blob: fdd8a9e41bc6ede6450d75ba4928ce61bd14410a [file] [log] [blame]
/* Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Code Aurora Forum, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <stdlib.h>
#include <debug.h>
#include <reg.h>
#include "mmc.h"
#include <partition_parser.h>
#include <platform/iomap.h>
#include <platform/timer.h>
#if MMC_BOOT_ADM
#include "adm.h"
#endif
#ifndef NULL
#define NULL 0
#endif
#define MMC_BOOT_DATA_READ 0
#define MMC_BOOT_DATA_WRITE 1
static unsigned int mmc_boot_fifo_data_transfer(unsigned int* data_ptr,
unsigned int data_len,
unsigned char direction);
static unsigned int mmc_boot_fifo_read(unsigned int* data_ptr,
unsigned int data_len);
static unsigned int mmc_boot_fifo_write(unsigned int* data_ptr,
unsigned int data_len);
#define ROUND_TO_PAGE(x,y) (((x) + (y)) & (~(y)))
/* data access time unit in ns */
static const unsigned int taac_unit[] =
{ 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000 };
/* data access time value x 10 */
static const unsigned int taac_value[] =
{ 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80 };
/* data transfer rate in kbit/s */
static const unsigned int xfer_rate_unit[] =
{ 100, 1000, 10000, 100000, 0, 0, 0, 0 };
/* data transfer rate value x 10*/
static const unsigned int xfer_rate_value[] =
{ 0, 10, 12, 13, 15, 20, 26, 30, 35, 40, 45, 52, 55, 60, 70, 80 };
unsigned char mmc_slot = 0;
unsigned int mmc_boot_mci_base = 0;
static unsigned char ext_csd_buf[512];
static unsigned char wp_status_buf[8];
int mmc_clock_enable_disable(unsigned id, unsigned enable);
int mmc_clock_get_rate(unsigned id);
int mmc_clock_set_rate(unsigned id, unsigned rate);
struct mmc_boot_host mmc_host;
struct mmc_boot_card mmc_card;
static unsigned int mmc_wp(unsigned int addr, unsigned int size,
unsigned char set_clear_wp);
static unsigned int mmc_boot_send_ext_cmd (struct mmc_boot_card* card,
unsigned char* buf);
static unsigned int mmc_boot_read_reg(struct mmc_boot_card *card,
unsigned int data_len,
unsigned int command, unsigned int addr,
unsigned int *out);
unsigned int SWAP_ENDIAN(unsigned int val)
{
return ((val & 0xFF) << 24) |
(((val >> 8) & 0xFF) << 16) |
(((val >> 16) & 0xFF) << 8) |
(val >> 24);
}
/* Sets a timeout for read operation.
*/
static unsigned int mmc_boot_set_read_timeout( struct mmc_boot_host* host,
struct mmc_boot_card* card )
{
unsigned int timeout_ns = 0;
if( ( host == NULL ) || ( card == NULL ) )
{
return MMC_BOOT_E_INVAL;
}
if( (card->type == MMC_BOOT_TYPE_MMCHC) || (card->type == MMC_BOOT_TYPE_SDHC) )
{
card->rd_timeout_ns = 100000000;
}
else if( (card->type == MMC_BOOT_TYPE_STD_SD) || (card->type == MMC_BOOT_TYPE_STD_MMC) )
{
timeout_ns = 10 * ( (card->csd.taac_ns ) +
( card->csd.nsac_clk_cycle / (host->mclk_rate/1000000000)));
card->rd_timeout_ns = timeout_ns;
}
else
{
return MMC_BOOT_E_NOT_SUPPORTED;
}
dprintf(SPEW, " Read timeout set: %d ns\n", card->rd_timeout_ns );
return MMC_BOOT_E_SUCCESS;
}
/* Sets a timeout for write operation.
*/
static unsigned int mmc_boot_set_write_timeout( struct mmc_boot_host* host,
struct mmc_boot_card* card )
{
unsigned int timeout_ns = 0;
if( ( host == NULL ) || ( card == NULL ) )
{
return MMC_BOOT_E_INVAL;
}
if( (card->type == MMC_BOOT_TYPE_MMCHC) || (card->type == MMC_BOOT_TYPE_SDHC) )
{
card->wr_timeout_ns = 100000000;
}
else if( card->type == MMC_BOOT_TYPE_STD_SD || (card->type == MMC_BOOT_TYPE_STD_MMC) )
{
timeout_ns = 10 * ( ( card->csd.taac_ns ) +
( card->csd.nsac_clk_cycle / ( host->mclk_rate/1000000000 ) ) );
timeout_ns = timeout_ns << card->csd.r2w_factor;
card->wr_timeout_ns = timeout_ns;
}
else
{
return MMC_BOOT_E_NOT_SUPPORTED;
}
dprintf(SPEW, " Write timeout set: %d ns\n", card->wr_timeout_ns );
return MMC_BOOT_E_SUCCESS;
}
/*
* Decodes CSD response received from the card. Note that we have defined only
* few of the CSD elements in csd structure. We'll only decode those values.
*/
static unsigned int mmc_boot_decode_and_save_csd( struct mmc_boot_card* card,
unsigned int* raw_csd )
{
unsigned int mmc_sizeof = 0;
unsigned int mmc_unit = 0;
unsigned int mmc_value = 0;
unsigned int mmc_temp = 0;
struct mmc_boot_csd mmc_csd;
if( ( card == NULL ) || ( raw_csd == NULL ) )
{
return MMC_BOOT_E_INVAL;
}
mmc_sizeof = sizeof(unsigned int) * 8;
mmc_csd.cmmc_structure = UNPACK_BITS( raw_csd, 126, 2, mmc_sizeof );
if( (card->type == MMC_BOOT_TYPE_SDHC) || (card->type == MMC_BOOT_TYPE_STD_SD))
{
/* Parse CSD according to SD card spec. */
/* CSD register is little bit differnet for CSD version 2.0 High Capacity
* and CSD version 1.0/2.0 Standard memory cards. In Version 2.0 some of
* the fields have fixed values and it's not necessary for host to refer
* these fields in CSD sent by card */
if( mmc_csd.cmmc_structure == 1)
{
/* CSD Version 2.0 */
mmc_csd.card_cmd_class = UNPACK_BITS( raw_csd, 84, 12, mmc_sizeof );
mmc_csd.write_blk_len = 512; /* Fixed value is 9 = 2^9 = 512 */
mmc_csd.read_blk_len = 512; /* Fixed value is 9 = 512 */
mmc_csd.r2w_factor = 0x2; /* Fixed value: 010b */
mmc_csd.c_size_mult = 0; /* not there in version 2.0 */
mmc_csd.c_size = UNPACK_BITS( raw_csd, 48, 22, mmc_sizeof );
mmc_csd.nsac_clk_cycle = UNPACK_BITS( raw_csd, 104, 8, mmc_sizeof) * 100;
//TODO: Investigate the nsac and taac. Spec suggests not using this for timeouts.
mmc_unit = UNPACK_BITS( raw_csd, 112, 3, mmc_sizeof );
mmc_value = UNPACK_BITS( raw_csd, 115, 4, mmc_sizeof );
mmc_csd.taac_ns = ( taac_value[mmc_value] * taac_unit[mmc_unit]) / 10;
mmc_csd.erase_blk_len = 1;
mmc_csd.read_blk_misalign = 0;
mmc_csd.write_blk_misalign = 0;
mmc_csd.read_blk_partial = 0;
mmc_csd.write_blk_partial = 0;
mmc_unit = UNPACK_BITS( raw_csd, 96, 3, mmc_sizeof );
mmc_value = UNPACK_BITS( raw_csd, 99, 4, mmc_sizeof );
mmc_csd.tran_speed = ( xfer_rate_value[mmc_value] * xfer_rate_unit[mmc_unit]) / 10;
mmc_csd.wp_grp_size = 0x0;
mmc_csd.wp_grp_enable = 0x0;
mmc_csd.perm_wp = UNPACK_BITS( raw_csd, 13, 1, mmc_sizeof );
mmc_csd.temp_wp = UNPACK_BITS( raw_csd, 12, 1, mmc_sizeof );
/* Calculate the card capcity */
card->capacity = ( 1 + mmc_csd.c_size ) * 512 * 1024;
}
else
{
/* CSD Version 1.0 */
mmc_csd.card_cmd_class = UNPACK_BITS( raw_csd, 84, 12, mmc_sizeof );
mmc_temp = UNPACK_BITS( raw_csd, 22, 4, mmc_sizeof );
mmc_csd.write_blk_len = ( mmc_temp > 8 && mmc_temp < 12 )? ( 1 << mmc_temp ) : 512;
mmc_temp = UNPACK_BITS( raw_csd, 80, 4, mmc_sizeof );
mmc_csd.read_blk_len = ( mmc_temp > 8 && mmc_temp < 12 )? ( 1 << mmc_temp ) : 512;
mmc_unit = UNPACK_BITS( raw_csd, 112, 3, mmc_sizeof );
mmc_value = UNPACK_BITS( raw_csd, 115, 4, mmc_sizeof );
mmc_csd.taac_ns = ( taac_value[mmc_value] * taac_unit[mmc_unit]) / 10;
mmc_unit = UNPACK_BITS( raw_csd, 96, 3, mmc_sizeof );
mmc_value = UNPACK_BITS( raw_csd, 99, 4, mmc_sizeof );
mmc_csd.tran_speed = ( xfer_rate_value[mmc_value] * xfer_rate_unit[mmc_unit]) / 10;
mmc_csd.nsac_clk_cycle = UNPACK_BITS( raw_csd, 104, 8, mmc_sizeof ) * 100;
mmc_csd.r2w_factor = UNPACK_BITS( raw_csd, 26, 3, mmc_sizeof );
mmc_csd.sector_size = UNPACK_BITS( raw_csd, 39, 7, mmc_sizeof ) + 1;
mmc_csd.erase_blk_len = UNPACK_BITS( raw_csd, 46, 1, mmc_sizeof );
mmc_csd.read_blk_misalign = UNPACK_BITS( raw_csd, 77, 1, mmc_sizeof );
mmc_csd.write_blk_misalign = UNPACK_BITS( raw_csd, 78, 1, mmc_sizeof );
mmc_csd.read_blk_partial = UNPACK_BITS( raw_csd, 79, 1, mmc_sizeof );
mmc_csd.write_blk_partial = UNPACK_BITS( raw_csd, 21, 1, mmc_sizeof );
mmc_csd.c_size_mult = UNPACK_BITS( raw_csd, 47, 3, mmc_sizeof );
mmc_csd.c_size = UNPACK_BITS( raw_csd, 62, 12, mmc_sizeof );
mmc_csd.wp_grp_size = UNPACK_BITS( raw_csd, 32, 7, mmc_sizeof );
mmc_csd.wp_grp_enable = UNPACK_BITS( raw_csd, 31, 1, mmc_sizeof );
mmc_csd.perm_wp = UNPACK_BITS( raw_csd, 13, 1, mmc_sizeof );
mmc_csd.temp_wp = UNPACK_BITS( raw_csd, 12, 1, mmc_sizeof );
/* Calculate the card capacity */
mmc_temp = ( 1 << ( mmc_csd.c_size_mult + 2 ) ) * ( mmc_csd.c_size + 1 );
card->capacity = mmc_temp * mmc_csd.read_blk_len;
}
}
else
{
/* Parse CSD according to MMC card spec. */
mmc_csd.spec_vers = UNPACK_BITS( raw_csd, 122, 4, mmc_sizeof );
mmc_csd.card_cmd_class = UNPACK_BITS( raw_csd, 84, 12, mmc_sizeof );
mmc_csd.write_blk_len = 1 << UNPACK_BITS( raw_csd, 22, 4, mmc_sizeof );
mmc_csd.read_blk_len = 1 << UNPACK_BITS( raw_csd, 80, 4, mmc_sizeof );
mmc_csd.r2w_factor = UNPACK_BITS( raw_csd, 26, 3, mmc_sizeof );
mmc_csd.c_size_mult = UNPACK_BITS( raw_csd, 47, 3, mmc_sizeof );
mmc_csd.c_size = UNPACK_BITS( raw_csd, 62, 12, mmc_sizeof );
mmc_csd.nsac_clk_cycle = UNPACK_BITS( raw_csd, 104, 8, mmc_sizeof) * 100;
mmc_unit = UNPACK_BITS( raw_csd, 112, 3, mmc_sizeof );
mmc_value = UNPACK_BITS( raw_csd, 115, 4, mmc_sizeof );
mmc_csd.taac_ns = ( taac_value[mmc_value] * taac_unit[mmc_unit]) / 10;
mmc_csd.read_blk_misalign = UNPACK_BITS( raw_csd, 77, 1, mmc_sizeof );
mmc_csd.write_blk_misalign = UNPACK_BITS( raw_csd, 78, 1, mmc_sizeof );
mmc_csd.read_blk_partial = UNPACK_BITS( raw_csd, 79, 1, mmc_sizeof );
mmc_csd.write_blk_partial = UNPACK_BITS( raw_csd, 21, 1, mmc_sizeof );
mmc_csd.tran_speed = 0x00; /* Ignore -- no use of this value. */
mmc_csd.erase_grp_size = UNPACK_BITS( raw_csd, 42, 5, mmc_sizeof );
mmc_csd.erase_grp_mult = UNPACK_BITS( raw_csd, 37, 5, mmc_sizeof );
mmc_csd.wp_grp_size = UNPACK_BITS( raw_csd, 32, 5, mmc_sizeof );
mmc_csd.wp_grp_enable = UNPACK_BITS( raw_csd, 31, 1, mmc_sizeof );
mmc_csd.perm_wp = UNPACK_BITS( raw_csd, 13, 1, mmc_sizeof );
mmc_csd.temp_wp = UNPACK_BITS( raw_csd, 12, 1, mmc_sizeof );
/* Calculate the card capcity */
if(mmc_csd.c_size != 0xFFF)
{
/* For cards less than or equal to 2GB */
mmc_temp = ( 1 << ( mmc_csd.c_size_mult + 2 ) ) * ( mmc_csd.c_size + 1 );
card->capacity = mmc_temp * mmc_csd.read_blk_len;
}
else
{
/* For cards greater than 2GB, Ext CSD register's SEC_COUNT
* is used to calculate the size.
