| |
| ptr = atag_cmdline(ptr, cmdline); |
| ptr = atag_end(ptr); |
| } |
| |
| typedef void entry_func_ptr(unsigned, unsigned, unsigned*); |
| void boot_linux(void *kernel, unsigned *tags, |
| const char *cmdline, unsigned machtype, |
| void *ramdisk, unsigned ramdisk_size) |
| { |
| unsigned char *final_cmdline; |
| #if DEVICE_TREE |
| int ret = 0; |
| #endif |
| |
| void (*entry)(unsigned, unsigned, unsigned*) = (entry_func_ptr*)(PA((addr_t)kernel)); |
| uint32_t tags_phys = PA((addr_t)tags); |
| struct kernel64_hdr *kptr = (struct kernel64_hdr*)kernel; |
| |
| ramdisk = PA(ramdisk); |
| |
| final_cmdline = update_cmdline((const char*)cmdline); |
| |
| #if DEVICE_TREE |
| dprintf(INFO, "Updating device tree: start\n"); |
| |
| /* Update the Device Tree */ |
| ret = update_device_tree((void *)tags, final_cmdline, ramdisk, ramdisk_size); |
| if(ret) |
| { |
| dprintf(CRITICAL, "ERROR: Updating Device Tree Failed \n"); |
| ASSERT(0); |
| } |
| dprintf(INFO, "Updating device tree: done\n"); |
| #else |
| /* Generating the Atags */ |
| generate_atags(tags, final_cmdline, ramdisk, ramdisk_size); |
| #endif |
| |
| /* Perform target specific cleanup */ |
| target_uninit(); |
| |
| /* Turn off splash screen if enabled */ |
| #if DISPLAY_SPLASH_SCREEN |
| target_display_shutdown(); |
| #endif |
| |
| |
| dprintf(INFO, "booting linux @ %p, ramdisk @ %p (%d), tags/device tree @ %p\n", |
| entry, ramdisk, ramdisk_size, tags_phys); |
| |
| enter_critical_section(); |
| |
| /* do any platform specific cleanup before kernel entry */ |
| platform_uninit(); |
| |
| arch_disable_cache(UCACHE); |
| |
| #if ARM_WITH_MMU |
| arch_disable_mmu(); |
| #endif |
| bs_set_timestamp(BS_KERNEL_ENTRY); |
| |
| if (IS_ARM64(kptr)) |
| /* Jump to a 64bit kernel */ |
| scm_elexec_call((paddr_t)kernel, tags_phys); |
| else |
| /* Jump to a 32bit kernel */ |
| entry(0, machtype, (unsigned*)tags_phys); |
| } |
| |
| /* Function to check if the memory address range falls within the aboot |
| * boundaries. |
| * start: Start of the memory region |
| * size: Size of the memory region |
| */ |
| int check_aboot_addr_range_overlap(uint32_t start, uint32_t size) |
| { |
| /* Check for boundary conditions. */ |
| if ((start + size) < start) |
| return -1; |
| |
| /* Check for memory overlap. */ |
| if ((start < MEMBASE) && ((start + size) <= MEMBASE)) |
| return 0; |
| else if (start >= (MEMBASE + MEMSIZE)) |
| return 0; |
| else |
| return -1; |
| } |
| |
| #define ROUND_TO_PAGE(x,y) (((x) + (y)) & (~(y))) |
| |
| BUF_DMA_ALIGN(buf, BOOT_IMG_MAX_PAGE_SIZE); //Equal to max-supported pagesize |
| #if DEVICE_TREE |
| BUF_DMA_ALIGN(dt_buf, BOOT_IMG_MAX_PAGE_SIZE); |
| #endif |
| |
| static void verify_signed_bootimg(uint32_t bootimg_addr, uint32_t bootimg_size) |
| { |
| int ret; |
| #if IMAGE_VERIF_ALGO_SHA1 |
| uint32_t auth_algo = CRYPTO_AUTH_ALG_SHA1; |
| #else |
| uint32_t auth_algo = CRYPTO_AUTH_ALG_SHA256; |
| #endif |
| |
| /* Assume device is rooted at this time. */ |
| device.is_tampered = 1; |
| |
| dprintf(INFO, "Authenticating boot image (%d): start\n", bootimg_size); |
| |
| ret = image_verify((unsigned char *)bootimg_addr, |
| (unsigned char *)(bootimg_addr + bootimg_size), |
| bootimg_size, |
| auth_algo); |
| |
| dprintf(INFO, "Authenticating boot image: done return value = %d\n", ret); |
| |
| if (ret) |
| { |
| /* Authorized kernel */ |
| device.is_tampered = 0; |
| auth_kernel_img = 1; |
| } |
| |
| #if USE_PCOM_SECBOOT |
| set_tamper_flag(device.is_tampered); |
| #endif |
| |
| if(device.is_tampered) |
| { |
| write_device_info_mmc(&device); |
| #ifdef TZ_TAMPER_FUSE |
| set_tamper_fuse_cmd(); |
| #endif |
| #ifdef ASSERT_ON_TAMPER |
| dprintf(CRITICAL, "Device is tampered. Asserting..\n"); |
| ASSERT(0); |
| #endif |
| } |
| } |
| |
| static bool check_format_bit() |
| { |
| bool ret = false; |
| int index; |
| uint64_t offset; |
| struct boot_selection_info *in = NULL; |
| char *buf = NULL; |
| |
| index = partition_get_index("bootselect"); |
| if (index == INVALID_PTN) |
| { |
| dprintf(INFO, "Unable to locate /bootselect partition\n"); |
| return ret; |
| } |
| offset = partition_get_offset(index); |
| if(!offset) |
| { |
| dprintf(INFO, "partition /bootselect doesn't exist\n"); |
| return ret; |
| } |
| buf = (char *) memalign(CACHE_LINE, ROUNDUP(page_size, CACHE_LINE)); |
| ASSERT(buf); |
| if (mmc_read(offset, (unsigned int *)buf, page_size)) |
| { |
| dprintf(INFO, "mmc read failure /bootselect %d\n", page_size); |
| free(buf); |
| return ret; |
| } |
| in = (struct boot_selection_info *) buf; |
| if ((in->signature == BOOTSELECT_SIGNATURE) && |
| (in->version == BOOTSELECT_VERSION)) { |
| if ((in->state_info & BOOTSELECT_FORMAT) && |
| !(in->state_info & BOOTSELECT_FACTORY)) |
| ret = true; |
| } else { |
| dprintf(CRITICAL, "Signature: 0x%08x or version: 0x%08x mismatched of /bootselect\n", |
| in->signature, in->version); |
| ASSERT(0); |
| } |
| free(buf); |
| return ret; |
| } |
| |
| int boot_linux_from_mmc(void) |
| { |
| struct boot_img_hdr *hdr = (void*) buf; |
| struct boot_img_hdr *uhdr; |
| unsigned offset = 0; |
| int rcode; |
| unsigned long long ptn = 0; |
| int index = INVALID_PTN; |
| |
| unsigned char *image_addr = 0; |
| unsigned kernel_actual; |
| unsigned ramdisk_actual; |
| unsigned imagesize_actual; |
| unsigned second_actual = 0; |
| |
| #if DEVICE_TREE |
| struct dt_table *table; |
| struct dt_entry dt_entry; |
| unsigned dt_table_offset; |
| uint32_t dt_actual; |
| uint32_t dt_hdr_size; |
| #endif |
| BUF_DMA_ALIGN(kbuf, BOOT_IMG_MAX_PAGE_SIZE); |
| struct kernel64_hdr *kptr = (void*) kbuf; |
| |
| if (check_format_bit()) |
| boot_into_recovery = 1; |
| |
| if (!boot_into_recovery) { |
| memset(ffbm_mode_string, '\0', sizeof(ffbm_mode_string)); |
| rcode = get_ffbm(ffbm_mode_string, sizeof(ffbm_mode_string)); |
| if (rcode <= 0) { |
| boot_into_ffbm = false; |
| if (rcode < 0) |
| dprintf(CRITICAL,"failed to get ffbm cookie"); |
| } else |
| boot_into_ffbm = true; |
| } else |
| boot_into_ffbm = false; |
| uhdr = (struct boot_img_hdr *)EMMC_BOOT_IMG_HEADER_ADDR; |
| if (!memcmp(uhdr->magic, BOOT_MAGIC, BOOT_MAGIC_SIZE)) { |
| dprintf(INFO, "Unified boot method!\n"); |
| hdr = uhdr; |
| goto unified_boot; |
| } |
| if (!boot_into_recovery) { |
| index = partition_get_index("boot"); |
| ptn = partition_get_offset(index); |
| if(ptn == 0) { |
| dprintf(CRITICAL, "ERROR: No boot partition found\n"); |
| return -1; |
| } |
| } |
| else { |
| index = partition_get_index("recovery"); |
| ptn = partition_get_offset(index); |
| if(ptn == 0) { |
| dprintf(CRITICAL, "ERROR: No recovery partition found\n"); |
| return -1; |
| } |
| } |
| |
| if (mmc_read(ptn + offset, (unsigned int *) buf, page_size)) { |
| dprintf(CRITICAL, "ERROR: Cannot read boot image header\n"); |
| return -1; |
| } |
| |
| if (memcmp(hdr->magic, BOOT_MAGIC, BOOT_MAGIC_SIZE)) { |
| dprintf(CRITICAL, "ERROR: Invalid boot image header\n"); |
| return -1; |
| } |
| |
| if (hdr->page_size && (hdr->page_size != page_size)) { |
| page_size = hdr->page_size; |
| page_mask = page_size - 1; |
| } |
| |
| /* Read the next page to get kernel Image header |
| * which lives in the second page for arm64 targets. |
| */ |
| |
