blob: ecb485420aca2091d29b6f80de500a57059d1767 [file] [log] [blame]
/* Copyright (c) 2013, The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <err.h>
#include <assert.h>
#include <debug.h>
#include <reg.h>
#include <platform/timer.h>
#include <platform/iomap.h>
#include <mmc.h>
#include <clock.h>
#include <platform/clock.h>
void hsusb_clock_init(void)
{
int ret;
struct clk *iclk, *cclk;
ret = clk_get_set_enable("usb_iface_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set usb_iface_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("usb_core_clk", 75000000, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set usb_core_clk ret = %d\n", ret);
ASSERT(0);
}
/* Wait for the clocks to be stable since we are disabling soon after. */
mdelay(1);
iclk = clk_get("usb_iface_clk");
cclk = clk_get("usb_core_clk");
clk_disable(iclk);
clk_disable(cclk);
/* Wait for the clock disable to complete. */
mdelay(1);
/* Start the block reset for usb */
writel(1, USB_HS_BCR);
/* Wait for reset to complete. */
mdelay(1);
/* Take usb block out of reset */
writel(0, USB_HS_BCR);
/* Wait for the block to be brought out of reset. */
mdelay(1);
ret = clk_enable(iclk);
if(ret)
{
dprintf(CRITICAL, "failed to set usb_iface_clk after async ret = %d\n", ret);
ASSERT(0);
}
ret = clk_enable(cclk);
if(ret)
{
dprintf(CRITICAL, "failed to set usb_iface_clk after async ret = %d\n", ret);
ASSERT(0);
}
}
void clock_init_mmc(uint32_t interface)
{
char clk_name[64];
int ret;
snprintf(clk_name, 64, "sdc%u_iface_clk", interface);
/* enable interface clock */
ret = clk_get_set_enable(clk_name, 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set sdc1_iface_clk ret = %d\n", ret);
ASSERT(0);
}
}
/* Configure MMC clock */
void clock_config_mmc(uint32_t interface, uint32_t freq)
{
int ret;
char clk_name[64];
snprintf(clk_name, 64, "sdc%u_core_clk", interface);
if(freq == MMC_CLK_400KHZ)
{
ret = clk_get_set_enable(clk_name, 400000, 1);
}
else if(freq == MMC_CLK_50MHZ)
{
ret = clk_get_set_enable(clk_name, 50000000, 1);
}
else if(freq == MMC_CLK_200MHZ)
{
ret = clk_get_set_enable(clk_name, 200000000, 1);
}
else
{
dprintf(CRITICAL, "sdc frequency (%d) is not supported\n", freq);
ASSERT(0);
}
if(ret)
{
dprintf(CRITICAL, "failed to set sdc1_core_clk ret = %d\n", ret);
ASSERT(0);
}
}
/* Configure UART clock based on the UART block id*/
void clock_config_uart_dm(uint8_t id)
{
int ret;
ret = clk_get_set_enable("uart2_iface_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set uart2_iface_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("uart2_core_clk", 7372800, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set uart2_core_clk ret = %d\n", ret);
ASSERT(0);
}
}
/* Configure MDP clock */
void mdp_clock_enable(void)
{
int ret;
ret = clk_get_set_enable("axi_clk_src", 200000000, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set axi_clk_src ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("mmss_mmssnoc_axi_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set mmss_mmssnoc_axi_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("mmss_s0_axi_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set mmss_s0_axi_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("mdp_ahb_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set mdp_ahb_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("mdp_axi_clk" , 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set mdp_axi_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("mdp_vsync_clk" , 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set mdp_vsync_clk ret = %d\n", ret);