*/
unsigned long long sec_count;
sec_count = (ext_csd_buf[215] << 24) |
(ext_csd_buf[214] << 16) |
(ext_csd_buf[213] << 8) |
ext_csd_buf[212];
card->capacity = sec_count * 512;
}
}
/* save the information in card structure */
memcpy( (struct mmc_boot_csd *)&card->csd, (struct mmc_boot_csd *)&mmc_csd,
sizeof(struct mmc_boot_csd) );
dprintf(SPEW, "Decoded CSD fields:\n" );
dprintf(SPEW, "cmmc_structure: %d\n", mmc_csd.cmmc_structure );
dprintf(SPEW, "card_cmd_class: %x\n", mmc_csd.card_cmd_class );
dprintf(SPEW, "write_blk_len: %d\n", mmc_csd.write_blk_len );
dprintf(SPEW, "read_blk_len: %d\n", mmc_csd.read_blk_len );
dprintf(SPEW, "r2w_factor: %d\n", mmc_csd.r2w_factor );
dprintf(SPEW, "sector_size: %d\n", mmc_csd.sector_size );
dprintf(SPEW, "c_size_mult:%d\n", mmc_csd.c_size_mult );
dprintf(SPEW, "c_size: %d\n", mmc_csd.c_size );
dprintf(SPEW, "nsac_clk_cycle: %d\n", mmc_csd.nsac_clk_cycle );
dprintf(SPEW, "taac_ns: %d\n", mmc_csd.taac_ns );
dprintf(SPEW, "tran_speed: %d kbps\n", mmc_csd.tran_speed );
dprintf(SPEW, "erase_blk_len: %d\n", mmc_csd.erase_blk_len );
dprintf(SPEW, "read_blk_misalign: %d\n", mmc_csd.read_blk_misalign );
dprintf(SPEW, "write_blk_misalign: %d\n", mmc_csd.write_blk_misalign );
dprintf(SPEW, "read_blk_partial: %d\n", mmc_csd.read_blk_partial );
dprintf(SPEW, "write_blk_partial: %d\n", mmc_csd.write_blk_partial );
dprintf(SPEW, "Card Capacity: %llu Bytes\n", card->capacity );
return MMC_BOOT_E_SUCCESS;
}
/*
* Decode CID sent by the card.
*/
static unsigned int mmc_boot_decode_and_save_cid( struct mmc_boot_card* card,
unsigned int* raw_cid )
{
struct mmc_boot_cid mmc_cid;
unsigned int mmc_sizeof = 0;
int i = 0;
if( ( card == NULL ) || ( raw_cid == NULL ) )
{
return MMC_BOOT_E_INVAL;
}
mmc_sizeof = sizeof( unsigned int ) * 8;
if( (card->type == MMC_BOOT_TYPE_SDHC) || (card->type == MMC_BOOT_TYPE_STD_SD))
{
mmc_cid.mid = UNPACK_BITS( raw_cid, 120, 8, mmc_sizeof );
mmc_cid.oid = UNPACK_BITS( raw_cid, 104, 16, mmc_sizeof );
for( i = 0; i < 5; i++ )
{
mmc_cid.pnm[i] = (unsigned char) UNPACK_BITS(raw_cid, \
(104 - 8 * (i+1)), 8, mmc_sizeof );
}
mmc_cid.pnm[5] = 0;
mmc_cid.pnm[6] = 0;
mmc_cid.prv = UNPACK_BITS( raw_cid, 56, 8, mmc_sizeof );
mmc_cid.psn = UNPACK_BITS( raw_cid, 24, 32, mmc_sizeof );
mmc_cid.month = UNPACK_BITS( raw_cid, 8, 4, mmc_sizeof );
mmc_cid.year = UNPACK_BITS( raw_cid, 12, 8, mmc_sizeof );
mmc_cid.year += 2000;
}
else
{
mmc_cid.mid = UNPACK_BITS( raw_cid, 120, 8, mmc_sizeof );
mmc_cid.oid = UNPACK_BITS( raw_cid, 104, 16, mmc_sizeof );
for( i = 0; i < 6; i++ )
{
mmc_cid.pnm[i] = (unsigned char) UNPACK_BITS(raw_cid, \
(104 - 8 * (i+1)), 8, mmc_sizeof );
}
mmc_cid.pnm[6] = 0;
mmc_cid.prv = UNPACK_BITS( raw_cid, 48, 8, mmc_sizeof );
mmc_cid.psn = UNPACK_BITS( raw_cid, 16, 32, mmc_sizeof );
mmc_cid.month = UNPACK_BITS( raw_cid, 8, 4, mmc_sizeof );
mmc_cid.year = UNPACK_BITS( raw_cid, 12, 4, mmc_sizeof );
mmc_cid.year += 1997;
}
/* save it in card database */
memcpy( ( struct mmc_boot_cid * )&card->cid, \
( struct mmc_boot_cid * )&mmc_cid, \
sizeof( struct mmc_boot_cid ) );
dprintf(SPEW, "Decoded CID fields:\n" );
dprintf(SPEW, "Manufacturer ID: %x\n", mmc_cid.mid );
dprintf(SPEW, "OEM ID: 0x%x\n", mmc_cid.oid );
dprintf(SPEW, "Product Name: %s\n", mmc_cid.pnm );
dprintf(SPEW, "Product revision: %d.%d\n", (mmc_cid.prv >> 4), (mmc_cid.prv & 0xF) );
dprintf(SPEW, "Product serial number: %X\n", mmc_cid.psn );
dprintf(SPEW, "Manufacturing date: %d %d\n", mmc_cid.month, mmc_cid.year );
return MMC_BOOT_E_SUCCESS;
}
/*
* Sends specified command to a card and waits for a response.
*/
static unsigned int mmc_boot_send_command( struct mmc_boot_command* cmd )
{
unsigned int mmc_cmd = 0;
unsigned int mmc_status = 0;
unsigned int mmc_resp = 0;
unsigned int mmc_return = MMC_BOOT_E_SUCCESS;
unsigned int cmd_index = 0;
int i = 0;
/* basic check */
if( cmd == NULL )
{
return MMC_BOOT_E_INVAL;
}
/* 1. Write command argument to MMC_BOOT_MCI_ARGUMENT register */
writel( cmd->argument, MMC_BOOT_MCI_ARGUMENT );
/* Writes to MCI port are not effective for 3 ticks of PCLK.
* The min pclk is 144KHz which gives 6.94 us/tick.
* Thus 21us == 3 ticks.
*/
udelay(21);
/* 2. Set appropriate fields and write MMC_BOOT_MCI_CMD */
/* 2a. Write command index in CMD_INDEX field */
cmd_index = cmd->cmd_index;
mmc_cmd |= cmd->cmd_index;
/* 2b. Set RESPONSE bit to 1 for all cmds except CMD0 */
if( cmd_index != CMD0_GO_IDLE_STATE )
{
mmc_cmd |= MMC_BOOT_MCI_CMD_RESPONSE;
}
/* 2c. Set LONGRESP bit to 1 for CMD2, CMD9 and CMD10 */
if( IS_RESP_136_BITS(cmd->resp_type) )
{
mmc_cmd |= MMC_BOOT_MCI_CMD_LONGRSP;
}
/* 2d. Set INTERRUPT bit to 1 to disable command timeout */
/* 2e. Set PENDING bit to 1 for CMD12 in the beginning of stream
mode data transfer*/
if( cmd->xfer_mode == MMC_BOOT_XFER_MODE_STREAM )
{
mmc_cmd |= MMC_BOOT_MCI_CMD_PENDING;
}
/* 2f. Set ENABLE bit to 1 */
mmc_cmd |= MMC_BOOT_MCI_CMD_ENABLE;
/* 2g. Set PROG_ENA bit to 1 for CMD12, CMD13 issued at the end of
write data transfer */
if( ( cmd_index == CMD12_STOP_TRANSMISSION ||
cmd_index == CMD13_SEND_STATUS ) && cmd->prg_enabled )
{
mmc_cmd |= MMC_BOOT_MCI_CMD_PROG_ENA;
}
/* 2h. Set MCIABORT bit to 1 for CMD12 when working with SDIO card */
/* 2i. Set CCS_ENABLE bit to 1 for CMD61 when Command Completion Signal
of CE-ATA device is enabled */
/* 2j. clear all static status bits */
writel( MMC_BOOT_MCI_STATIC_STATUS, MMC_BOOT_MCI_CLEAR );
/* 2k. Write to MMC_BOOT_MCI_CMD register */
writel( mmc_cmd, MMC_BOOT_MCI_CMD );
dprintf(SPEW, "Command sent: CMD%d MCI_CMD_REG:%x MCI_ARG:%x\n",
cmd_index, mmc_cmd, cmd->argument );
/* 3. Wait for interrupt or poll on the following bits of MCI_STATUS
register */
do{
/* 3a. Read MCI_STATUS register */
while(readl( MMC_BOOT_MCI_STATUS ) \
& MMC_BOOT_MCI_STAT_CMD_ACTIVE);
mmc_status = readl( MMC_BOOT_MCI_STATUS );
/* 3b. CMD_SENT bit supposed to be set to 1 only after CMD0 is sent -
no response required. */
if( ( cmd->resp_type == MMC_BOOT_RESP_NONE ) &&
(mmc_status & MMC_BOOT_MCI_STAT_CMD_SENT ) )
{
break;
}
/* 3c. If CMD_TIMEOUT bit is set then no response was received */
else if( mmc_status & MMC_BOOT_MCI_STAT_CMD_TIMEOUT )
{
mmc_return = MMC_BOOT_E_TIMEOUT;
break;
}
/* 3d. If CMD_RESPONSE_END bit is set to 1 then command's response was
received and CRC check passed
Spcial case for ACMD41: it seems to always fail CRC even if
the response is valid
*/
else if (( mmc_status & MMC_BOOT_MCI_STAT_CMD_RESP_END ) || (cmd_index == CMD1_SEND_OP_COND)
|| (cmd_index == CMD8_SEND_IF_COND))
{
/* 3i. Read MCI_RESP_CMD register to verify that response index is
equal to command index */
mmc_resp = readl( MMC_BOOT_MCI_RESP_CMD ) & 0x3F;
/* However, long response does not contain the command index field.