| if (mmc_read(ptn + page_size, (unsigned int *) kbuf, page_size)) { |
| dprintf(CRITICAL, "ERROR: Cannot read boot image header\n"); |
| return -1; |
| } |
| |
| /* |
| * Update the kernel/ramdisk/tags address if the boot image header |
| * has default values, these default values come from mkbootimg when |
| * the boot image is flashed using fastboot flash:raw |
| */ |
| update_ker_tags_rdisk_addr(hdr, IS_ARM64(kptr)); |
| |
| /* Get virtual addresses since the hdr saves physical addresses. */ |
| hdr->kernel_addr = VA((addr_t)(hdr->kernel_addr)); |
| hdr->ramdisk_addr = VA((addr_t)(hdr->ramdisk_addr)); |
| hdr->tags_addr = VA((addr_t)(hdr->tags_addr)); |
| |
| kernel_actual = ROUND_TO_PAGE(hdr->kernel_size, page_mask); |
| ramdisk_actual = ROUND_TO_PAGE(hdr->ramdisk_size, page_mask); |
| |
| /* Check if the addresses in the header are valid. */ |
| if (check_aboot_addr_range_overlap(hdr->kernel_addr, kernel_actual) || |
| check_aboot_addr_range_overlap(hdr->ramdisk_addr, ramdisk_actual)) |
| { |
| dprintf(CRITICAL, "kernel/ramdisk addresses overlap with aboot addresses.\n"); |
| return -1; |
| } |
| |
| #ifndef DEVICE_TREE |
| if (check_aboot_addr_range_overlap(hdr->tags_addr, MAX_TAGS_SIZE)) |
| { |
| dprintf(CRITICAL, "Tags addresses overlap with aboot addresses.\n"); |
| return -1; |
| } |
| #endif |
| |
| /* Authenticate Kernel */ |
| dprintf(INFO, "use_signed_kernel=%d, is_unlocked=%d, is_tampered=%d.\n", |
| (int) target_use_signed_kernel(), |
| device.is_unlocked, |
| device.is_tampered); |
| |
| if(target_use_signed_kernel() && (!device.is_unlocked)) |
| { |
| offset = 0; |
| |
| image_addr = (unsigned char *)target_get_scratch_address(); |
| |
| #if DEVICE_TREE |
| dt_actual = ROUND_TO_PAGE(hdr->dt_size, page_mask); |
| imagesize_actual = (page_size + kernel_actual + ramdisk_actual + dt_actual); |
| |
| if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_actual)) |
| { |
| dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n"); |
| return -1; |
| } |
| #else |
| imagesize_actual = (page_size + kernel_actual + ramdisk_actual); |
| |
| #endif |
| |
| dprintf(INFO, "Loading boot image (%d): start\n", imagesize_actual); |
| bs_set_timestamp(BS_KERNEL_LOAD_START); |
| |
| if (check_aboot_addr_range_overlap(image_addr, imagesize_actual)) |
| { |
| dprintf(CRITICAL, "Boot image buffer address overlaps with aboot addresses.\n"); |
| return -1; |
| } |
| |
| /* Read image without signature */ |
| if (mmc_read(ptn + offset, (void *)image_addr, imagesize_actual)) |
| { |
| dprintf(CRITICAL, "ERROR: Cannot read boot image\n"); |
| return -1; |
| } |
| |
| dprintf(INFO, "Loading boot image (%d): done\n", imagesize_actual); |
| bs_set_timestamp(BS_KERNEL_LOAD_DONE); |
| |
| offset = imagesize_actual; |
| |
| if (check_aboot_addr_range_overlap(image_addr + offset, page_size)) |
| { |
| dprintf(CRITICAL, "Signature read buffer address overlaps with aboot addresses.\n"); |
| return -1; |
| } |
| |
| /* Read signature */ |
| if(mmc_read(ptn + offset, (void *)(image_addr + offset), page_size)) |
| { |
| dprintf(CRITICAL, "ERROR: Cannot read boot image signature\n"); |
| return -1; |
| } |
| |
| verify_signed_bootimg(image_addr, imagesize_actual); |
| |
| /* Move kernel, ramdisk and device tree to correct address */ |
| memmove((void*) hdr->kernel_addr, (char *)(image_addr + page_size), hdr->kernel_size); |
| memmove((void*) hdr->ramdisk_addr, (char *)(image_addr + page_size + kernel_actual), hdr->ramdisk_size); |
| |
| #if DEVICE_TREE |
| if(hdr->dt_size) { |
| dt_table_offset = ((uint32_t)image_addr + page_size + kernel_actual + ramdisk_actual + second_actual); |
| table = (struct dt_table*) dt_table_offset; |
| |
| if (dev_tree_validate(table, hdr->page_size, &dt_hdr_size) != 0) { |
| dprintf(CRITICAL, "ERROR: Cannot validate Device Tree Table \n"); |
| return -1; |
| } |
| |
| /* Find index of device tree within device tree table */ |
| if(dev_tree_get_entry_info(table, &dt_entry) != 0){ |
| dprintf(CRITICAL, "ERROR: Device Tree Blob cannot be found\n"); |
| return -1; |
| } |
| |
| /* Validate and Read device device tree in the "tags_add */ |
| if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_entry.size)) |
| { |
| dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n"); |
| return -1; |
| } |
| |
| memmove((void *)hdr->tags_addr, (char *)dt_table_offset + dt_entry.offset, dt_entry.size); |
| } else { |
| /* |
| * If appended dev tree is found, update the atags with |
| * memory address to the DTB appended location on RAM. |
| * Else update with the atags address in the kernel header |
| */ |
| void *dtb; |
| dtb = dev_tree_appended((void*) hdr->kernel_addr, |
| hdr->kernel_size, |
| (void *)hdr->tags_addr); |
| if (!dtb) { |
| dprintf(CRITICAL, "ERROR: Appended Device Tree Blob not found\n"); |
| return -1; |
| } |
| } |
| #endif |
| } |
| else |
| { |
| second_actual = ROUND_TO_PAGE(hdr->second_size, page_mask); |
| |
| dprintf(INFO, "Loading boot image (%d): start\n", |
| kernel_actual + ramdisk_actual); |
| bs_set_timestamp(BS_KERNEL_LOAD_START); |
| |
| offset = page_size; |
| |
| /* Load kernel */ |
| if (mmc_read(ptn + offset, (void *)hdr->kernel_addr, kernel_actual)) { |
| dprintf(CRITICAL, "ERROR: Cannot read kernel image\n"); |
| return -1; |
| } |
| offset += kernel_actual; |
| |
| /* Load ramdisk */ |
| if(ramdisk_actual != 0) |
| { |
| if (mmc_read(ptn + offset, (void *)hdr->ramdisk_addr, ramdisk_actual)) { |
| dprintf(CRITICAL, "ERROR: Cannot read ramdisk image\n"); |
| return -1; |
| } |
| } |
| offset += ramdisk_actual; |
| |
| dprintf(INFO, "Loading boot image (%d): done\n", |
| kernel_actual + ramdisk_actual); |
| bs_set_timestamp(BS_KERNEL_LOAD_DONE); |
| |
| if(hdr->second_size != 0) { |
| offset += second_actual; |
| /* Second image loading not implemented. */ |
| ASSERT(0); |
| } |
| |
| #if DEVICE_TREE |
| if(hdr->dt_size != 0) { |
| /* Read the first page of device tree table into buffer */ |
| if(mmc_read(ptn + offset,(unsigned int *) dt_buf, page_size)) { |
| dprintf(CRITICAL, "ERROR: Cannot read the Device Tree Table\n"); |
| return -1; |
| } |
| table = (struct dt_table*) dt_buf; |
| |
| if (dev_tree_validate(table, hdr->page_size, &dt_hdr_size) != 0) { |
| dprintf(CRITICAL, "ERROR: Cannot validate Device Tree Table \n"); |
| return -1; |
| } |
| |
| table = (struct dt_table*) memalign(CACHE_LINE, dt_hdr_size); |
| if (!table) |
| return -1; |
| |
| /* Read the entire device tree table into buffer */ |
| if(mmc_read(ptn + offset,(unsigned int *) table, dt_hdr_size)) { |
| dprintf(CRITICAL, "ERROR: Cannot read the Device Tree Table\n"); |
| return -1; |
| } |
| |
| /* Find index of device tree within device tree table */ |
| if(dev_tree_get_entry_info(table, &dt_entry) != 0){ |
| dprintf(CRITICAL, "ERROR: Getting device tree address failed\n"); |
| return -1; |
| } |
| |
| /* Validate and Read device device tree in the "tags_add */ |
| if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_entry.size)) |
| { |
| dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n"); |
| return -1; |
| } |
| |
| if(mmc_read(ptn + offset + dt_entry.offset, |
| (void *)hdr->tags_addr, dt_entry.size)) { |
| dprintf(CRITICAL, "ERROR: Cannot read device tree\n"); |