ASSERT(0);
}
}
void mdp_clock_disable(void)
{
clk_disable(clk_get("mdp_vsync_clk"));
clk_disable(clk_get("mdp_axi_clk"));
clk_disable(clk_get("mdp_ahb_clk"));
clk_disable(clk_get("mmss_s0_axi_clk"));
clk_disable(clk_get("mmss_mmssnoc_axi_clk"));
}
int dsi_vco_set_rate(uint32_t rate)
{
uint32_t temp, val;
unsigned long fb_divider;
temp = rate / 10;
val = VCO_PARENT_RATE / 10;
fb_divider = (temp * VCO_PREF_DIV_RATIO) / val;
fb_divider = fb_divider / 2 - 1;
temp = readl(DSIPHY_PLL_CTRL(1));
val = (temp & 0xFFFFFF00) | (fb_divider & 0xFF);
writel(val, DSIPHY_PLL_CTRL(1));
temp = readl(DSIPHY_PLL_CTRL(2));
val = (temp & 0xFFFFFFF8) | ((fb_divider >> 8) & 0x07);
writel(val, DSIPHY_PLL_CTRL(2));
temp = readl(DSIPHY_PLL_CTRL(3));
val = (temp & 0xFFFFFFC0) | (VCO_PREF_DIV_RATIO - 1);
writel(val, DSIPHY_PLL_CTRL(3));
return 0;
}
uint32_t dsi_vco_round_rate(uint32_t rate)
{
uint32_t vco_rate = rate;
if (rate < VCO_MIN_RATE)
vco_rate = VCO_MIN_RATE;
else if (rate > VCO_MAX_RATE)
vco_rate = VCO_MAX_RATE;
return vco_rate;
}
int dsi_byte_clk_set(uint32_t *vcoclk_rate, uint32_t rate)
{
int div, ret;
uint32_t vco_rate, bitclk_rate;
uint32_t temp, val;
bitclk_rate = 8 * rate;
for (div = 1; div < VCO_MAX_DIVIDER; div++)
{
vco_rate = dsi_vco_round_rate(bitclk_rate * div);
if (vco_rate == bitclk_rate * div)
break;
if (vco_rate < bitclk_rate * div)
return -1;
}
if (vco_rate != bitclk_rate * div)
return -1;
ret = dsi_vco_set_rate(vco_rate);
if (ret)
{
dprintf(CRITICAL, "fail to set vco rate, ret = %d\n", ret);
return ret;
}
*vcoclk_rate = vco_rate;
/* set the bit clk divider */
temp = readl(DSIPHY_PLL_CTRL(8));
val = (temp & 0xFFFFFFF0) | (div - 1);
writel(val, DSIPHY_PLL_CTRL(8));
/* set the byte clk divider */
temp = readl(DSIPHY_PLL_CTRL(9));
val = (temp & 0xFFFFFF00) | (vco_rate / rate - 1);
writel(val, DSIPHY_PLL_CTRL(9));
return 0;
}
int dsi_dsi_clk_set(uint32_t vco_rate, uint32_t rate)
{
uint32_t temp, val;
if (vco_rate % rate != 0)
{
dprintf(CRITICAL, "dsiclk_set_rate invalid rate\n");
return -1;
}
temp = readl(DSIPHY_PLL_CTRL(10));
val = (temp & 0xFFFFFF00) | (vco_rate / rate - 1);
writel(val, DSIPHY_PLL_CTRL(10));
return 0;
}
void dsi_setup_dividers(uint32_t val, uint32_t cfg_rcgr,
uint32_t cmd_rcgr)
{
uint32_t i = 0;
uint32_t term_cnt = 5000;
int32_t reg;
writel(val, cfg_rcgr);
writel(0x1, cmd_rcgr);
reg = readl(cmd_rcgr);
while (reg & 0x1)
{
i++;
if (i > term_cnt)
{
dprintf(CRITICAL, "some dsi clock not enabled"
"exceeded polling TIMEOUT!\n");
break;
}
udelay(1);
reg = readl(cmd_rcgr);
}
}
void vco_enable(int enable)
{
if (enable)
{
writel(0x1, DSIPHY_PLL_CTRL(0));
while (!(readl(DSIPHY_PLL_READY) & 0x01))
udelay(1);
} else {
writel(0x0, DSIPHY_PLL_CTRL(0));
}
}
void dsi_clock_enable(uint32_t dsiclk_rate, uint32_t byteclk_rate)
{
uint32_t vcoclk_rate;
int ret;
ret = clk_get_set_enable("dsi_ahb_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set dsi_ahb_clk ret = %d\n", ret);
ASSERT(0);
}
ret = dsi_byte_clk_set(&vcoclk_rate, byteclk_rate);
if(ret)
{
dprintf(CRITICAL, "failed to set byteclk ret = %d\n", ret);
ASSERT(0);
}
ret = dsi_dsi_clk_set(vcoclk_rate, dsiclk_rate);
if(ret)
{
dprintf(CRITICAL, "failed to set dsiclk ret = %d\n", ret);
ASSERT(0);
}
vco_enable(1);
dsi_setup_dividers(0x105, DSI_PCLK_CFG_RCGR, DSI_PCLK_CMD_RCGR);
dsi_setup_dividers(0x101, DSI_BYTE_CFG_RCGR, DSI_BYTE_CMD_RCGR);
dsi_setup_dividers(0x101, DSI_CFG_RCGR, DSI_CMD_RCGR);