* In that case, response index field must be set to 111111b (0x3F) */
if( ( mmc_resp == cmd_index ) ||
( cmd->resp_type == MMC_BOOT_RESP_R2 ||
cmd->resp_type == MMC_BOOT_RESP_R3 ||
cmd->resp_type == MMC_BOOT_RESP_R6 ||
cmd->resp_type == MMC_BOOT_RESP_R7 ) )
{
/* 3j. If resp index is equal to cmd index, read command resp
from MCI_RESPn registers
- MCI_RESP0/1/2/3 for CMD2/9/10
- MCI_RESP0 for all other registers */
if( IS_RESP_136_BITS( cmd->resp_type ) )
{
for( i = 0; i < 4; i++ )
{
cmd->resp[3-i] = readl( MMC_BOOT_MCI_RESP_0 + ( i * 4 ) );
}
}
else
{
cmd->resp[0] = readl( MMC_BOOT_MCI_RESP_0 );
}
}
else
{
/* command index mis-match */
mmc_return = MMC_BOOT_E_CMD_INDX_MISMATCH;
}
dprintf(SPEW, "Command response received: %X\n", cmd->resp[0] );
break;
}
/* 3e. If CMD_CRC_FAIL bit is set to 1 then cmd's response was recvd,
but CRC check failed. */
else if( ( mmc_status & MMC_BOOT_MCI_STAT_CMD_CRC_FAIL ) )
{
if(cmd_index == ACMD41_SEND_OP_COND)
{
cmd->resp[0] = readl( MMC_BOOT_MCI_RESP_0);
}
else
mmc_return = MMC_BOOT_E_CRC_FAIL;
break;
}
}while(1);
return mmc_return;
}
/*
* Reset all the cards to idle condition (CMD 0)
*/
static unsigned int mmc_boot_reset_cards( void )
{
struct mmc_boot_command cmd;
memset( (struct mmc_boot_command *)&cmd, 0,
sizeof(struct mmc_boot_command) );
cmd.cmd_index = CMD0_GO_IDLE_STATE;
cmd.argument = 0; // stuff bits - ignored
cmd.cmd_type = MMC_BOOT_CMD_BCAST;
cmd.resp_type = MMC_BOOT_RESP_NONE;
/* send command */
return mmc_boot_send_command( &cmd );
}
/*
* Send CMD1 to know whether the card supports host VDD profile or not.
*/
static unsigned int mmc_boot_send_op_cond( struct mmc_boot_host* host,
struct mmc_boot_card* card )
{
struct mmc_boot_command cmd;
unsigned int mmc_resp = 0;
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
/* basic check */
if( ( host == NULL ) || ( card == NULL ) )
{
return MMC_BOOT_E_INVAL;
}
memset( (struct mmc_boot_command *)&cmd, 0,
sizeof(struct mmc_boot_command) );
/* CMD1 format:
* [31] Busy bit
* [30:29] Access mode
* [28:24] reserved
* [23:15] 2.7-3.6
* [14:8] 2.0-2.6
* [7] 1.7-1.95
* [6:0] reserved
*/
cmd.cmd_index = CMD1_SEND_OP_COND;
cmd.argument = host->ocr;
cmd.cmd_type = MMC_BOOT_CMD_BCAST_W_RESP;
cmd.resp_type = MMC_BOOT_RESP_R3;
mmc_ret = mmc_boot_send_command( &cmd );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
/* Now it's time to examine response */
mmc_resp = cmd.resp[0];
/* Response contains card's ocr. Update card's information */
card->ocr = mmc_resp;
/* Check the response for busy status */
if( !( mmc_resp & MMC_BOOT_OCR_BUSY ) )
{
return MMC_BOOT_E_CARD_BUSY;
}
if(mmc_resp & MMC_BOOT_OCR_SEC_MODE)
{
card->type = MMC_BOOT_TYPE_MMCHC;
}
else
{
card->type = MMC_BOOT_TYPE_STD_MMC;
}
return MMC_BOOT_E_SUCCESS;
}
/*
* Request any card to send its uniquie card identification (CID) number (CMD2).
*/
static unsigned int mmc_boot_all_send_cid( struct mmc_boot_card* card )
{
struct mmc_boot_command cmd;
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
/* basic check */
if( card == NULL )
{
return MMC_BOOT_E_INVAL;
}
memset( (struct mmc_boot_command *)&cmd, 0,
sizeof(struct mmc_boot_command) );
/* CMD2 Format:
* [31:0] stuff bits
*/
cmd.cmd_index = CMD2_ALL_SEND_CID;
cmd.argument = 0;
cmd.cmd_type = MMC_BOOT_CMD_BCAST_W_RESP;
cmd.resp_type = MMC_BOOT_RESP_R2;
/* send command */
mmc_ret = mmc_boot_send_command( &cmd );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
/* Response contains card's 128 bits CID register */
mmc_ret = mmc_boot_decode_and_save_cid( card, cmd.resp );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
return MMC_BOOT_E_SUCCESS;
}
/*
* Ask any card to send it's relative card address (RCA).This RCA number is
* shorter than CID and is used by the host to address the card in future (CMD3)
*/
static unsigned int mmc_boot_send_relative_address( struct mmc_boot_card* card )
{
struct mmc_boot_command cmd;
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
/* basic check */
if( card == NULL )
{
return MMC_BOOT_E_INVAL;
}
memset( (struct mmc_boot_command *)&cmd, 0,
sizeof(struct mmc_boot_command) );
/* CMD3 Format:
* [31:0] stuff bits
*/
if(card->type == MMC_BOOT_TYPE_SDHC || card->type == MMC_BOOT_TYPE_STD_SD)
{
cmd.cmd_index = CMD3_SEND_RELATIVE_ADDR;
cmd.argument = 0;
cmd.cmd_type = MMC_BOOT_CMD_BCAST_W_RESP;
cmd.resp_type = MMC_BOOT_RESP_R6;
/* send command */
mmc_ret = mmc_boot_send_command( &cmd );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
/* For sD, card will send RCA. Store it */
card->rca = (cmd.resp[0] >> 16);
}
else
{
cmd.cmd_index = CMD3_SEND_RELATIVE_ADDR;
cmd.argument = (MMC_RCA << 16);
card->rca = (cmd.argument >> 16);
cmd.cmd_type = MMC_BOOT_CMD_ADDRESS;
cmd.resp_type = MMC_BOOT_RESP_R1;
/* send command */
mmc_ret = mmc_boot_send_command( &cmd );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
}
return MMC_BOOT_E_SUCCESS;
}
/*
* Requests card to send it's CSD register's contents. (CMD9)
*/
static unsigned int mmc_boot_send_csd( struct mmc_boot_card* card,
unsigned int* raw_csd )
{
struct mmc_boot_command cmd;
unsigned int mmc_arg = 0;
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
/* basic check */
if( card == NULL )
{
return MMC_BOOT_E_INVAL;
}
memset( (struct mmc_boot_command *)&cmd, 0,
sizeof(struct mmc_boot_command) );
/* CMD9 Format:
* [31:16] RCA
* [15:0] stuff bits
*/
mmc_arg |= card->rca << 16;
cmd.cmd_index = CMD9_SEND_CSD;
cmd.argument = mmc_arg;
cmd.cmd_type = MMC_BOOT_CMD_ADDRESS;
cmd.resp_type = MMC_BOOT_RESP_R2;
/* send command */
mmc_ret = mmc_boot_send_command( &cmd );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
/* response contains the card csd */
memcpy(raw_csd, cmd.resp, sizeof(cmd.resp));
return MMC_BOOT_E_SUCCESS;
}
/*
* Selects a card by sending CMD7 to the card with its RCA.
* If RCA field is set as 0 ( or any other address ),
* the card will be de-selected. (CMD7)
*/
static unsigned int mmc_boot_select_card( struct mmc_boot_card* card,
unsigned int rca )
{
struct mmc_boot_command cmd;
unsigned int mmc_arg = 0;
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
/* basic check */
if( card == NULL )
{
return MMC_BOOT_E_INVAL;
}
memset( (struct mmc_boot_command *)&cmd, 0,
sizeof(struct mmc_boot_command) );
/* CMD7 Format:
* [31:16] RCA
* [15:0] stuff bits
*/
mmc_arg |= rca << 16;
cmd.cmd_index = CMD7_SELECT_DESELECT_CARD;
cmd.argument = mmc_arg;
cmd.cmd_type = MMC_BOOT_CMD_ADDRESS;
/* If we are deselecting card, we do not get response */
if( rca == card->rca && rca)
{
if(card->type == MMC_BOOT_TYPE_SDHC || card->type == MMC_BOOT_TYPE_STD_SD)
cmd.resp_type = MMC_BOOT_RESP_R1B;
else
cmd.resp_type = MMC_BOOT_RESP_R1;
}
else
{
cmd.resp_type = MMC_BOOT_RESP_NONE;
}
/* send command */
mmc_ret = mmc_boot_send_command( &cmd );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
/* As of now no need to look into a response. If it's required
* we'll explore later on */
return MMC_BOOT_E_SUCCESS;
}
/*
* Send command to set block length.
*/
static unsigned int mmc_boot_set_block_len( struct mmc_boot_card* card,
unsigned int block_len )
{
struct mmc_boot_command cmd;
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
/* basic check */
if( card == NULL )
{
return MMC_BOOT_E_INVAL;
}
memset( (struct mmc_boot_command *)&cmd, 0,
sizeof(struct mmc_boot_command) );
/* CMD16 Format:
* [31:0] block length
*/
cmd.cmd_index = CMD16_SET_BLOCKLEN;
cmd.argument = block_len;
cmd.cmd_type = MMC_BOOT_CMD_ADDRESS;
cmd.resp_type = MMC_BOOT_RESP_R1;
/* send command */
mmc_ret = mmc_boot_send_command( &cmd );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
/* If blocklength is larger than 512 bytes,
* the card sets BLOCK_LEN_ERROR bit. */
if( cmd.resp[0] & MMC_BOOT_R1_BLOCK_LEN_ERR )
{
return MMC_BOOT_E_BLOCKLEN_ERR;
}
return MMC_BOOT_E_SUCCESS;
}
/*
* Requests the card to stop transmission of data.