| return -1; |
| } |
| #ifdef TZ_SAVE_KERNEL_HASH |
| aboot_save_boot_hash_mmc(hdr->kernel_addr, kernel_actual, |
| hdr->ramdisk_addr, ramdisk_actual, |
| ptn, offset, hdr->dt_size); |
| #endif /* TZ_SAVE_KERNEL_HASH */ |
| |
| } else { |
| /* |
| * If appended dev tree is found, update the atags with |
| * memory address to the DTB appended location on RAM. |
| * Else update with the atags address in the kernel header |
| */ |
| void *dtb; |
| dtb = dev_tree_appended((void*) hdr->kernel_addr, |
| kernel_actual, |
| (void *)hdr->tags_addr); |
| if (!dtb) { |
| dprintf(CRITICAL, "ERROR: Appended Device Tree Blob not found\n"); |
| return -1; |
| } |
| } |
| #endif |
| } |
| |
| if (boot_into_recovery && !device.is_unlocked && !device.is_tampered) |
| target_load_ssd_keystore(); |
| |
| unified_boot: |
| |
| boot_linux((void *)hdr->kernel_addr, (void *)hdr->tags_addr, |
| (const char *)hdr->cmdline, board_machtype(), |
| (void *)hdr->ramdisk_addr, hdr->ramdisk_size); |
| |
| return 0; |
| } |
| |
| int boot_linux_from_flash(void) |
| { |
| struct boot_img_hdr *hdr = (void*) buf; |
| struct ptentry *ptn; |
| struct ptable *ptable; |
| unsigned offset = 0; |
| |
| unsigned char *image_addr = 0; |
| unsigned kernel_actual; |
| unsigned ramdisk_actual; |
| unsigned imagesize_actual; |
| unsigned second_actual; |
| |
| #if DEVICE_TREE |
| struct dt_table *table; |
| struct dt_entry dt_entry; |
| uint32_t dt_actual; |
| uint32_t dt_hdr_size; |
| #endif |
| |
| if (target_is_emmc_boot()) { |
| hdr = (struct boot_img_hdr *)EMMC_BOOT_IMG_HEADER_ADDR; |
| if (memcmp(hdr->magic, BOOT_MAGIC, BOOT_MAGIC_SIZE)) { |
| dprintf(CRITICAL, "ERROR: Invalid boot image header\n"); |
| return -1; |
| } |
| goto continue_boot; |
| } |
| |
| ptable = flash_get_ptable(); |
| if (ptable == NULL) { |
| dprintf(CRITICAL, "ERROR: Partition table not found\n"); |
| return -1; |
| } |
| |
| if(!boot_into_recovery) |
| { |
| ptn = ptable_find(ptable, "boot"); |
| |
| if (ptn == NULL) { |
| dprintf(CRITICAL, "ERROR: No boot partition found\n"); |
| return -1; |
| } |
| } |
| else |
| { |
| ptn = ptable_find(ptable, "recovery"); |
| if (ptn == NULL) { |
| dprintf(CRITICAL, "ERROR: No recovery partition found\n"); |
| return -1; |
| } |
| } |
| |
| if (flash_read(ptn, offset, buf, page_size)) { |
| dprintf(CRITICAL, "ERROR: Cannot read boot image header\n"); |
| return -1; |
| } |
| |
| if (memcmp(hdr->magic, BOOT_MAGIC, BOOT_MAGIC_SIZE)) { |
| dprintf(CRITICAL, "ERROR: Invalid boot image header\n"); |
| return -1; |
| } |
| |
| if (hdr->page_size != page_size) { |
| dprintf(CRITICAL, "ERROR: Invalid boot image pagesize. Device pagesize: %d, Image pagesize: %d\n",page_size,hdr->page_size); |
| return -1; |
| } |
| |
| /* |
| * Update the kernel/ramdisk/tags address if the boot image header |
| * has default values, these default values come from mkbootimg when |
| * the boot image is flashed using fastboot flash:raw |
| */ |
| update_ker_tags_rdisk_addr(hdr, false); |
| |
| /* Get virtual addresses since the hdr saves physical addresses. */ |
| hdr->kernel_addr = VA((addr_t)(hdr->kernel_addr)); |
| hdr->ramdisk_addr = VA((addr_t)(hdr->ramdisk_addr)); |
| hdr->tags_addr = VA((addr_t)(hdr->tags_addr)); |
| |
| kernel_actual = ROUND_TO_PAGE(hdr->kernel_size, page_mask); |
| ramdisk_actual = ROUND_TO_PAGE(hdr->ramdisk_size, page_mask); |
| |
| /* Check if the addresses in the header are valid. */ |
| if (check_aboot_addr_range_overlap(hdr->kernel_addr, kernel_actual) || |
| check_aboot_addr_range_overlap(hdr->ramdisk_addr, ramdisk_actual)) |
| { |
| dprintf(CRITICAL, "kernel/ramdisk addresses overlap with aboot addresses.\n"); |
| return -1; |
| } |
| |
| #ifndef DEVICE_TREE |
| if (check_aboot_addr_range_overlap(hdr->tags_addr, MAX_TAGS_SIZE)) |
| { |
| dprintf(CRITICAL, "Tags addresses overlap with aboot addresses.\n"); |
| return -1; |
| } |
| #endif |
| |
| /* Authenticate Kernel */ |
| if(target_use_signed_kernel() && (!device.is_unlocked)) |
| { |
| image_addr = (unsigned char *)target_get_scratch_address(); |
| offset = 0; |
| |
| #if DEVICE_TREE |
| dt_actual = ROUND_TO_PAGE(hdr->dt_size, page_mask); |
| imagesize_actual = (page_size + kernel_actual + ramdisk_actual + dt_actual); |
| |
| if (check_aboot_addr_range_overlap(hdr->tags_addr, hdr->dt_size)) |
| { |
| dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n"); |
| return -1; |
| } |
| #else |
| imagesize_actual = (page_size + kernel_actual + ramdisk_actual); |
| #endif |
| |
| dprintf(INFO, "Loading boot image (%d): start\n", imagesize_actual); |
| bs_set_timestamp(BS_KERNEL_LOAD_START); |
| |
| /* Read image without signature */ |
| if (flash_read(ptn, offset, (void *)image_addr, imagesize_actual)) |
| { |
| dprintf(CRITICAL, "ERROR: Cannot read boot image\n"); |
| return -1; |
| } |
| |
| dprintf(INFO, "Loading boot image (%d): done\n", imagesize_actual); |
| bs_set_timestamp(BS_KERNEL_LOAD_DONE); |
| |
| offset = imagesize_actual; |
| /* Read signature */ |
| if (flash_read(ptn, offset, (void *)(image_addr + offset), page_size)) |
| { |
| dprintf(CRITICAL, "ERROR: Cannot read boot image signature\n"); |
| return -1; |
| } |
| |
| verify_signed_bootimg(image_addr, imagesize_actual); |
| |
| /* Move kernel and ramdisk to correct address */ |
| memmove((void*) hdr->kernel_addr, (char *)(image_addr + page_size), hdr->kernel_size); |
| memmove((void*) hdr->ramdisk_addr, (char *)(image_addr + page_size + kernel_actual), hdr->ramdisk_size); |
| #if DEVICE_TREE |
| /* Validate and Read device device tree in the "tags_add */ |
| if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_entry.size)) |
| { |
| dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n"); |
| return -1; |
| } |
| |
| memmove((void*) hdr->tags_addr, (char *)(image_addr + page_size + kernel_actual + ramdisk_actual), hdr->dt_size); |
| #endif |
| |
| /* Make sure everything from scratch address is read before next step!*/ |
| if(device.is_tampered) |
| { |
| write_device_info_flash(&device); |
| } |
| #if USE_PCOM_SECBOOT |
| set_tamper_flag(device.is_tampered); |
| #endif |
| } |
| else |
| { |
| offset = page_size; |
| |
| kernel_actual = ROUND_TO_PAGE(hdr->kernel_size, page_mask); |
| ramdisk_actual = ROUND_TO_PAGE(hdr->ramdisk_size, page_mask); |
| second_actual = ROUND_TO_PAGE(hdr->second_size, page_mask); |
| |
| dprintf(INFO, "Loading boot image (%d): start\n", |
| kernel_actual + ramdisk_actual); |
| bs_set_timestamp(BS_KERNEL_LOAD_START); |
| |
| if (flash_read(ptn, offset, (void *)hdr->kernel_addr, kernel_actual)) { |
| dprintf(CRITICAL, "ERROR: Cannot read kernel image\n"); |
| return -1; |
| } |
| offset += kernel_actual; |
| |
| if (flash_read(ptn, offset, (void *)hdr->ramdisk_addr, ramdisk_actual)) { |
| dprintf(CRITICAL, "ERROR: Cannot read ramdisk image\n"); |
| return -1; |
| } |
| offset += ramdisk_actual; |
| |
| dprintf(INFO, "Loading boot image (%d): done\n", |
| kernel_actual + ramdisk_actual); |
| bs_set_timestamp(BS_KERNEL_LOAD_DONE); |
| |
| if(hdr->second_size != 0) { |
| offset += second_actual; |
| /* Second image loading not implemented. */ |
| ASSERT(0); |
| } |
| |
| #if DEVICE_TREE |
| if(hdr->dt_size != 0) { |
| |
| /* Read the device tree table into buffer */ |