ret = clk_get_set_enable("dsi_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set dsi_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("dsi_byte_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set dsi_byte_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("dsi_esc_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set dsi_esc_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("dsi_pclk_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set dsi_pclk_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("mdp_lcdc_clk" , 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set mdp_lcdc_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("mdp_dsi_clk" , 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set mdp_dsi_clk ret = %d\n", ret);
ASSERT(0);
}
}
void dsi_clock_disable(void)
{
clk_disable(clk_get("mdp_dsi_clk"));
clk_disable(clk_get("mdp_lcdc_clk"));
clk_disable(clk_get("dsi_pclk_clk"));
clk_disable(clk_get("dsi_esc_clk"));
clk_disable(clk_get("dsi_byte_clk"));
clk_disable(clk_get("dsi_clk"));
vco_enable(0);
clk_disable(clk_get("dsi_ahb_clk"));
}
void clock_ce_enable(uint8_t instance)
{
int ret;
char clk_name[64];
snprintf(clk_name, 64, "ce%u_src_clk", instance);
ret = clk_get_set_enable(clk_name, 100000000, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set ce_src_clk ret = %d\n", ret);
ASSERT(0);
}
snprintf(clk_name, 64, "ce%u_core_clk", instance);
ret = clk_get_set_enable(clk_name, 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set ce_core_clk ret = %d\n", ret);
ASSERT(0);
}
snprintf(clk_name, 64, "ce%u_ahb_clk", instance);
ret = clk_get_set_enable(clk_name, 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set ce_ahb_clk ret = %d\n", ret);
ASSERT(0);
}
snprintf(clk_name, 64, "ce%u_axi_clk", instance);
ret = clk_get_set_enable(clk_name, 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set ce_axi_clk ret = %d\n", ret);
ASSERT(0);
}
/* Wait for 48 * #pipes cycles.
* This is necessary as immediately after an access control reset (boot up)
* or a debug re-enable, the Crypto core sequentially clears its internal
* pipe key storage memory. If pipe key initialization writes are attempted
* during this time, they may be overwritten by the internal clearing logic.
*/
udelay(1);
}
void clock_ce_disable(uint8_t instance)
{
struct clk *ahb_clk;
struct clk *cclk;
struct clk *axi_clk;
struct clk *src_clk;
char clk_name[64];
snprintf(clk_name, 64, "ce%u_src_clk", instance);
src_clk = clk_get(clk_name);
snprintf(clk_name, 64, "ce%u_ahb_clk", instance);
ahb_clk = clk_get(clk_name);
snprintf(clk_name, 64, "ce%u_axi_clk", instance);
axi_clk = clk_get(clk_name);
snprintf(clk_name, 64, "ce%u_core_clk", instance);
cclk = clk_get(clk_name);
clk_disable(ahb_clk);
clk_disable(axi_clk);
clk_disable(cclk);
clk_disable(src_clk);
/* Some delay for the clocks to stabalize. */
udelay(1);
}
/* Function to asynchronously reset CE.
* Function assumes that all the CE clocks are off.
*/
static void ce_async_reset(uint8_t instance)
{
if (instance == 1)
{
/* Start the block reset for CE */
writel(1, GCC_CE1_BCR);
udelay(2);
/* Take CE block out of reset */
writel(0, GCC_CE1_BCR);
udelay(2);
}
else
{
dprintf(CRITICAL, "CE instance not supported instance = %d", instance);
ASSERT(0);
}
}
void clock_config_ce(uint8_t instance)
{
/* Need to enable the clock before disabling since the clk_disable()
* has a check to default to nop when the clk_enable() is not called
* on that particular clock.
*/
clock_ce_enable(instance);
clock_ce_disable(instance);
ce_async_reset(instance);
clock_ce_enable(instance);
}