*/
static unsigned int mmc_boot_send_stop_transmission( struct mmc_boot_card* card,
unsigned int prg_enabled )
{
struct mmc_boot_command cmd;
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
/* basic check */
if( card == NULL )
{
return MMC_BOOT_E_INVAL;
}
memset( (struct mmc_boot_command *)&cmd, 0,
sizeof(struct mmc_boot_command) );
/* CMD12 Format:
* [31:0] stuff bits
*/
cmd.cmd_index = CMD12_STOP_TRANSMISSION;
cmd.argument = 0;
cmd.cmd_type = MMC_BOOT_CMD_ADDRESS;
cmd.resp_type = MMC_BOOT_RESP_R1B;
cmd.xfer_mode = MMC_BOOT_XFER_MODE_BLOCK;
cmd.prg_enabled = prg_enabled;
/* send command */
mmc_ret = mmc_boot_send_command( &cmd );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
return MMC_BOOT_E_SUCCESS;
}
/*
* Get the card's current status
*/
static unsigned int mmc_boot_get_card_status( struct mmc_boot_card* card,
unsigned int prg_enabled, unsigned int* status )
{
struct mmc_boot_command cmd;
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
/* basic check */
if( card == NULL )
{
return MMC_BOOT_E_INVAL;
}
memset( (struct mmc_boot_command *)&cmd, 0,
sizeof(struct mmc_boot_command) );
/* CMD13 Format:
* [31:16] RCA
* [15:0] stuff bits
*/
cmd.cmd_index = CMD13_SEND_STATUS;
cmd.argument = card->rca << 16;
cmd.cmd_type = MMC_BOOT_CMD_ADDRESS;
cmd.resp_type = MMC_BOOT_RESP_R1;
cmd.prg_enabled = prg_enabled;
/* send command */
mmc_ret = mmc_boot_send_command( &cmd );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
/* Checking ADDR_OUT_OF_RANGE error in CMD13 response */
if(IS_ADDR_OUT_OF_RANGE(cmd.resp[0]))
{
return MMC_BOOT_E_FAILURE;
}
*status = cmd.resp[0];
return MMC_BOOT_E_SUCCESS;
}
/*
* Decode type of error caused during read and write
*/
static unsigned int mmc_boot_status_error(unsigned mmc_status)
{
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
/* If DATA_CRC_FAIL bit is set to 1 then CRC error was detected by
card/device during the data transfer */
if( mmc_status & MMC_BOOT_MCI_STAT_DATA_CRC_FAIL )
{
mmc_ret = MMC_BOOT_E_DATA_CRC_FAIL;
}
/* If DATA_TIMEOUT bit is set to 1 then the data transfer time exceeded
the data timeout period without completing the transfer */
else if( mmc_status & MMC_BOOT_MCI_STAT_DATA_TIMEOUT )
{
mmc_ret = MMC_BOOT_E_DATA_TIMEOUT;
}
/* If RX_OVERRUN bit is set to 1 then SDCC2 tried to receive data from
the card before empty storage for new received data was available.
Verify that bit FLOW_ENA in MCI_CLK is set to 1 during the data xfer.*/
else if( mmc_status & MMC_BOOT_MCI_STAT_RX_OVRRUN )
{
/* Note: We've set FLOW_ENA bit in MCI_CLK to 1. so no need to verify
for now */
mmc_ret = MMC_BOOT_E_RX_OVRRUN;
}
/* If TX_UNDERRUN bit is set to 1 then SDCC2 tried to send data to
the card before new data for sending was available. Verify that bit
FLOW_ENA in MCI_CLK is set to 1 during the data xfer.*/
else if( mmc_status & MMC_BOOT_MCI_STAT_TX_UNDRUN )
{
/* Note: We've set FLOW_ENA bit in MCI_CLK to 1.so skipping it now*/
mmc_ret = MMC_BOOT_E_RX_OVRRUN;
}
return mmc_ret;
}
/*
* Send ext csd command.
*/
static unsigned int mmc_boot_send_ext_cmd (struct mmc_boot_card* card, unsigned char* buf)
{
struct mmc_boot_command cmd;
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
unsigned int mmc_reg = 0;
unsigned int* mmc_ptr = (unsigned int *)buf;
memset(buf,0, 512);
/* basic check */
if( card == NULL )
{
return MMC_BOOT_E_INVAL;
}
/* set block len */
if( (card->type != MMC_BOOT_TYPE_MMCHC) && (card->type != MMC_BOOT_TYPE_SDHC) )
{
mmc_ret = mmc_boot_set_block_len( card, 512);
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "Error No.%d: Failure setting block length for Card (RCA:%s)\n",
mmc_ret, (char *)(card->rca) );
return mmc_ret;
}
}
/* Set the FLOW_ENA bit of MCI_CLK register to 1 */
mmc_reg = readl( MMC_BOOT_MCI_CLK );
mmc_reg |= MMC_BOOT_MCI_CLK_ENA_FLOW ;
writel( mmc_reg, MMC_BOOT_MCI_CLK );
/* Write data timeout period to MCI_DATA_TIMER register. */
/* Data timeout period should be in card bus clock periods */
mmc_reg =0xFFFFFFFF;
writel( mmc_reg, MMC_BOOT_MCI_DATA_TIMER );
writel( 512, MMC_BOOT_MCI_DATA_LENGTH );
/* Set appropriate fields and write the MCI_DATA_CTL register. */
/* Set ENABLE bit to 1 to enable the data transfer. */
mmc_reg = MMC_BOOT_MCI_DATA_ENABLE | MMC_BOOT_MCI_DATA_DIR | (512 << MMC_BOOT_MCI_BLKSIZE_POS);
#if MMC_BOOT_ADM
mmc_reg |= MMC_BOOT_MCI_DATA_DM_ENABLE;
#endif
writel( mmc_reg, MMC_BOOT_MCI_DATA_CTL );
memset( (struct mmc_boot_command *)&cmd, 0,
sizeof(struct mmc_boot_command) );
/* CMD8 */
cmd.cmd_index = CMD8_SEND_EXT_CSD;
cmd.cmd_type = MMC_BOOT_CMD_ADDRESS;
cmd.resp_type = MMC_BOOT_RESP_R1;
cmd.xfer_mode = MMC_BOOT_XFER_MODE_BLOCK;
/* send command */
mmc_ret = mmc_boot_send_command( &cmd );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
/* Read the transfer data from SDCC FIFO. */
mmc_ret = mmc_boot_fifo_data_transfer(mmc_ptr, 512, MMC_BOOT_DATA_READ);
return mmc_ret;
}
/*
* Switch command
*/
static unsigned int mmc_boot_switch_cmd (struct mmc_boot_card* card,
unsigned access,
unsigned index,
unsigned value)
{
struct mmc_boot_command cmd;
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
/* basic check */
if( card == NULL )
{
return MMC_BOOT_E_INVAL;
}
memset( (struct mmc_boot_command *)&cmd, 0,
sizeof(struct mmc_boot_command) );
/* CMD6 Format:
* [31:26] set to 0
* [25:24] access
* [23:16] index
* [15:8] value
* [7:3] set to 0
* [2:0] cmd set
*/
cmd.cmd_index = CMD6_SWITCH_FUNC;
cmd.argument |= (access << 24);
cmd.argument |= (index << 16);
cmd.argument |= (value << 8);
cmd.cmd_type = MMC_BOOT_CMD_ADDRESS;
cmd.resp_type = MMC_BOOT_RESP_R1B;
mmc_ret = mmc_boot_send_command( &cmd );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
return MMC_BOOT_E_SUCCESS;
}
/*
* A command to set the data bus width for card. Set width to either
*/
static unsigned int mmc_boot_set_bus_width( struct mmc_boot_card* card,
unsigned int width )
{
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
unsigned int mmc_reg = 0;
unsigned int mmc_width = 0;
unsigned int status;
unsigned int wait_count = 100;
if( width != MMC_BOOT_BUS_WIDTH_1_BIT)
{
mmc_width = width-1;
}
mmc_ret = mmc_boot_switch_cmd(card, MMC_BOOT_ACCESS_WRITE,
MMC_BOOT_EXT_CMMC_BUS_WIDTH, mmc_width);
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
/* Wait for the card to complete the switch command processing */
do
{
mmc_ret = mmc_boot_get_card_status(card, 0, &status);
if(mmc_ret != MMC_BOOT_E_SUCCESS)
{
return mmc_ret;
}
wait_count--;
if(wait_count == 0)
{
return MMC_BOOT_E_FAILURE;
}
}while( MMC_BOOT_CARD_STATUS(status) == MMC_BOOT_PROG_STATE );
/* set MCI_CLK accordingly */
mmc_reg = readl( MMC_BOOT_MCI_CLK );
mmc_reg &= ~MMC_BOOT_MCI_CLK_WIDEBUS_MODE;
if ( width == MMC_BOOT_BUS_WIDTH_1_BIT )
{
mmc_reg |= MMC_BOOT_MCI_CLK_WIDEBUS_1_BIT;
}
else if (width == MMC_BOOT_BUS_WIDTH_4_BIT )
{
mmc_reg |= MMC_BOOT_MCI_CLK_WIDEBUS_4_BIT;
}
else if (width == MMC_BOOT_BUS_WIDTH_8_BIT )
{
mmc_reg |= MMC_BOOT_MCI_CLK_WIDEBUS_8_BIT;
}
writel( mmc_reg, MMC_BOOT_MCI_CLK );
mdelay(10); // Giving some time to card to stabilize.
return MMC_BOOT_E_SUCCESS;
}
/*
* A command to start data read from card. Either a single block or
* multiple blocks can be read. Multiple blocks read will continuously
* transfer data from card to host unless requested to stop by issuing
* CMD12 - STOP_TRANSMISSION.
*/
static unsigned int mmc_boot_send_read_command( struct mmc_boot_card* card,
unsigned int xfer_type,
unsigned int data_addr )
{
struct mmc_boot_command cmd;
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
/* basic check */
if( card == NULL )
{
return MMC_BOOT_E_INVAL;
}
memset( (struct mmc_boot_command *)&cmd, 0,
sizeof(struct mmc_boot_command) );
/* CMD17/18 Format:
* [31:0] Data Address
*/
if( xfer_type == MMC_BOOT_XFER_MULTI_BLOCK )
{
cmd.cmd_index = CMD18_READ_MULTIPLE_BLOCK;
}
else
{
cmd.cmd_index = CMD17_READ_SINGLE_BLOCK;
}
cmd.argument = data_addr;
cmd.cmd_type = MMC_BOOT_CMD_ADDRESS;
cmd.resp_type = MMC_BOOT_RESP_R1;
/* send command */
mmc_ret = mmc_boot_send_command( &cmd );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
/* Response contains 32 bit Card status. Here we'll check
BLOCK_LEN_ERROR and ADDRESS_ERROR */
if( cmd.resp[0] & MMC_BOOT_R1_BLOCK_LEN_ERR )
{
return MMC_BOOT_E_BLOCKLEN_ERR;
}
/* Misaligned address not matching block length */
if( cmd.resp[0] & MMC_BOOT_R1_ADDR_ERR )
{
return MMC_BOOT_E_ADDRESS_ERR;
}
return MMC_BOOT_E_SUCCESS;
}
/*
* A command to start data write to card. Either a single block or
* multiple blocks can be written. Multiple block write will continuously
* transfer data from host to card unless requested to stop by issuing
* CMD12 - STOP_TRANSMISSION.