| if(flash_read(ptn, offset, (void *) dt_buf, page_size)) { |
| dprintf(CRITICAL, "ERROR: Cannot read the Device Tree Table\n"); |
| return -1; |
| } |
| |
| table = (struct dt_table*) dt_buf; |
| |
| if (dev_tree_validate(table, hdr->page_size, &dt_hdr_size) != 0) { |
| dprintf(CRITICAL, "ERROR: Cannot validate Device Tree Table \n"); |
| return -1; |
| } |
| |
| table = (struct dt_table*) memalign(CACHE_LINE, dt_hdr_size); |
| if (!table) |
| return -1; |
| |
| /* Read the entire device tree table into buffer */ |
| if(flash_read(ptn, offset, (void *)table, dt_hdr_size)) { |
| dprintf(CRITICAL, "ERROR: Cannot read the Device Tree Table\n"); |
| return -1; |
| } |
| |
| |
| /* Find index of device tree within device tree table */ |
| if(dev_tree_get_entry_info(table, &dt_entry) != 0){ |
| dprintf(CRITICAL, "ERROR: Getting device tree address failed\n"); |
| return -1; |
| } |
| |
| /* Validate and Read device device tree in the "tags_add */ |
| if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_entry.size)) |
| { |
| dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n"); |
| return -1; |
| } |
| |
| /* Read device device tree in the "tags_add */ |
| if(flash_read(ptn, offset + dt_entry.offset, |
| (void *)hdr->tags_addr, dt_entry.size)) { |
| dprintf(CRITICAL, "ERROR: Cannot read device tree\n"); |
| return -1; |
| } |
| } |
| #endif |
| |
| } |
| continue_boot: |
| |
| /* TODO: create/pass atags to kernel */ |
| |
| boot_linux((void *)hdr->kernel_addr, (void *)hdr->tags_addr, |
| (const char *)hdr->cmdline, board_machtype(), |
| (void *)hdr->ramdisk_addr, hdr->ramdisk_size); |
| |
| return 0; |
| } |
| |
| BUF_DMA_ALIGN(info_buf, BOOT_IMG_MAX_PAGE_SIZE); |
| void write_device_info_mmc(device_info *dev) |
| { |
| struct device_info *info = (void*) info_buf; |
| unsigned long long ptn = 0; |
| unsigned long long size; |
| int index = INVALID_PTN; |
| uint32_t blocksize; |
| uint8_t lun = 0; |
| |
| index = partition_get_index("aboot"); |
| ptn = partition_get_offset(index); |
| if(ptn == 0) |
| { |
| return; |
| } |
| |
| lun = partition_get_lun(index); |
| mmc_set_lun(lun); |
| |
| size = partition_get_size(index); |
| |
| memcpy(info, dev, sizeof(device_info)); |
| |
| blocksize = mmc_get_device_blocksize(); |
| |
| if(mmc_write((ptn + size - blocksize), blocksize, (void *)info_buf)) |
| { |
| dprintf(CRITICAL, "ERROR: Cannot write device info\n"); |
| return; |
| } |
| } |
| |
| void read_device_info_mmc(device_info *dev) |
| { |
| struct device_info *info = (void*) info_buf; |
| unsigned long long ptn = 0; |
| unsigned long long size; |
| int index = INVALID_PTN; |
| uint32_t blocksize; |
| |
| index = partition_get_index("aboot"); |
| ptn = partition_get_offset(index); |
| if(ptn == 0) |
| { |
| return; |
| } |
| |
| size = partition_get_size(index); |
| |
| blocksize = mmc_get_device_blocksize(); |
| |
| if(mmc_read((ptn + size - blocksize), (void *)info_buf, blocksize)) |
| { |
| dprintf(CRITICAL, "ERROR: Cannot read device info\n"); |
| return; |
| } |
| |
| if (memcmp(info->magic, DEVICE_MAGIC, DEVICE_MAGIC_SIZE)) |
| { |
| memcpy(info->magic, DEVICE_MAGIC, DEVICE_MAGIC_SIZE); |
| info->is_unlocked = 0; |
| info->is_tampered = 0; |
| info->charger_screen_enabled = 0; |
| |
| write_device_info_mmc(info); |
| } |
| memcpy(dev, info, sizeof(device_info)); |
| } |
| |
| void write_device_info_flash(device_info *dev) |
| { |
| struct device_info *info = (void *) info_buf; |
| struct ptentry *ptn; |
| struct ptable *ptable; |
| |
| ptable = flash_get_ptable(); |
| if (ptable == NULL) |
| { |
| dprintf(CRITICAL, "ERROR: Partition table not found\n"); |
| return; |
| } |
| |
| ptn = ptable_find(ptable, "devinfo"); |
| if (ptn == NULL) |
| { |
| dprintf(CRITICAL, "ERROR: No boot partition found\n"); |
| return; |
| } |
| |
| memcpy(info, dev, sizeof(device_info)); |
| |
| if (flash_write(ptn, 0, (void *)info_buf, page_size)) |
| { |
| dprintf(CRITICAL, "ERROR: Cannot write device info\n"); |
| return; |
| } |
| } |
| |
| void read_device_info_flash(device_info *dev) |
| { |
| struct device_info *info = (void*) info_buf; |
| struct ptentry *ptn; |
| struct ptable *ptable; |
| |
| ptable = flash_get_ptable(); |
| if (ptable == NULL) |
| { |
| dprintf(CRITICAL, "ERROR: Partition table not found\n"); |
| return; |
| } |
| |
| ptn = ptable_find(ptable, "devinfo"); |
| if (ptn == NULL) |
| { |
| dprintf(CRITICAL, "ERROR: No boot partition found\n"); |
| return; |
| } |
| |
| if (flash_read(ptn, 0, (void *)info_buf, page_size)) |
| { |
| dprintf(CRITICAL, "ERROR: Cannot write device info\n"); |
| return; |
| } |
| |
| if (memcmp(info->magic, DEVICE_MAGIC, DEVICE_MAGIC_SIZE)) |
| { |
| memcpy(info->magic, DEVICE_MAGIC, DEVICE_MAGIC_SIZE); |
| info->is_unlocked = 0; |
| info->is_tampered = 0; |
| write_device_info_flash(info); |
| } |
| memcpy(dev, info, sizeof(device_info)); |
| } |
| |
| void write_device_info(device_info *dev) |
| { |
| if(target_is_emmc_boot()) |
| { |
| write_device_info_mmc(dev); |
| } |
| else |
| { |
| write_device_info_flash(dev); |
| } |
| } |
| |
| void read_device_info(device_info *dev) |
| { |
| if(target_is_emmc_boot()) |
| { |
| read_device_info_mmc(dev); |
| } |
| else |
| { |
| read_device_info_flash(dev); |
| } |
| } |
| |
| void reset_device_info() |
| { |
| dprintf(ALWAYS, "reset_device_info called."); |
| device.is_tampered = 0; |
| write_device_info(&device); |
| } |
| |
| void set_device_root() |
| { |
| dprintf(ALWAYS, "set_device_root called."); |
| device.is_tampered = 1; |
| write_device_info(&device); |
| } |
| |
| #if DEVICE_TREE |
| int copy_dtb(uint8_t *boot_image_start) |
| { |
| uint32 dt_image_offset = 0; |
| uint32_t n; |
| struct dt_table *table; |
| struct dt_entry dt_entry; |
| uint32_t dt_hdr_size; |
| |
| struct boot_img_hdr *hdr = (struct boot_img_hdr *) (boot_image_start); |
| |
| if(hdr->dt_size != 0) { |
| |
| /* add kernel offset */ |
| dt_image_offset += page_size; |
| n = ROUND_TO_PAGE(hdr->kernel_size, page_mask); |
| dt_image_offset += n; |
| |
| /* add ramdisk offset */ |
| n = ROUND_TO_PAGE(hdr->ramdisk_size, page_mask); |
| dt_image_offset += n; |
| |
| /* add second offset */ |
| if(hdr->second_size != 0) { |
| n = ROUND_TO_PAGE(hdr->second_size, page_mask); |
| dt_image_offset += n; |
| } |
| |
| /* offset now point to start of dt.img */ |
| table = (struct dt_table*)(boot_image_start + dt_image_offset); |
| |
| if (dev_tree_validate(table, hdr->page_size, &dt_hdr_size) != 0) { |
| dprintf(CRITICAL, "ERROR: Cannot validate Device Tree Table \n"); |
| return -1; |
| } |
| /* Find index of device tree within device tree table */ |
| if(dev_tree_get_entry_info(table, &dt_entry) != 0){ |
| dprintf(CRITICAL, "ERROR: Getting device tree address failed\n"); |
| return -1; |
| } |
| |
| /* Validate and Read device device tree in the "tags_add */ |
| if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_entry.size)) |
| { |
| dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n"); |
| return -1; |
| } |
| |
| /* Read device device tree in the "tags_add */ |
| memmove((void*) hdr->tags_addr, |
| boot_image_start + dt_image_offset + dt_entry.offset, |
| dt_entry.size); |
| } else |
| return -1; |
| |