*/
static unsigned int mmc_boot_send_write_command( struct mmc_boot_card* card,
unsigned int xfer_type,
unsigned int data_addr )
{
struct mmc_boot_command cmd;
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
/* basic check */
if( card == NULL )
{
return MMC_BOOT_E_INVAL;
}
memset( (struct mmc_boot_command *)&cmd, 0,
sizeof(struct mmc_boot_command) );
/* CMD24/25 Format:
* [31:0] Data Address
*/
if( xfer_type == MMC_BOOT_XFER_MULTI_BLOCK )
{
cmd.cmd_index = CMD25_WRITE_MULTIPLE_BLOCK;
}
else
{
cmd.cmd_index = CMD24_WRITE_SINGLE_BLOCK;
}
cmd.argument = data_addr;
cmd.cmd_type = MMC_BOOT_CMD_ADDRESS;
cmd.resp_type = MMC_BOOT_RESP_R1;
/* send command */
mmc_ret = mmc_boot_send_command( &cmd );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
/* Response contains 32 bit Card status. Here we'll check
BLOCK_LEN_ERROR and ADDRESS_ERROR */
if( cmd.resp[0] & MMC_BOOT_R1_BLOCK_LEN_ERR )
{
return MMC_BOOT_E_BLOCKLEN_ERR;
}
/* Misaligned address not matching block length */
if( cmd.resp[0] & MMC_BOOT_R1_ADDR_ERR )
{
return MMC_BOOT_E_ADDRESS_ERR;
}
return MMC_BOOT_E_SUCCESS;
}
/*
* Write data_len data to address specified by data_addr. data_len is
* multiple of blocks for block data transfer.
*/
unsigned int mmc_boot_write_to_card( struct mmc_boot_host* host,
struct mmc_boot_card* card,
unsigned long long data_addr,
unsigned int data_len,
unsigned int* in )
{
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
unsigned int mmc_status = 0;
unsigned int mmc_reg = 0;
unsigned int addr;
unsigned int xfer_type;
unsigned int status;
if( ( host == NULL ) || ( card == NULL ) )
{
return MMC_BOOT_E_INVAL;
}
/* Set block length. High Capacity MMC/SD card uses fixed 512 bytes block
length. So no need to send CMD16. */
if( (card->type != MMC_BOOT_TYPE_MMCHC) && (card->type != MMC_BOOT_TYPE_SDHC) )
{
mmc_ret = mmc_boot_set_block_len( card, card->wr_block_len );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "Error No.%d: Failure setting block length for Card\
(RCA:%s)\n", mmc_ret, (char *)(card->rca) );
return mmc_ret;
}
}
/* use multi-block mode to transfer for data larger than a block */
xfer_type = (data_len > card->rd_block_len) ? MMC_BOOT_XFER_MULTI_BLOCK :
MMC_BOOT_XFER_SINGLE_BLOCK;
/* For MMCHC/SDHC data address is specified in unit of 512B */
addr = ( (card->type != MMC_BOOT_TYPE_MMCHC) && (card->type != MMC_BOOT_TYPE_SDHC) )
? (unsigned int) data_addr : (unsigned int) (data_addr / 512);
/* Set the FLOW_ENA bit of MCI_CLK register to 1 */
mmc_reg = readl( MMC_BOOT_MCI_CLK );
mmc_reg |= MMC_BOOT_MCI_CLK_ENA_FLOW ;
writel( mmc_reg, MMC_BOOT_MCI_CLK );
/* Write data timeout period to MCI_DATA_TIMER register */
/* Data timeout period should be in card bus clock periods */
/*TODO: Fix timeout value*/
mmc_reg = 0xFFFFFFFF;
writel( mmc_reg, MMC_BOOT_MCI_DATA_TIMER );
/* Write the total size of the transfer data to MCI_DATA_LENGTH register */
writel( data_len, MMC_BOOT_MCI_DATA_LENGTH );
/* Send command to the card/device in order to start the write data xfer.
The possible commands are CMD24/25/53/60/61 */
mmc_ret = mmc_boot_send_write_command( card, xfer_type, addr );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "Error No.%d: Failure sending write command to the\
Card(RCA:%x)\n", mmc_ret, card->rca );
return mmc_ret;
}
/* Set appropriate fields and write the MCI_DATA_CTL register */
/* Set ENABLE bit to 1 to enable the data transfer. */
mmc_reg = 0;
mmc_reg |= MMC_BOOT_MCI_DATA_ENABLE;
/* Clear DIRECTION bit to 0 to enable transfer from host to card */
/* Clear MODE bit to 0 to enable block oriented data transfer. For
MMC cards only, if stream data transfer mode is desired, set
MODE bit to 1. */
/* Set DM_ENABLE bit to 1 in order to enable DMA, otherwise set 0 */
#if MMC_BOOT_ADM
mmc_reg |= MMC_BOOT_MCI_DATA_DM_ENABLE;
#endif
/* Write size of block to be used during the data transfer to
BLOCKSIZE field */
mmc_reg |= card->wr_block_len << MMC_BOOT_MCI_BLKSIZE_POS;
writel( mmc_reg, MMC_BOOT_MCI_DATA_CTL );
/* write data to FIFO */
mmc_ret = mmc_boot_fifo_data_transfer(in, data_len, MMC_BOOT_DATA_WRITE);
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "Error No.%d: Failure on data transfer from the \
Card(RCA:%x)\n", mmc_ret, card->rca );
/* In case of any failure happening for multi block transfer */
if( xfer_type == MMC_BOOT_XFER_MULTI_BLOCK )
mmc_boot_send_stop_transmission( card, 1 );
return mmc_ret;
}
/* Send command to the card/device in order to poll the de-assertion of
card/device BUSY condition. It is important to set PROG_ENA bit in
MCI_CLK register before sending the command. Possible commands are
CMD12/13. */
if( xfer_type == MMC_BOOT_XFER_MULTI_BLOCK )
{
mmc_ret = mmc_boot_send_stop_transmission( card, 1 );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "Error No.%d: Failure sending Stop Transmission \
command to the Card(RCA:%x)\n", mmc_ret, card->rca );
return mmc_ret;
}
}
else
{
mmc_ret = mmc_boot_get_card_status( card, 1, &status );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "Error No.%d: Failure getting card status of Card(RCA:%x)\n",
mmc_ret, card->rca );
return mmc_ret;
}
}
/* Wait for interrupt or poll on PROG_DONE bit of MCI_STATUS register. If
PROG_DONE bit is set to 1 it means that the card finished it programming
and stopped driving DAT0 line to 0 */
do
{
mmc_status = readl( MMC_BOOT_MCI_STATUS );
if( mmc_status & MMC_BOOT_MCI_STAT_PROG_DONE )
{
break;
}
} while(1);
return MMC_BOOT_E_SUCCESS;
}
/*
* Adjust the interface speed to optimal speed
*/
static unsigned int mmc_boot_adjust_interface_speed( struct mmc_boot_host* host,
struct mmc_boot_card* card )
{
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
unsigned int status;
unsigned int wait_count = 100;
/* Setting HS_TIMING in EXT_CSD (CMD6) */
mmc_ret = mmc_boot_switch_cmd(card, MMC_BOOT_ACCESS_WRITE,
MMC_BOOT_EXT_CMMC_HS_TIMING, 1);
if(mmc_ret!= MMC_BOOT_E_SUCCESS)
{
return mmc_ret;
}
/* Wait for the card to complete the switch command processing */
do
{
mmc_ret = mmc_boot_get_card_status(card, 0, &status);
if(mmc_ret != MMC_BOOT_E_SUCCESS)
{
return mmc_ret;
}
wait_count--;
if(wait_count == 0)
{
return MMC_BOOT_E_FAILURE;
}
}while( MMC_BOOT_CARD_STATUS(status) == MMC_BOOT_PROG_STATE );
clock_config_mmc(mmc_slot, MMC_CLK_50MHZ);
host->mclk_rate = MMC_CLK_50MHZ;
return MMC_BOOT_E_SUCCESS;
}
static unsigned int mmc_boot_set_block_count( struct mmc_boot_card* card,
unsigned int block_count )
{
struct mmc_boot_command cmd;
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
/* basic check */
if( card == NULL )
{
return MMC_BOOT_E_INVAL;
}
memset( (struct mmc_boot_command *)&cmd, 0,
sizeof(struct mmc_boot_command) );
/* CMD23 Format:
* [15:0] number of blocks
*/
cmd.cmd_index = CMD23_SET_BLOCK_COUNT;
cmd.argument = block_count;
cmd.cmd_type = MMC_BOOT_CMD_ADDRESS;
cmd.resp_type = MMC_BOOT_RESP_R1;
/* send command */
mmc_ret = mmc_boot_send_command( &cmd );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
if( cmd.resp[0] & MMC_BOOT_R1_OUT_OF_RANGE)
{
return MMC_BOOT_E_BLOCKLEN_ERR;
}
return MMC_BOOT_E_SUCCESS;
}
/*
* Reads a data of data_len from the address specified. data_len
* should be multiple of block size for block data transfer.
*/
unsigned int mmc_boot_read_from_card( struct mmc_boot_host* host,
struct mmc_boot_card* card,
unsigned long long data_addr,
unsigned int data_len,
unsigned int* out )
{
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
unsigned int mmc_reg = 0;
unsigned int xfer_type;
unsigned int addr = 0;
unsigned char open_ended_read = 1;
if ( ( host == NULL ) || ( card == NULL ) )
{
return MMC_BOOT_E_INVAL;
}
/* Set block length. High Capacity MMC/SD card uses fixed 512 bytes block
length. So no need to send CMD16. */
if ( (card->type != MMC_BOOT_TYPE_MMCHC) && (card->type != MMC_BOOT_TYPE_SDHC) )
{
mmc_ret = mmc_boot_set_block_len( card, card->rd_block_len );
if ( mmc_ret != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "Error No.%d: Failure setting block length for Card (RCA:%s)\n",
mmc_ret, (char *)(card->rca) );
return mmc_ret;
}
}
/* use multi-block mode to transfer for data larger than a block */
xfer_type = (data_len > card->rd_block_len) ? MMC_BOOT_XFER_MULTI_BLOCK :
MMC_BOOT_XFER_SINGLE_BLOCK;
if(xfer_type == MMC_BOOT_XFER_MULTI_BLOCK)
{
if( (card->type == MMC_BOOT_TYPE_MMCHC) || (card->type == MMC_BOOT_TYPE_STD_MMC) )
{
/* Virtio model does not support open-ended multi-block reads.
* So, block count must be set before sending read command.
* All SD cards do not support this command. Restrict this to MMC.
*/
mmc_ret = mmc_boot_set_block_count( card, data_len/(card->rd_block_len));
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "Error No.%d: Failure setting read block count for Card (RCA:%s)\n",
mmc_ret, (char *)(card->rca) );
return mmc_ret;
}
open_ended_read = 0;
}
}
/* Set the FLOW_ENA bit of MCI_CLK register to 1 */
/* Note: It's already enabled */
/* If Data Mover is used for data transfer then prepare Command
List Entry and enable the Data mover to work with SDCC2 */
/* Write data timeout period to MCI_DATA_TIMER register. */
/* Data timeout period should be in card bus clock periods */
mmc_reg = (unsigned long)(card->rd_timeout_ns / 1000000) *
(host->mclk_rate / 1000);
mmc_reg += 1000; // add some extra clock cycles to be safe
mmc_reg = mmc_reg/2;
writel( mmc_reg, MMC_BOOT_MCI_DATA_TIMER );
/* Write the total size of the transfer data to MCI_DATA_LENGTH
register. For block xfer it must be multiple of the block
size. */
writel( data_len, MMC_BOOT_MCI_DATA_LENGTH );
/* For MMCHC/SDHC data address is specified in unit of 512B */
addr = ( (card->type != MMC_BOOT_TYPE_MMCHC) && (card->type != MMC_BOOT_TYPE_SDHC) )
? (unsigned int) data_addr :(unsigned int) (data_addr / 512);
/* Set appropriate fields and write the MCI_DATA_CTL register. */
/* Set ENABLE bit to 1 to enable the data transfer. */
mmc_reg = 0;
mmc_reg |= MMC_BOOT_MCI_DATA_ENABLE;
/* Clear DIRECTION bit to 1 to enable transfer from card to host */
mmc_reg |= MMC_BOOT_MCI_DATA_DIR;
/* Clear MODE bit to 0 to enable block oriented data transfer. For
MMC cards only, if stream data transfer mode is desired, set
MODE bit to 1. */
/* If DMA is to be used, Set DM_ENABLE bit to 1 */
#if MMC_BOOT_ADM
mmc_reg |= MMC_BOOT_MCI_DATA_DM_ENABLE;
#endif
/* Write size of block to be used during the data transfer to
BLOCKSIZE field */
mmc_reg |= (card->rd_block_len << MMC_BOOT_MCI_BLKSIZE_POS);
writel( mmc_reg, MMC_BOOT_MCI_DATA_CTL );
/* Send command to the card/device in order to start the read data
transfer. Possible commands: CMD17/18/53/60/61. */
mmc_ret = mmc_boot_send_read_command( card, xfer_type, addr );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "Error No.%d: Failure sending read command to the Card(RCA:%x)\n",
mmc_ret, card->rca );
return mmc_ret;
}
/* Read the transfer data from SDCC FIFO. */
mmc_ret = mmc_boot_fifo_data_transfer(out, data_len, MMC_BOOT_DATA_READ);
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "Error No.%d: Failure on data transfer from the \
Card(RCA:%x)\n", mmc_ret, card->rca );
return mmc_ret;
}
/* In case a multiple block transfer was performed, send CMD12 to the
card/device in order to indicate the end of read data transfer */
if( (xfer_type == MMC_BOOT_XFER_MULTI_BLOCK) && open_ended_read )
{
mmc_ret = mmc_boot_send_stop_transmission( card, 0 );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "Error No.%d: Failure sending Stop Transmission \
command to the Card(RCA:%x)\n", mmc_ret, card->rca );
return mmc_ret;
}
}
return MMC_BOOT_E_SUCCESS;
}
/*
* Initialize host structure, set and enable clock-rate and power mode.
*/
unsigned int mmc_boot_init( struct mmc_boot_host* host )
{
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
unsigned int mmc_pwr = 0;
host->ocr = MMC_BOOT_OCR_27_36 | MMC_BOOT_OCR_SEC_MODE;
host->cmd_retry = MMC_BOOT_MAX_COMMAND_RETRY;
/* Initialize any clocks needed for SDC controller */
clock_init_mmc(mmc_slot);
/* Setup initial freq to 400KHz */
clock_config_mmc(mmc_slot, MMC_CLK_400KHZ);
host->mclk_rate = MMC_CLK_400KHZ;
/* set power mode*/
/* give some time to reach minimum voltate */
mdelay(2);
mmc_pwr &= ~MMC_BOOT_MCI_PWR_UP;
mmc_pwr |= MMC_BOOT_MCI_PWR_ON;
mmc_pwr |= MMC_BOOT_MCI_PWR_UP;
writel( mmc_pwr, MMC_BOOT_MCI_POWER );
/* some more time to stabilize voltage */
mdelay(2);
return MMC_BOOT_E_SUCCESS;
}
/*
* Performs card identification process:
* - get card's unique identification number (CID)
* - get(for sd)/set (for mmc) relative card address (RCA)
* - get CSD
* - select the card, thus transitioning it to Transfer State
* - get Extended CSD (for mmc)
*/
static unsigned int mmc_boot_identify_card( struct mmc_boot_host* host,
struct mmc_boot_card* card)
{
unsigned int mmc_return = MMC_BOOT_E_SUCCESS;
unsigned int raw_csd[4];
/* basic check */
if( ( host == NULL ) || ( card == NULL ) )
{
return MMC_BOOT_E_INVAL;
}
/* Ask card to send its unique card identification (CID) number (CMD2) */
mmc_return = mmc_boot_all_send_cid( card );
if( mmc_return != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "Error No. %d: Failure getting card's CID number!\n",
mmc_return );
return mmc_return;
}
/* Ask card to send a relative card address (RCA) (CMD3) */
mmc_return = mmc_boot_send_relative_address( card );
if( mmc_return != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "Error No. %d: Failure getting card's RCA!\n",
mmc_return );
return mmc_return;
}
/* Get card's CSD register (CMD9) */
mmc_return = mmc_boot_send_csd( card, raw_csd );
if( mmc_return != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "Error No.%d: Failure getting card's CSD information!\n",
mmc_return );
return mmc_return;
}
/* Select the card (CMD7) */
mmc_return = mmc_boot_select_card( card, card->rca );
if( mmc_return != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "Error No.%d: Failure selecting the Card with RCA: %x\n",
mmc_return, card->rca );
return mmc_return;
}
/* Set the card status as active */
card->status = MMC_BOOT_STATUS_ACTIVE;
if( (card->type == MMC_BOOT_TYPE_STD_MMC) || (card->type == MMC_BOOT_TYPE_MMCHC))
{
/* For MMC cards, also get the extended csd */
mmc_return = mmc_boot_send_ext_cmd( card, ext_csd_buf);
if( mmc_return != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "Error No.%d: Failure getting card's ExtCSD information!\n",
mmc_return );
return mmc_return;
}
}
/* Decode and save the CSD register */
mmc_return = mmc_boot_decode_and_save_csd( card, raw_csd );
if( mmc_return != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "Error No.%d: Failure decoding card's CSD information!\n",
mmc_return );
return mmc_return;
}
/* Once CSD is received, set read and write timeout value now itself */
mmc_return = mmc_boot_set_read_timeout( host, card );
if( mmc_return != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "Error No.%d: Failure setting Read Timeout value!\n",
mmc_return );
return mmc_return;
}
mmc_return = mmc_boot_set_write_timeout( host, card );
if( mmc_return != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "Error No.%d: Failure setting Write Timeout value!\n",
mmc_return );
return mmc_return;
}
return MMC_BOOT_E_SUCCESS;
}
static unsigned int mmc_boot_send_app_cmd(unsigned int rca)
{
struct mmc_boot_command cmd;
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
memset( (struct mmc_boot_command *)&cmd, 0,
sizeof(struct mmc_boot_command) );
cmd.cmd_index = CMD55_APP_CMD;
cmd.argument = (rca << 16);
cmd.cmd_type = MMC_BOOT_CMD_ADDRESS;
cmd.resp_type = MMC_BOOT_RESP_R1;
mmc_ret = mmc_boot_send_command(&cmd);
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
return MMC_BOOT_E_SUCCESS;
}
static unsigned int mmc_boot_sd_init_card(struct mmc_boot_card* card)
{
unsigned int i,mmc_ret;
unsigned int ocr_cmd_arg;
struct mmc_boot_command cmd;
memset( (struct mmc_boot_command *)&cmd, 0,
sizeof(struct mmc_boot_command) );
/* Send CMD8 to set interface condition */
for(i=0;i<3;i++)
{
cmd.cmd_index = CMD8_SEND_IF_COND;
cmd.argument = MMC_BOOT_SD_HC_VOLT_SUPPLIED;
cmd.cmd_type = MMC_BOOT_CMD_BCAST_W_RESP;
cmd.resp_type = MMC_BOOT_RESP_R7;
mmc_ret = mmc_boot_send_command(&cmd);
if( mmc_ret == MMC_BOOT_E_SUCCESS )
{
if(cmd.resp[0] != MMC_BOOT_SD_HC_VOLT_SUPPLIED)
return MMC_BOOT_E_FAILURE;
/* Set argument for ACMD41 */
ocr_cmd_arg = MMC_BOOT_SD_NEG_OCR | MMC_BOOT_SD_HC_HCS;
break;
}
mdelay(1);
}
/* Send ACMD41 to set operating condition */
/* Try for a max of 1 sec as per spec */
for(i=0;i<20;i++)
{
mmc_ret = mmc_boot_send_app_cmd(0);
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
cmd.cmd_index = ACMD41_SEND_OP_COND;
cmd.argument = ocr_cmd_arg;
cmd.cmd_type = MMC_BOOT_CMD_BCAST_W_RESP;
cmd.resp_type = MMC_BOOT_RESP_R3;
mmc_ret = mmc_boot_send_command(&cmd);
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
else if (cmd.resp[0] & MMC_BOOT_SD_DEV_READY)
{
/* Check for HC */
if(cmd.resp[0] & (1 << 30))
{
card->type = MMC_BOOT_TYPE_SDHC;
}
else
{
card->type = MMC_BOOT_TYPE_STD_SD;
}
break;
}
mdelay(50);
}
return MMC_BOOT_E_SUCCESS;
}
/*
* Routine to initialize MMC card. It resets a card to idle state, verify operating
* voltage and set the card inready state.
*/
static unsigned int mmc_boot_init_card( struct mmc_boot_host* host,
struct mmc_boot_card* card )
{
unsigned int mmc_retry = 0;
unsigned int mmc_return = MMC_BOOT_E_SUCCESS;
/* basic check */
if( ( host == NULL ) || ( card == NULL ) )
{
return MMC_BOOT_E_INVAL;
}
/* 1. Card Reset - CMD0 */
mmc_return = mmc_boot_reset_cards();
if( mmc_return != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "Error No.:%d: Failure resetting MMC cards!\n", mmc_return);
return mmc_return;
}
/* 2. Card Initialization process */
/* Send CMD1 to identify and reject cards that do not match host's VDD range
profile. Cards sends its OCR register in response.
*/
mmc_retry = 0;
do
{
mmc_return = mmc_boot_send_op_cond( host, card );
/* Card returns busy status. We'll retry again! */
if( mmc_return == MMC_BOOT_E_CARD_BUSY )
{
mmc_retry++;
mdelay(1);
continue;
}
else if( mmc_return == MMC_BOOT_E_SUCCESS )
{
break;
}
else
{
dprintf(CRITICAL, "Error No. %d: Failure Initializing MMC Card!\n",
mmc_return );
/* Check for sD card */
mmc_return = mmc_boot_sd_init_card(card);
return mmc_return;
}
}while( mmc_retry < host->cmd_retry );
/* If card still returned busy status we are out of luck.