| /* Everything looks fine. Return success. */ |
| return 0; |
| } |
| #endif |
| |
| void cmd_boot(const char *arg, void *data, unsigned sz) |
| { |
| unsigned kernel_actual; |
| unsigned ramdisk_actual; |
| struct boot_img_hdr *hdr; |
| struct kernel64_hdr *kptr; |
| char *ptr = ((char*) data); |
| int ret = 0; |
| uint8_t dtb_copied = 0; |
| |
| if (sz < sizeof(hdr)) { |
| fastboot_fail("invalid bootimage header"); |
| return; |
| } |
| |
| hdr = (struct boot_img_hdr *)data; |
| |
| /* ensure commandline is terminated */ |
| hdr->cmdline[BOOT_ARGS_SIZE-1] = 0; |
| |
| if(target_is_emmc_boot() && hdr->page_size) { |
| page_size = hdr->page_size; |
| page_mask = page_size - 1; |
| } |
| |
| kernel_actual = ROUND_TO_PAGE(hdr->kernel_size, page_mask); |
| ramdisk_actual = ROUND_TO_PAGE(hdr->ramdisk_size, page_mask); |
| |
| /* |
| * Update the kernel/ramdisk/tags address if the boot image header |
| * has default values, these default values come from mkbootimg when |
| * the boot image is flashed using fastboot flash:raw |
| */ |
| kptr = (struct kernel64_hdr*)((char*) data + page_size); |
| update_ker_tags_rdisk_addr(hdr, IS_ARM64(kptr)); |
| |
| /* Get virtual addresses since the hdr saves physical addresses. */ |
| hdr->kernel_addr = VA(hdr->kernel_addr); |
| hdr->ramdisk_addr = VA(hdr->ramdisk_addr); |
| hdr->tags_addr = VA(hdr->tags_addr); |
| |
| /* Check if the addresses in the header are valid. */ |
| if (check_aboot_addr_range_overlap(hdr->kernel_addr, kernel_actual) || |
| check_aboot_addr_range_overlap(hdr->ramdisk_addr, ramdisk_actual)) |
| { |
| dprintf(CRITICAL, "kernel/ramdisk addresses overlap with aboot addresses.\n"); |
| return; |
| } |
| |
| /* sz should have atleast raw boot image */ |
| if (page_size + kernel_actual + ramdisk_actual > sz) { |
| fastboot_fail("incomplete bootimage"); |
| return; |
| } |
| |
| #if DEVICE_TREE |
| /* find correct dtb and copy it to right location */ |
| ret = copy_dtb(data); |
| |
| dtb_copied = !ret ? 1 : 0; |
| #else |
| if (check_aboot_addr_range_overlap(hdr->tags_addr, MAX_TAGS_SIZE)) |
| { |
| dprintf(CRITICAL, "Tags addresses overlap with aboot addresses.\n"); |
| return; |
| } |
| #endif |
| |
| /* Load ramdisk & kernel */ |
| memmove((void*) hdr->ramdisk_addr, ptr + page_size + kernel_actual, hdr->ramdisk_size); |
| memmove((void*) hdr->kernel_addr, ptr + page_size, hdr->kernel_size); |
| |
| #if DEVICE_TREE |
| /* |
| * If dtb is not found look for appended DTB in the kernel. |
| * If appended dev tree is found, update the atags with |
| * memory address to the DTB appended location on RAM. |
| * Else update with the atags address in the kernel header |
| */ |
| if (!dtb_copied) { |
| void *dtb; |
| dtb = dev_tree_appended((void *)hdr->kernel_addr, hdr->kernel_size, |
| (void *)hdr->tags_addr); |
| if (!dtb) { |
| fastboot_fail("dtb not found"); |
| return; |
| } |
| } |
| #endif |
| |
| #ifndef DEVICE_TREE |
| if (check_aboot_addr_range_overlap(hdr->tags_addr, MAX_TAGS_SIZE)) |
| { |
| dprintf(CRITICAL, "Tags addresses overlap with aboot addresses.\n"); |
| return; |
| } |
| #endif |
| |
| fastboot_okay(""); |
| fastboot_stop(); |
| |
| boot_linux((void*) hdr->kernel_addr, (void*) hdr->tags_addr, |
| (const char*) hdr->cmdline, board_machtype(), |
| (void*) hdr->ramdisk_addr, hdr->ramdisk_size); |
| } |
| |
| void cmd_erase(const char *arg, void *data, unsigned sz) |
| { |
| struct ptentry *ptn; |
| struct ptable *ptable; |
| |
| ptable = flash_get_ptable(); |
| if (ptable == NULL) { |
| fastboot_fail("partition table doesn't exist"); |
| return; |
| } |
| |
| ptn = ptable_find(ptable, arg); |
| if (ptn == NULL) { |
| fastboot_fail("unknown partition name"); |
| return; |
| } |
| |
| if (flash_erase(ptn)) { |
| fastboot_fail("failed to erase partition"); |
| return; |
| } |
| fastboot_okay(""); |
| } |
| |
| |
| void cmd_erase_mmc(const char *arg, void *data, unsigned sz) |
| { |
| BUF_DMA_ALIGN(out, DEFAULT_ERASE_SIZE); |
| unsigned long long ptn = 0; |
| unsigned long long size = 0; |
| int index = INVALID_PTN; |
| uint8_t lun = 0; |
| |
| index = partition_get_index(arg); |
| ptn = partition_get_offset(index); |
| size = partition_get_size(index); |
| |
| if(ptn == 0) { |
| fastboot_fail("Partition table doesn't exist\n"); |
| return; |
| } |
| |
| lun = partition_get_lun(index); |
| mmc_set_lun(lun); |
| |
| #if MMC_SDHCI_SUPPORT |
| if (mmc_erase_card(ptn, size)) { |
| fastboot_fail("failed to erase partition\n"); |
| return; |
| } |
| #else |
| size = partition_get_size(index); |
| if (size > DEFAULT_ERASE_SIZE) |
| size = DEFAULT_ERASE_SIZE; |
| |
| /* Simple inefficient version of erase. Just writing |
| 0 in first several blocks */ |
| if (mmc_write(ptn , size, (unsigned int *)out)) { |
| fastboot_fail("failed to erase partition"); |
| return; |
| } |
| #endif |
| fastboot_okay(""); |
| } |
| |
| |
| void cmd_flash_mmc_img(const char *arg, void *data, unsigned sz) |
| { |
| unsigned long long ptn = 0; |
| unsigned long long size = 0; |
| int index = INVALID_PTN; |
| char *token = NULL; |
| char *pname = NULL; |
| uint8_t lun = 0; |
| bool lun_set = false; |
| |
| token = strtok(arg, ":"); |
| pname = token; |
| token = strtok(NULL, ":"); |
| if(token) |
| { |
| lun = atoi(token); |
| mmc_set_lun(lun); |
| lun_set = true; |
| } |
| |
| if (!strcmp(pname, "partition")) |
| { |
| dprintf(INFO, "Attempt to write partition image.\n"); |
| if (write_partition(sz, (unsigned char *) data)) { |
| fastboot_fail("failed to write partition"); |
| return; |
| } |
| } |
| else |
| { |
| index = partition_get_index(pname); |
| ptn = partition_get_offset(index); |
| if(ptn == 0) { |
| fastboot_fail("partition table doesn't exist"); |
| return; |
| } |
| |
| if (!strcmp(pname, "boot") || !strcmp(pname, "recovery")) { |
| if (memcmp((void *)data, BOOT_MAGIC, BOOT_MAGIC_SIZE)) { |
| fastboot_fail("image is not a boot image"); |
| return; |
| } |
| } |
| |
| if(!lun_set) |
| { |
| lun = partition_get_lun(index); |
| mmc_set_lun(lun); |
| } |
| |
| size = partition_get_size(index); |
| if (ROUND_TO_PAGE(sz,511) > size) { |
| fastboot_fail("size too large"); |
| return; |
| } |
| else if (mmc_write(ptn , sz, (unsigned int *)data)) { |
| fastboot_fail("flash write failure"); |
| return; |
| } |
| } |
| fastboot_okay(""); |
| return; |
| } |
| |
| void cmd_flash_mmc_sparse_img(const char *arg, void *data, unsigned sz) |
| { |
| unsigned int chunk; |
| unsigned int chunk_data_sz; |
| uint32_t *fill_buf = NULL; |
| uint32_t fill_val; |
| uint32_t chunk_blk_cnt = 0; |
| sparse_header_t *sparse_header; |
| chunk_header_t *chunk_header; |
| uint32_t total_blocks = 0; |
| unsigned long long ptn = 0; |
| unsigned long long size = 0; |
| int index = INVALID_PTN; |
| int i; |
| uint8_t lun = 0; |
| |
| index = partition_get_index(arg); |
| ptn = partition_get_offset(index); |
| if(ptn == 0) { |
| fastboot_fail("partition table doesn't exist"); |
| return; |
| } |
| |
| size = partition_get_size(index); |
| if (ROUND_TO_PAGE(sz,511) > size) { |
| fastboot_fail("size too large"); |
| return; |
| } |
| |
| lun = partition_get_lun(index); |
| mmc_set_lun(lun); |
| |
| /* Read and skip over sparse image header */ |
| sparse_header = (sparse_header_t *) data; |