* Card cannot be initialized */
if( mmc_return == MMC_BOOT_E_CARD_BUSY )
{
dprintf(CRITICAL, "Error No. %d: Card has busy status set. \
Initialization not completed\n", mmc_return );
return MMC_BOOT_E_CARD_BUSY;
}
return MMC_BOOT_E_SUCCESS;
}
static unsigned int mmc_boot_set_sd_bus_width(struct mmc_boot_card* card, unsigned int width)
{
struct mmc_boot_command cmd;
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
unsigned int sd_reg;
mmc_ret = mmc_boot_send_app_cmd(card->rca);
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
memset( (struct mmc_boot_command *)&cmd, 0,
sizeof(struct mmc_boot_command) );
/* Send ACMD6 to set bus width */
cmd.cmd_index = ACMD6_SET_BUS_WIDTH;
/* 10 => 4 bit wide */
if ( width == MMC_BOOT_BUS_WIDTH_1_BIT )
{
cmd.argument = 0;
}
else if (width == MMC_BOOT_BUS_WIDTH_4_BIT )
{
cmd.argument = (1<<1);
}
cmd.cmd_type = MMC_BOOT_CMD_ADDRESS;
cmd.resp_type = MMC_BOOT_RESP_R1;
mmc_ret = mmc_boot_send_command(&cmd);
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
/* set MCI_CLK accordingly */
sd_reg = readl( MMC_BOOT_MCI_CLK );
sd_reg &= ~MMC_BOOT_MCI_CLK_WIDEBUS_MODE;
if ( width == MMC_BOOT_BUS_WIDTH_1_BIT )
{
sd_reg |= MMC_BOOT_MCI_CLK_WIDEBUS_1_BIT;
}
else if (width == MMC_BOOT_BUS_WIDTH_4_BIT )
{
sd_reg |= MMC_BOOT_MCI_CLK_WIDEBUS_4_BIT;
}
else if (width == MMC_BOOT_BUS_WIDTH_8_BIT )
{
sd_reg |= MMC_BOOT_MCI_CLK_WIDEBUS_8_BIT;
}
writel( sd_reg, MMC_BOOT_MCI_CLK );
mdelay(10); // Giving some time to card to stabilize.
return MMC_BOOT_E_SUCCESS;
}
static unsigned int mmc_boot_set_sd_hs(struct mmc_boot_host* host, struct mmc_boot_card* card)
{
unsigned char sw_buf[64];
unsigned int mmc_ret;
/* CMD6 is a data transfer command. sD card returns 512 bits of data*/
/* Refer 4.3.10 of sD card specification 3.0 */
mmc_ret = mmc_boot_read_reg(card,64,CMD6_SWITCH_FUNC,MMC_BOOT_SD_SWITCH_HS,
(unsigned int *)&sw_buf);
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
mdelay(1);
clock_config_mmc(mmc_slot, MMC_CLK_50MHZ);
host->mclk_rate = MMC_CLK_50MHZ;
return MMC_BOOT_E_SUCCESS;
}
/*
* Performs initialization and identification of all the MMC cards connected
* to the host.
*/
static unsigned int mmc_boot_init_and_identify_cards( struct mmc_boot_host* host, struct mmc_boot_card* card )
{
unsigned int mmc_return = MMC_BOOT_E_SUCCESS;
unsigned int status;
/* Basic check */
if( host == NULL )
{
return MMC_BOOT_E_INVAL;
}
/* Initialize MMC card structure */
card->status = MMC_BOOT_STATUS_INACTIVE;
card->rd_block_len = MMC_BOOT_RD_BLOCK_LEN;
card->wr_block_len = MMC_BOOT_WR_BLOCK_LEN;
/* Start initialization process (CMD0 & CMD1) */
mmc_return = mmc_boot_init_card( host, card );
if( mmc_return != MMC_BOOT_E_SUCCESS )
{
return mmc_return;
}
/* Identify (CMD2, CMD3 & CMD9) and select the card (CMD7) */
mmc_return = mmc_boot_identify_card( host, card );
if( mmc_return != MMC_BOOT_E_SUCCESS )
{
return mmc_return;
}
if(card->type == MMC_BOOT_TYPE_SDHC || card->type == MMC_BOOT_TYPE_STD_SD)
{
/* Setting sD card to high speed without checking card's capability.
Cards that do not support high speed may fail to boot */
mmc_return = mmc_boot_set_sd_hs(host, card);
if(mmc_return != MMC_BOOT_E_SUCCESS)
{
return mmc_return;
}
mmc_return = mmc_boot_set_sd_bus_width(card, MMC_BOOT_BUS_WIDTH_4_BIT);
if(mmc_return != MMC_BOOT_E_SUCCESS)
{
dprintf(CRITICAL,"Couldn't set 4bit mode for sD card\n");
mmc_return = mmc_boot_set_sd_bus_width(card, MMC_BOOT_BUS_WIDTH_1_BIT);
if(mmc_return != MMC_BOOT_E_SUCCESS)
{
dprintf(CRITICAL, "Error No.%d: Failed in setting bus width!\n",
mmc_return);
return mmc_return;
}
}
}
else
{
/* set interface speed */
mmc_return = mmc_boot_adjust_interface_speed( host, card );
if( mmc_return != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "Error No.%d: Error adjusting interface speed!\n",
mmc_return );
return mmc_return;
}
/* enable wide bus */
mmc_return = mmc_boot_set_bus_width( card, MMC_BOOT_BUS_WIDTH_4_BIT );
if( mmc_return != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "Error No.%d: Failure to set wide bus for Card(RCA:%x)\n",
mmc_return, card->rca );
return mmc_return;
}
}
/* Just checking whether we're in TRAN state after changing speed and bus width */
mmc_return = mmc_boot_get_card_status(card, 0, &status);
if(mmc_return != MMC_BOOT_E_SUCCESS)
{
return mmc_return;
}
if(MMC_BOOT_CARD_STATUS(status) != MMC_BOOT_TRAN_STATE)
return MMC_BOOT_E_FAILURE;
return MMC_BOOT_E_SUCCESS;
}
void mmc_display_ext_csd(void)
{
dprintf(SPEW, "part_config: %x\n", ext_csd_buf[179] );
dprintf(SPEW, "erase_group_def: %x\n", ext_csd_buf[175] );
dprintf(SPEW, "user_wp: %x\n", ext_csd_buf[171] );
}
void mmc_display_csd(void)
{
dprintf(SPEW, "erase_grpsize: %d\n", mmc_card.csd.erase_grp_size );
dprintf(SPEW, "erase_grpmult: %d\n", mmc_card.csd.erase_grp_mult );
dprintf(SPEW, "wp_grpsize: %d\n", mmc_card.csd.wp_grp_size );
dprintf(SPEW, "wp_grpen: %d\n", mmc_card.csd.wp_grp_enable );
dprintf(SPEW, "perm_wp: %d\n", mmc_card.csd.perm_wp );
dprintf(SPEW, "temp_wp: %d\n", mmc_card.csd.temp_wp );
}
/*
* Entry point to MMC boot process
*/
unsigned int mmc_boot_main(unsigned char slot, unsigned int base)
{
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
memset( (struct mmc_boot_host*)&mmc_host, 0, sizeof( struct mmc_boot_host ) );
memset( (struct mmc_boot_card*)&mmc_card, 0, sizeof(struct mmc_boot_card) );
mmc_slot = slot;
mmc_boot_mci_base = base;
/* Initialize necessary data structure and enable/set clock and power */
dprintf(SPEW," Initializing MMC host data structure and clock!\n" );
mmc_ret = mmc_boot_init( &mmc_host );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "MMC Boot: Error Initializing MMC Card!!!\n" );
return MMC_BOOT_E_FAILURE;
}
/* Initialize and identify cards connected to host */
mmc_ret = mmc_boot_init_and_identify_cards( &mmc_host, &mmc_card );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "MMC Boot: Failed detecting MMC/SDC @ slot%d\n",slot);
return MMC_BOOT_E_FAILURE;
}
mmc_display_csd();
mmc_display_ext_csd();
mmc_ret = partition_read_table(&mmc_host, &mmc_card);
return mmc_ret;
}
/*
* MMC write function
*/
unsigned int mmc_write (unsigned long long data_addr, unsigned int data_len, unsigned int* in)
{
int val = 0;
unsigned int write_size = ((unsigned)(0xFFFFFF/512))*512;
unsigned offset = 0;
unsigned int *sptr = in;
if(data_len % 512)
data_len = ROUND_TO_PAGE(data_len, 511);
while(data_len > write_size)
{
val = mmc_boot_write_to_card( &mmc_host, &mmc_card, \
data_addr + offset, \
write_size, sptr);
if(val)
{
return val;
}
sptr += (write_size/sizeof(unsigned));
offset += write_size;
data_len -= write_size;
}
if (data_len)
{
val = mmc_boot_write_to_card( &mmc_host, &mmc_card, \
data_addr + offset, \
data_len, sptr);
}
return val;
}
unsigned int mmc_write_mbr_in_blocks(unsigned size, unsigned char *mbrImage)
{
unsigned int dtype;
unsigned int dfirstsec;
unsigned int ebrSectorOffset;
unsigned char *ebrImage;
unsigned char *lastAddress;
int idx, i;
unsigned int ret;
/* Write the first block */
ret = mmc_write(0, MMC_BOOT_RD_BLOCK_LEN, (unsigned int *) mbrImage);
if (ret)
{
dprintf(CRITICAL, "Failed to write mbr partition\n");
goto end;
}
dprintf(SPEW, "write of first MBR block ok\n");
/*
Loop through the MBR table to see if there is an EBR.
If found, then figure out where to write the first EBR
*/
idx = TABLE_ENTRY_0;
for (i = 0; i < 4; i++)
{
dtype = mbrImage[idx + i * TABLE_ENTRY_SIZE + OFFSET_TYPE];
if (MBR_EBR_TYPE == dtype)
{
dprintf(SPEW, "EBR found.\n");
break;
}
}
if (MBR_EBR_TYPE != dtype)
{
dprintf(SPEW, "No EBR in this image\n");
goto end;
}
/* EBR exists. Write each EBR block to mmc */
ebrImage = mbrImage + MMC_BOOT_RD_BLOCK_LEN;
ebrSectorOffset= GET_LWORD_FROM_BYTE(&mbrImage[idx + i * TABLE_ENTRY_SIZE + OFFSET_FIRST_SEC]);
dfirstsec = 0;
dprintf(SPEW, "first EBR to be written at sector 0x%X\n", dfirstsec);
lastAddress = mbrImage + size;
while (ebrImage < lastAddress)
{
dprintf(SPEW, "writing to 0x%X\n", (ebrSectorOffset + dfirstsec) * MMC_BOOT_RD_BLOCK_LEN);
ret = mmc_write((ebrSectorOffset + dfirstsec) * MMC_BOOT_RD_BLOCK_LEN,
MMC_BOOT_RD_BLOCK_LEN, (unsigned int *) ebrImage);
if (ret)
{
dprintf(CRITICAL, "Failed to write EBR block to sector 0x%X", dfirstsec);
goto end;
}
dfirstsec = GET_LWORD_FROM_BYTE(&ebrImage[TABLE_ENTRY_1 + OFFSET_FIRST_SEC]);
ebrImage += MMC_BOOT_RD_BLOCK_LEN;
}
dprintf(INFO, "MBR written to mmc successfully");
end:
return ret;
}
/* Write the MBR/EBR to the MMC. */
unsigned int mmc_write_mbr(unsigned size, unsigned char *mbrImage)
{
unsigned int ret;
/* Verify that passed in block is a valid MBR */
ret = partition_verify_mbr_signature(size, mbrImage);
if (ret)
{
goto end;
}
/* Write the MBR/EBR to mmc */
ret = mmc_write_mbr_in_blocks(size, mbrImage);
if (ret)
{
dprintf(CRITICAL, "Failed to write MBR block to mmc.\n" );
goto end;
}
/* Re-read the MBR partition into mbr table */
ret = mmc_boot_read_mbr( &mmc_host, &mmc_card );
if (ret)
{
dprintf(CRITICAL, "Failed to re-read mbr partition.\n");
goto end;
}
partition_dump();
end:
return ret;