| if ((sparse_header->total_blks * sparse_header->blk_sz) > size) { |
| fastboot_fail("size too large"); |
| return; |
| } |
| |
| data += sparse_header->file_hdr_sz; |
| if(sparse_header->file_hdr_sz > sizeof(sparse_header_t)) |
| { |
| /* Skip the remaining bytes in a header that is longer than |
| * we expected. |
| */ |
| data += (sparse_header->file_hdr_sz - sizeof(sparse_header_t)); |
| } |
| |
| dprintf (SPEW, "=== Sparse Image Header ===\n"); |
| dprintf (SPEW, "magic: 0x%x\n", sparse_header->magic); |
| dprintf (SPEW, "major_version: 0x%x\n", sparse_header->major_version); |
| dprintf (SPEW, "minor_version: 0x%x\n", sparse_header->minor_version); |
| dprintf (SPEW, "file_hdr_sz: %d\n", sparse_header->file_hdr_sz); |
| dprintf (SPEW, "chunk_hdr_sz: %d\n", sparse_header->chunk_hdr_sz); |
| dprintf (SPEW, "blk_sz: %d\n", sparse_header->blk_sz); |
| dprintf (SPEW, "total_blks: %d\n", sparse_header->total_blks); |
| dprintf (SPEW, "total_chunks: %d\n", sparse_header->total_chunks); |
| |
| /* Start processing chunks */ |
| for (chunk=0; chunk<sparse_header->total_chunks; chunk++) |
| { |
| /* Read and skip over chunk header */ |
| chunk_header = (chunk_header_t *) data; |
| data += sizeof(chunk_header_t); |
| |
| dprintf (SPEW, "=== Chunk Header ===\n"); |
| dprintf (SPEW, "chunk_type: 0x%x\n", chunk_header->chunk_type); |
| dprintf (SPEW, "chunk_data_sz: 0x%x\n", chunk_header->chunk_sz); |
| dprintf (SPEW, "total_size: 0x%x\n", chunk_header->total_sz); |
| |
| if(sparse_header->chunk_hdr_sz > sizeof(chunk_header_t)) |
| { |
| /* Skip the remaining bytes in a header that is longer than |
| * we expected. |
| */ |
| data += (sparse_header->chunk_hdr_sz - sizeof(chunk_header_t)); |
| } |
| |
| chunk_data_sz = sparse_header->blk_sz * chunk_header->chunk_sz; |
| switch (chunk_header->chunk_type) |
| { |
| case CHUNK_TYPE_RAW: |
| if(chunk_header->total_sz != (sparse_header->chunk_hdr_sz + |
| chunk_data_sz)) |
| { |
| fastboot_fail("Bogus chunk size for chunk type Raw"); |
| return; |
| } |
| |
| if(mmc_write(ptn + ((uint64_t)total_blocks*sparse_header->blk_sz), |
| chunk_data_sz, |
| (unsigned int*)data)) |
| { |
| fastboot_fail("flash write failure"); |
| return; |
| } |
| total_blocks += chunk_header->chunk_sz; |
| data += chunk_data_sz; |
| break; |
| |
| case CHUNK_TYPE_FILL: |
| if(chunk_header->total_sz != (sparse_header->chunk_hdr_sz + |
| sizeof(uint32_t))) |
| { |
| fastboot_fail("Bogus chunk size for chunk type FILL"); |
| return; |
| } |
| |
| fill_buf = (uint32_t *)memalign(CACHE_LINE, ROUNDUP(sparse_header->blk_sz, CACHE_LINE)); |
| if (!fill_buf) |
| { |
| fastboot_fail("Malloc failed for: CHUNK_TYPE_FILL"); |
| return; |
| } |
| |
| fill_val = *(uint32_t *)data; |
| data = (char *) data + sizeof(uint32_t); |
| chunk_blk_cnt = chunk_data_sz / sparse_header->blk_sz; |
| |
| for (i = 0; i < (sparse_header->blk_sz / sizeof(fill_val)); i++) |
| { |
| fill_buf[i] = fill_val; |
| } |
| |
| for (i = 0; i < chunk_blk_cnt; i++) |
| { |
| if(mmc_write(ptn + ((uint64_t)total_blocks*sparse_header->blk_sz), |
| sparse_header->blk_sz, |
| fill_buf)) |
| { |
| fastboot_fail("flash write failure"); |
| free(fill_buf); |
| return; |
| } |
| |
| total_blocks++; |
| } |
| |
| free(fill_buf); |
| break; |
| |
| case CHUNK_TYPE_DONT_CARE: |
| total_blocks += chunk_header->chunk_sz; |
| break; |
| |
| case CHUNK_TYPE_CRC: |
| if(chunk_header->total_sz != sparse_header->chunk_hdr_sz) |
| { |
| fastboot_fail("Bogus chunk size for chunk type Dont Care"); |
| return; |
| } |
| total_blocks += chunk_header->chunk_sz; |
| data += chunk_data_sz; |
| break; |
| |
| default: |
| dprintf(CRITICAL, "Unkown chunk type: %x\n",chunk_header->chunk_type); |
| fastboot_fail("Unknown chunk type"); |
| return; |
| } |
| } |
| |
| dprintf(INFO, "Wrote %d blocks, expected to write %d blocks\n", |
| total_blocks, sparse_header->total_blks); |
| |
| if(total_blocks != sparse_header->total_blks) |
| { |
| fastboot_fail("sparse image write failure"); |
| } |
| |
| fastboot_okay(""); |
| return; |
| } |
| |
| void cmd_flash_mmc(const char *arg, void *data, unsigned sz) |
| { |
| sparse_header_t *sparse_header; |
| /* 8 Byte Magic + 2048 Byte xml + Encrypted Data */ |
| unsigned int *magic_number = (unsigned int *) data; |
| |
| #ifdef SSD_ENABLE |
| int ret=0; |
| uint32 major_version=0; |
| uint32 minor_version=0; |
| |
| ret = scm_svc_version(&major_version,&minor_version); |
| if(!ret) |
| { |
| if(major_version >= 2) |
| { |
| if( !strcmp(arg, "ssd") || !strcmp(arg, "tqs") ) |
| { |
| ret = encrypt_scm((uint32 **) &data, &sz); |
| if (ret != 0) { |
| dprintf(CRITICAL, "ERROR: Encryption Failure\n"); |
| return; |
| } |
| |
| /* Protect only for SSD */ |
| if (!strcmp(arg, "ssd")) { |
| ret = scm_protect_keystore((uint32 *) data, sz); |
| if (ret != 0) { |
| dprintf(CRITICAL, "ERROR: scm_protect_keystore Failed\n"); |
| return; |
| } |
| } |
| } |
| else |
| { |
| ret = decrypt_scm_v2((uint32 **) &data, &sz); |
| if(ret != 0) |
| { |
| dprintf(CRITICAL,"ERROR: Decryption Failure\n"); |
| return; |
| } |
| } |
| } |
| else |
| { |
| if (magic_number[0] == DECRYPT_MAGIC_0 && |
| magic_number[1] == DECRYPT_MAGIC_1) |
| { |
| ret = decrypt_scm((uint32 **) &data, &sz); |
| if (ret != 0) { |
| dprintf(CRITICAL, "ERROR: Invalid secure image\n"); |
| return; |
| } |
| } |
| else if (magic_number[0] == ENCRYPT_MAGIC_0 && |
| magic_number[1] == ENCRYPT_MAGIC_1) |
| { |
| ret = encrypt_scm((uint32 **) &data, &sz); |
| if (ret != 0) { |
| dprintf(CRITICAL, "ERROR: Encryption Failure\n"); |
| return; |
| } |
| } |
| } |
| } |
| else |
| { |
| dprintf(CRITICAL,"INVALID SVC Version\n"); |
| return; |
| } |
| #endif /* SSD_ENABLE */ |
| |
| sparse_header = (sparse_header_t *) data; |
| if (sparse_header->magic != SPARSE_HEADER_MAGIC) |
| cmd_flash_mmc_img(arg, data, sz); |
| else |
| cmd_flash_mmc_sparse_img(arg, data, sz); |
| return; |
| } |
| |
| void cmd_flash(const char *arg, void *data, unsigned sz) |
| { |
| struct ptentry *ptn; |
| struct ptable *ptable; |
| unsigned extra = 0; |
| |
| ptable = flash_get_ptable(); |
| if (ptable == NULL) { |
| fastboot_fail("partition table doesn't exist"); |
| return; |
| } |
| |
| ptn = ptable_find(ptable, arg); |
| if (ptn == NULL) { |
| fastboot_fail("unknown partition name"); |
| return; |
| } |
| |
| if (!strcmp(ptn->name, "boot") || !strcmp(ptn->name, "recovery")) { |
| if (memcmp((void *)data, BOOT_MAGIC, BOOT_MAGIC_SIZE)) { |
| fastboot_fail("image is not a boot image"); |
| return; |
| } |
| } |
| |
| if (!strcmp(ptn->name, "system") |
| || !strcmp(ptn->name, "userdata") |
| || !strcmp(ptn->name, "persist") |
| || !strcmp(ptn->name, "recoveryfs") |
| || !strcmp(ptn->name, "modem")) |
| { |
| if (memcmp((void *)data, UBI_MAGIC, UBI_MAGIC_SIZE)) |
| extra = 1; |
| else |
| extra = 0; |
| } |
| else |
| sz = ROUND_TO_PAGE(sz, page_mask); |
| |
| dprintf(INFO, "writing %d bytes to '%s'\n", sz, ptn->name); |
| if (flash_write(ptn, extra, data, sz)) { |
| fastboot_fail("flash write failure"); |
| return; |
| } |
| dprintf(INFO, "partition '%s' updated\n", ptn->name); |
| fastboot_okay(""); |
| } |
| |
| void cmd_continue(const char *arg, void *data, unsigned sz) |
| { |
| fastboot_okay(""); |
| fastboot_stop(); |
| if (target_is_emmc_boot()) |
| { |
| boot_linux_from_mmc(); |
| } |
| else |
| { |
| boot_linux_from_flash(); |
| } |
| } |
| |
| void cmd_reboot(const char *arg, void *data, unsigned sz) |
| { |
| dprintf(INFO, "rebooting the device\n"); |
| fastboot_okay(""); |
| reboot_device(0); |
| } |
| |
| void cmd_reboot_bootloader(const char *arg, void *data, unsigned sz) |
| { |
| dprintf(INFO, "rebooting the device\n"); |
| fastboot_okay(""); |
| reboot_device(FASTBOOT_MODE); |
| } |
| |
| void cmd_oem_enable_charger_screen(const char *arg, void *data, unsigned size) |
| { |
| dprintf(INFO, "Enabling charger screen check\n"); |
| device.charger_screen_enabled = 1; |
| write_device_info(&device); |
| fastboot_okay(""); |
| } |
| |
| void cmd_oem_disable_charger_screen(const char *arg, void *data, unsigned size) |
| { |
| dprintf(INFO, "Disabling charger screen check\n"); |
| device.charger_screen_enabled = 0; |
| write_device_info(&device); |
| fastboot_okay(""); |
| } |
| |
| void cmd_oem_select_display_panel(const char *arg, void *data, unsigned size) |
| { |
| dprintf(INFO, "Selecting display panel %s\n", arg); |
| if (arg) |
| strlcpy(device.display_panel, arg, |
| sizeof(device.display_panel)); |
| write_device_info(&device); |
| fastboot_okay(""); |
| } |
| |
| void cmd_oem_unlock(const char *arg, void *data, unsigned sz) |
| { |
| if(!device.is_unlocked) |
| { |
| device.is_unlocked = 1; |
| write_device_info(&device); |
| } |
| fastboot_okay(""); |
| } |
| |
| void cmd_oem_devinfo(const char *arg, void *data, unsigned sz) |
| { |
| char response[128]; |
| snprintf(response, sizeof(response), "\tDevice tampered: %s", (device.is_tampered ? "true" : "false")); |
| fastboot_info(response); |
| snprintf(response, sizeof(response), "\tDevice unlocked: %s", (device.is_unlocked ? "true" : "false")); |
| fastboot_info(response); |
| snprintf(response, sizeof(response), "\tCharger screen enabled: %s", (device.charger_screen_enabled ? "true" : "false")); |
| fastboot_info(response); |
| snprintf(response, sizeof(response), "\tDisplay panel: %s", (device.display_panel)); |
| fastboot_info(response); |
| fastboot_okay(""); |
| } |
| |
| void cmd_preflash(const char *arg, void *data, unsigned sz) |
| { |
| fastboot_okay(""); |
| } |
| |
| static struct fbimage logo_header = {0}; |
| struct fbimage* splash_screen_flash(); |
| |
| int splash_screen_check_header(struct fbimage *logo) |
| { |
| if (memcmp(logo->header.magic, LOGO_IMG_MAGIC, 8)) |
| return -1; |
| if (logo->header.width == 0 || logo->header.height == 0) |
| return -1; |
| return 0; |
| } |
| |
| struct fbimage* splash_screen_flash() |
| { |
| struct ptentry *ptn; |
| struct ptable *ptable; |
| struct fbcon_config *fb_display = NULL; |
| struct fbimage *logo = &logo_header; |
| |
| |
| ptable = flash_get_ptable(); |
| if (ptable == NULL) { |
| dprintf(CRITICAL, "ERROR: Partition table not found\n"); |
| return NULL; |
| } |
| ptn = ptable_find(ptable, "splash"); |
| if (ptn == NULL) { |
| dprintf(CRITICAL, "ERROR: splash Partition not found\n"); |
| return NULL; |
| } |
| |
| if (flash_read(ptn, 0,(unsigned int *) logo, sizeof(logo->header))) { |
| dprintf(CRITICAL, "ERROR: Cannot read boot image header\n"); |
| return NULL; |
| } |
| |
| if (splash_screen_check_header(logo)) { |
| dprintf(CRITICAL, "ERROR: Boot image header invalid\n"); |
| return NULL; |
| } |
| |
| fb_display = fbcon_display(); |
| if (fb_display) { |
| uint8_t *base = (uint8_t *) fb_display->base; |
| if (logo->header.width != fb_display->width || logo->header.height != fb_display->height) { |
| base += LOGO_IMG_OFFSET; |
| } |
| |
| if (flash_read(ptn + sizeof(logo->header), 0, |
| base, |
| ((((logo->header.width * logo->header.height * fb_display->bpp/8) + 511) >> 9) << 9))) { |
| fbcon_clear(); |
| dprintf(CRITICAL, "ERROR: Cannot read splash image\n"); |
| return NULL; |
| } |
| logo->image = base; |
| } |
| |
| return logo; |
| } |
| |
| struct fbimage* splash_screen_mmc() |
| { |
| int index = INVALID_PTN; |
| unsigned long long ptn = 0; |
| struct fbcon_config *fb_display = NULL; |
| struct fbimage *logo = &logo_header; |
| |
| index = partition_get_index("splash"); |
| if (index == 0) { |
| dprintf(CRITICAL, "ERROR: splash Partition table not found\n"); |
| return NULL; |
| } |
| |
| ptn = partition_get_offset(index); |
| if (ptn == 0) { |
| dprintf(CRITICAL, "ERROR: splash Partition invalid\n"); |
| return NULL; |
| } |
| |
| if (mmc_read(ptn, (unsigned int *) logo, sizeof(logo->header))) { |
| dprintf(CRITICAL, "ERROR: Cannot read splash image header\n"); |
| return NULL; |
| } |
| |
| if (splash_screen_check_header(logo)) { |
| dprintf(CRITICAL, "ERROR: Splash image header invalid\n"); |
| return NULL; |
| } |
| |
| fb_display = fbcon_display(); |
| if (fb_display) { |
| uint8_t *base = (uint8_t *) fb_display->base; |
| if (logo->header.width != fb_display->width || logo->header.height != fb_display->height) |
| base += LOGO_IMG_OFFSET; |
| |
| if (mmc_read(ptn + sizeof(logo->header), |
| base, |
| ((((logo->header.width * logo->header.height * fb_display->bpp/8) + 511) >> 9) << 9))) { |
| fbcon_clear(); |
| dprintf(CRITICAL, "ERROR: Cannot read splash image\n"); |
| return NULL; |
| } |
| |
| logo->image = base; |
| } |
| |
| return logo; |
| } |
| |
| |
| struct fbimage* fetch_image_from_partition() |
| { |
| if (target_is_emmc_boot()) { |
| return splash_screen_mmc(); |
| } else { |
| return splash_screen_flash(); |
| } |
| } |
| |
| /* Get the size from partiton name */ |
| static void get_partition_size(const char *arg, char *response) |
| { |
| uint64_t ptn = 0; |
| uint64_t size; |
| int index = INVALID_PTN; |
| |
| index = partition_get_index(arg); |
| |
| if (index == INVALID_PTN) |
| { |
| dprintf(CRITICAL, "Invalid partition index\n"); |
| return; |
| } |
| |
| ptn = partition_get_offset(index); |
| |
| if(!ptn) |
| { |
| dprintf(CRITICAL, "Invalid partition name %s\n", arg); |
| return; |
| } |
| |
| size = partition_get_size(index); |
| |
| snprintf(response, MAX_RSP_SIZE, "\t 0x%llx", size); |
| return; |
| } |
| |
| /* |
| * Publish the partition type & size info |
| * fastboot getvar will publish the required information. |
| * fastboot getvar partition_size:<partition_name>: partition size in hex |
| * fastboot getvar partition_type:<partition_name>: partition type (ext/fat) |
| */ |
| static void publish_getvar_partition_info(struct getvar_partition_info *info, uint8_t num_parts) |
| { |
| uint8_t i; |
| |
| for (i = 0; i < num_parts; i++) { |
| get_partition_size(info[i].part_name, info[i].size_response); |
| |
| if (strlcat(info[i].getvar_size, info[i].part_name, MAX_GET_VAR_NAME_SIZE) >= MAX_GET_VAR_NAME_SIZE) |
| { |
| dprintf(CRITICAL, "partition size name truncated\n"); |
| return; |
| } |
| if (strlcat(info[i].getvar_type, info[i].part_name, MAX_GET_VAR_NAME_SIZE) >= MAX_GET_VAR_NAME_SIZE) |
| { |
| dprintf(CRITICAL, "partition type name truncated\n"); |
| return; |
| } |
| |
| /* publish partition size & type info */ |
| fastboot_publish((const char *) info[i].getvar_size, (const char *) info[i].size_response); |
| fastboot_publish((const char *) info[i].getvar_type, (const char *) info[i].type_response); |
| } |
| } |
| |
| /* register commands and variables for fastboot */ |
| void aboot_fastboot_register_commands(void) |
| { |
| if (target_is_emmc_boot()) |
| { |
| fastboot_register("flash:", cmd_flash_mmc); |
| fastboot_register("erase:", cmd_erase_mmc); |
| } |
| else |
| { |
| fastboot_register("flash:", cmd_flash); |
| fastboot_register("erase:", cmd_erase); |
| } |
| |
| fastboot_register("boot", cmd_boot); |
| fastboot_register("continue", cmd_continue); |
| fastboot_register("reboot", cmd_reboot); |
| fastboot_register("reboot-bootloader", cmd_reboot_bootloader); |
| fastboot_register("oem unlock", cmd_oem_unlock); |
| fastboot_register("oem device-info", cmd_oem_devinfo); |
| fastboot_register("preflash", cmd_preflash); |
| fastboot_register("oem enable-charger-screen", |
| cmd_oem_enable_charger_screen); |
| fastboot_register("oem disable-charger-screen", |
| cmd_oem_disable_charger_screen); |
| fastboot_register("oem select-display-panel", |
| cmd_oem_select_display_panel); |
| /* publish variables and their values */ |
| fastboot_publish("product", TARGET(BOARD)); |
| fastboot_publish("kernel", "lk"); |
| fastboot_publish("serialno", sn_buf); |
| |
| /* |
| * partition info is supported only for emmc partitions |
| * Calling this for NAND prints some error messages which |
| * is harmless but misleading. Avoid calling this for NAND |
| * devices. |
| */ |
| if (target_is_emmc_boot()) |
| publish_getvar_partition_info(part_info, ARRAY_SIZE(part_info)); |
| |
| /* Max download size supported */ |
| snprintf(max_download_size, MAX_RSP_SIZE, "\t0x%x", |
| target_get_max_flash_size()); |
| fastboot_publish("max-download-size", (const char *) max_download_size); |
| /* Is the charger screen check enabled */ |
| snprintf(charger_screen_enabled, MAX_RSP_SIZE, "%d", |
| device.charger_screen_enabled); |
| fastboot_publish("charger-screen-enabled", |
| (const char *) charger_screen_enabled); |
| snprintf(panel_display_mode, MAX_RSP_SIZE, "%s", |
| device.display_panel); |
| fastboot_publish("display-panel", |
| (const char *) panel_display_mode); |
| } |
| |
| void aboot_init(const struct app_descriptor *app) |
| { |
| unsigned reboot_mode = 0; |
| bool boot_into_fastboot = false; |
| |
| /* Setup page size information for nv storage */ |
| if (target_is_emmc_boot()) |
| { |
| page_size = mmc_page_size(); |
| page_mask = page_size - 1; |
| } |
| else |
| { |
| page_size = flash_page_size(); |
| page_mask = page_size - 1; |
| } |
| |
| ASSERT((MEMBASE + MEMSIZE) > MEMBASE); |
| |
| read_device_info(&device); |
| |
| /* Display splash screen if enabled */ |
| #if DISPLAY_SPLASH_SCREEN |
| dprintf(SPEW, "Display Init: Start\n"); |
| target_display_init(device.display_panel); |
| dprintf(SPEW, "Display Init: Done\n"); |
| #endif |
| |
| |
| target_serialno((unsigned char *) sn_buf); |
| dprintf(SPEW,"serial number: %s\n",sn_buf); |
| |
| memset(display_panel_buf, '\0', MAX_PANEL_BUF_SIZE); |
| |
| /* Check if we should do something other than booting up */ |
| if (keys_get_state(KEY_VOLUMEUP) && keys_get_state(KEY_VOLUMEDOWN)) |
| { |
| dprintf(ALWAYS,"dload mode key sequence detected\n"); |
| if (set_download_mode(EMERGENCY_DLOAD)) |
| { |
| dprintf(CRITICAL,"dload mode not supported by target\n"); |
| } |
| else |
| { |
| reboot_device(0); |
| dprintf(CRITICAL,"Failed to reboot into dload mode\n"); |
| } |
| boot_into_fastboot = true; |
| } |
| if (!boot_into_fastboot) |
| { |
| if (keys_get_state(KEY_HOME) || keys_get_state(KEY_VOLUMEUP)) |
| boot_into_recovery = 1; |
| if (!boot_into_recovery && |
| (keys_get_state(KEY_BACK) || keys_get_state(KEY_VOLUMEDOWN))) |
| boot_into_fastboot = true; |
| } |
| #if NO_KEYPAD_DRIVER |
| if (fastboot_trigger()) |
| boot_into_fastboot = true; |
| #endif |
| |
| reboot_mode = check_reboot_mode(); |
| if (reboot_mode == RECOVERY_MODE) { |
| boot_into_recovery = 1; |
| } else if(reboot_mode == FASTBOOT_MODE) { |
| boot_into_fastboot = true; |
| } |
| |
| if (!boot_into_fastboot) |
| { |
| if (target_is_emmc_boot()) |
| { |
| if(emmc_recovery_init()) |
| dprintf(ALWAYS,"error in emmc_recovery_init\n"); |
| if(target_use_signed_kernel()) |
| { |
| if((device.is_unlocked) || (device.is_tampered)) |
| { |
| #ifdef TZ_TAMPER_FUSE |
| set_tamper_fuse_cmd(); |
| #endif |
| #if USE_PCOM_SECBOOT |
| set_tamper_flag(device.is_tampered); |
| #endif |
| } |
| } |
| boot_linux_from_mmc(); |
| } |
| else |
| { |
| recovery_init(); |
| #if USE_PCOM_SECBOOT |
| if((device.is_unlocked) || (device.is_tampered)) |
| set_tamper_flag(device.is_tampered); |
| #endif |
| boot_linux_from_flash(); |
| } |
| dprintf(CRITICAL, "ERROR: Could not do normal boot. Reverting " |
| "to fastboot mode.\n"); |
| } |
| |
| /* We are here means regular boot did not happen. Start fastboot. */ |
| |
| /* register aboot specific fastboot commands */ |
| aboot_fastboot_register_commands(); |
| |
| /* dump partition table for debug info */ |
| partition_dump(); |
| |
| /* initialize and start fastboot */ |
| fastboot_init(target_get_scratch_address(), target_get_max_flash_size()); |
| } |
| |
| uint32_t get_page_size() |
| { |
| return page_size; |
| } |
| |
| /* |
| * Calculated and save hash (SHA256) for non-signed boot image. |
| * |
| * Hash the same data that is checked on the signed boot image. |
| * Kernel and Ramdisk are already read to memory buffers. |
| * Need to read the entire device-tree from mmc |
| * since non-signed image only read the DT tags of the relevant platform. |
| * |
| * @param kernel_addr - kernel bufer |
| * @param kernel_actual - kernel size in bytes |
| * @param ramdisk_addr - ramdisk buffer |
| * @param ramdisk_actual - ramdisk size |
| * @param ptn - partition |
| * @param dt_offset - device tree offset on mmc partition |
| * @param dt_size |
| * |
| * @return int - 0 on success, negative value on failure. |
| */ |
| int aboot_save_boot_hash_mmc(void *kernel_addr, unsigned kernel_actual, |
| void *ramdisk_addr, unsigned ramdisk_actual, |
| unsigned long long ptn, |
| unsigned dt_offset, unsigned dt_size) |
| { |
| SHA256_CTX sha256_ctx; |
| char digest[32]={0}; |
| char *buf = (char *)target_get_scratch_address(); |
| unsigned dt_actual = ROUND_TO_PAGE(dt_size, page_mask); |
| unsigned imagesize_actual = page_size + kernel_actual + ramdisk_actual + dt_actual; |
| |
| SHA256_Init(&sha256_ctx); |
| |
| /* Read Boot Header */ |
| if (mmc_read(ptn, buf, page_size)) |
| { |
| dprintf(CRITICAL, "ERROR: mmc_read() fail.\n"); |
| return -1; |
| } |
| /* Read entire Device Tree */ |
| if (mmc_read(ptn + dt_offset, buf+page_size, dt_actual)) |
| { |
| dprintf(CRITICAL, "ERROR: mmc_read() fail.\n"); |
| return -1; |
| } |
| SHA256_Update(&sha256_ctx, buf, page_size); // Boot Header |
| SHA256_Update(&sha256_ctx, kernel_addr, kernel_actual); |
| SHA256_Update(&sha256_ctx, ramdisk_addr, ramdisk_actual); |
| SHA256_Update(&sha256_ctx, buf+page_size, dt_actual); // Device Tree |
| |
| SHA256_Final(digest, &sha256_ctx); |
| |
| save_kernel_hash_cmd(digest); |
| dprintf(INFO, "aboot_save_boot_hash_mmc: imagesize_actual size %d bytes.\n", (int) imagesize_actual); |
| |
| return 0; |
| } |
| |
| APP_START(aboot) |
| .init = aboot_init, |
| APP_END |