}
unsigned int mmc_write_partition(unsigned size, unsigned char* partition)
{
unsigned int ret = MMC_BOOT_E_INVAL;
unsigned int partition_type;
if (partition == 0)
{
dprintf(CRITICAL, "NULL partition\n");
goto end;
}
ret = partition_get_type(size, partition, &partition_type);
if (ret != MMC_BOOT_E_SUCCESS)
{
goto end;
}
switch (partition_type)
{
case PARTITION_TYPE_MBR:
dprintf(INFO, "Writing MBR partition\n");
ret = mmc_write_mbr(size, partition);
break;
case PARTITION_TYPE_GPT:
dprintf(INFO, "Writing GPT partition\n");
dprintf(CRITICAL, "Flash of GPT not implemented\n");
ret = MMC_BOOT_E_INVAL;
break;
case PARTITION_TYPE_GPT_BACKUP:
dprintf(INFO, "Writing GPT backup partition\n");
dprintf(CRITICAL, "Flash of GPT backup not implemented\n");
ret = MMC_BOOT_E_INVAL;
break;
default:
dprintf(CRITICAL, "Invalid partition\n");
ret = MMC_BOOT_E_INVAL;
goto end;
}
end:
return ret;
}
/*
* MMC read function
*/
unsigned int mmc_read (unsigned long long data_addr, unsigned int* out, unsigned int data_len)
{
int val = 0;
val = mmc_boot_read_from_card( &mmc_host, &mmc_card, data_addr, data_len, out);
return val;
}
/*
* Function to read registers from MMC or SD card
*/
static unsigned int mmc_boot_read_reg(struct mmc_boot_card *card,
unsigned int data_len,
unsigned int command, unsigned int addr,
unsigned int *out)
{
struct mmc_boot_command cmd;
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
unsigned int mmc_reg = 0;
/* Set the FLOW_ENA bit of MCI_CLK register to 1 */
mmc_reg = readl( MMC_BOOT_MCI_CLK );
mmc_reg |= MMC_BOOT_MCI_CLK_ENA_FLOW ;
writel( mmc_reg, MMC_BOOT_MCI_CLK );
/* Write data timeout period to MCI_DATA_TIMER register. */
/* Data timeout period should be in card bus clock periods */
mmc_reg =0xFFFFFFFF;
writel( mmc_reg, MMC_BOOT_MCI_DATA_TIMER );
writel( data_len, MMC_BOOT_MCI_DATA_LENGTH );
/* Set appropriate fields and write the MCI_DATA_CTL register. */
/* Set ENABLE bit to 1 to enable the data transfer. */
mmc_reg = MMC_BOOT_MCI_DATA_ENABLE | MMC_BOOT_MCI_DATA_DIR | (data_len << MMC_BOOT_MCI_BLKSIZE_POS);
#if MMC_BOOT_ADM
mmc_reg |= MMC_BOOT_MCI_DATA_DM_ENABLE;
#endif
writel( mmc_reg, MMC_BOOT_MCI_DATA_CTL );
memset( (struct mmc_boot_command *)&cmd, 0,
sizeof(struct mmc_boot_command) );
cmd.cmd_index = command;
cmd.argument = addr;
cmd.cmd_type = MMC_BOOT_CMD_ADDRESS;
cmd.resp_type = MMC_BOOT_RESP_R1;
/* send command */
mmc_ret = mmc_boot_send_command( &cmd );
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
/* Read the transfer data from SDCC FIFO. */
mmc_ret = mmc_boot_fifo_data_transfer(out, data_len, MMC_BOOT_DATA_READ);
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
dprintf(CRITICAL, "Error No.%d: Failure on data transfer from the \
Card(RCA:%x)\n", mmc_ret, card->rca );
return mmc_ret;
}
return MMC_BOOT_E_SUCCESS;
}
/*
* Function to set/clear power-on write protection for the user area partitions
*/
static unsigned int mmc_boot_set_clr_power_on_wp_user(struct mmc_boot_card* card,
unsigned int addr,
unsigned int size,
unsigned char set_clear_wp)
{
struct mmc_boot_command cmd;
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
unsigned int wp_group_size, loop_count;
unsigned int status;
memset( (struct mmc_boot_command *)&cmd, 0,
sizeof(struct mmc_boot_command) );
/* Disabling PERM_WP for USER AREA (CMD6) */
mmc_ret = mmc_boot_switch_cmd(card, MMC_BOOT_ACCESS_WRITE,
MMC_BOOT_EXT_USER_WP,
MMC_BOOT_US_PERM_WP_DIS);
if(mmc_ret != MMC_BOOT_E_SUCCESS)
{
return mmc_ret;
}
/* Sending CMD13 to check card status */
do
{
mmc_ret = mmc_boot_get_card_status( card, 0 ,&status);
if(MMC_BOOT_CARD_STATUS(status) == MMC_BOOT_TRAN_STATE)
break;
} while( (mmc_ret == MMC_BOOT_E_SUCCESS) &&
(MMC_BOOT_CARD_STATUS(status) == MMC_BOOT_PROG_STATE));
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
mmc_ret = mmc_boot_send_ext_cmd (card,ext_csd_buf);
if(mmc_ret != MMC_BOOT_E_SUCCESS)
{
return mmc_ret;
}
/* Make sure power-on write protection for user area is not disabled
and permanent write protection for user area is not enabled */
if((IS_BIT_SET_EXT_CSD(MMC_BOOT_EXT_USER_WP, MMC_BOOT_US_PERM_WP_EN)) ||
(IS_BIT_SET_EXT_CSD(MMC_BOOT_EXT_USER_WP, MMC_BOOT_US_PWR_WP_DIS)))
{
return MMC_BOOT_E_FAILURE;
}
if(ext_csd_buf[MMC_BOOT_EXT_ERASE_GROUP_DEF])
{
/* wp_group_size = 512KB * HC_WP_GRP_SIZE * HC_ERASE_GRP_SIZE.
Getting write protect group size in sectors here. */
wp_group_size = (512*1024) * ext_csd_buf[MMC_BOOT_EXT_HC_WP_GRP_SIZE] *
ext_csd_buf[MMC_BOOT_EXT_HC_ERASE_GRP_SIZE] /
MMC_BOOT_WR_BLOCK_LEN;
}
else
{
/* wp_group_size = (WP_GRP_SIZE + 1) * (ERASE_GRP_SIZE + 1)
* (ERASE_GRP_MULT + 1).
This is defined as the number of write blocks directly */
wp_group_size = (card->csd.erase_grp_size + 1) *
(card->csd.erase_grp_mult + 1) *
(card->csd.wp_grp_size + 1);
}
if(wp_group_size == 0)
{
return MMC_BOOT_E_FAILURE;
}
/* Setting POWER_ON_WP for USER AREA (CMD6) */
mmc_ret = mmc_boot_switch_cmd(card, MMC_BOOT_ACCESS_WRITE,
MMC_BOOT_EXT_USER_WP,
MMC_BOOT_US_PWR_WP_EN);
if(mmc_ret != MMC_BOOT_E_SUCCESS)
{
return mmc_ret;
}
/* Sending CMD13 to check card status */
do
{
mmc_ret = mmc_boot_get_card_status( card, 0 ,&status);
if(MMC_BOOT_CARD_STATUS(status) == MMC_BOOT_TRAN_STATE)
break;
} while( (mmc_ret == MMC_BOOT_E_SUCCESS) &&
(MMC_BOOT_CARD_STATUS(status) == MMC_BOOT_PROG_STATE));
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
/* Calculating the loop count for sending SET_WRITE_PROTECT (CMD28)
or CLEAR_WRITE_PROTECT (CMD29).
We are write protecting the partitions in blocks of write protect
group sizes only */
if(size % wp_group_size)
{
loop_count = (size / wp_group_size) + 1;
}
else
{
loop_count = (size / wp_group_size);
}
if(set_clear_wp)
cmd.cmd_index = CMD28_SET_WRITE_PROTECT;
else
cmd.cmd_index = CMD29_CLEAR_WRITE_PROTECT;
cmd.cmd_type = MMC_BOOT_CMD_ADDRESS;
cmd.resp_type = MMC_BOOT_RESP_R1B;
for (unsigned int i = 0; i < loop_count; i++)
{
/* Sending CMD28 for each WP group size
address is in sectors already */
cmd.argument = (addr + (i * wp_group_size));
mmc_ret = mmc_boot_send_command( &cmd );
if(mmc_ret != MMC_BOOT_E_SUCCESS)
{
return mmc_ret;
}
/* Checking ADDR_OUT_OF_RANGE error in CMD28 response */
if(IS_ADDR_OUT_OF_RANGE(cmd.resp[0]))
{
return MMC_BOOT_E_FAILURE;
}
/* Sending CMD13 to check card status */
do
{
mmc_ret = mmc_boot_get_card_status( card, 0 ,&status);
if(MMC_BOOT_CARD_STATUS(status) == MMC_BOOT_TRAN_STATE)
break;
} while( (mmc_ret == MMC_BOOT_E_SUCCESS) &&
(MMC_BOOT_CARD_STATUS(status) == MMC_BOOT_PROG_STATE));
if( mmc_ret != MMC_BOOT_E_SUCCESS )
{
return mmc_ret;
}
}
return MMC_BOOT_E_SUCCESS;
}
/*
* Function to get Write Protect status of the given sector
*/
static unsigned int mmc_boot_get_wp_status (struct mmc_boot_card* card,
unsigned int sector)
{
unsigned int rc = MMC_BOOT_E_SUCCESS;
memset(wp_status_buf, 0, 8);
rc = mmc_boot_read_reg(card, 8, CMD31_SEND_WRITE_PROT_TYPE, sector,
(unsigned int *) wp_status_buf);
return rc;
}
/*
* Test Function for setting Write protect for given sector
*/
static unsigned int mmc_wp(unsigned int sector, unsigned int size,
unsigned char set_clear_wp)
{
unsigned int rc = MMC_BOOT_E_SUCCESS;
/* Checking whether group write protection feature is available */
if(mmc_card.csd.wp_grp_enable)
{
rc = mmc_boot_get_wp_status(&mmc_card,sector);
rc = mmc_boot_set_clr_power_on_wp_user(&mmc_card,sector,size,set_clear_wp);
rc = mmc_boot_get_wp_status(&mmc_card,sector);
return rc;
}
else
return MMC_BOOT_E_FAILURE;
}
void mmc_wp_test(void)
{
unsigned int mmc_ret=0;
mmc_ret = mmc_wp(0xE06000,0x5000,1);
}
unsigned mmc_get_psn(void)
{
return mmc_card.cid.psn;
}
/*
* Read/write data from/to SDC FIFO.
*/
static unsigned int mmc_boot_fifo_data_transfer(unsigned int* data_ptr,
unsigned int data_len,
unsigned char direction)
{
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
#if MMC_BOOT_ADM
adm_result_t ret;
adm_dir_t adm_dir;
if(direction == MMC_BOOT_DATA_READ)
{
adm_dir = ADM_MMC_READ;
}
else
{
adm_dir = ADM_MMC_WRITE;
}
ret = adm_transfer_mmc_data(mmc_slot,
(unsigned char*) data_ptr,
data_len,
adm_dir);
if(ret != ADM_RESULT_SUCCESS)
{
dprintf(CRITICAL, "MMC ADM transfer error: %d\n", ret);
mmc_ret = MMC_BOOT_E_FAILURE;
}
#else
if(direction == MMC_BOOT_DATA_READ)
{
mmc_ret = mmc_boot_fifo_read(data_ptr, data_len);
}
else
{
mmc_ret = mmc_boot_fifo_write(data_ptr, data_len);
}
#endif
return mmc_ret;
}
/*
* Read data to SDC FIFO.
*/
static unsigned int mmc_boot_fifo_read(unsigned int* mmc_ptr,
unsigned int data_len)
{
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
unsigned int mmc_status = 0;
unsigned int mmc_count = 0;
unsigned int read_error = MMC_BOOT_MCI_STAT_DATA_CRC_FAIL | \
MMC_BOOT_MCI_STAT_DATA_TIMEOUT | \
MMC_BOOT_MCI_STAT_RX_OVRRUN;
/* Read the data from the MCI_FIFO register as long as RXDATA_AVLBL
bit of MCI_STATUS register is set to 1 and bits DATA_CRC_FAIL,
DATA_TIMEOUT, RX_OVERRUN of MCI_STATUS register are cleared to 0.
Continue the reads until the whole transfer data is received */
do
{
mmc_ret = MMC_BOOT_E_SUCCESS;
mmc_status = readl( MMC_BOOT_MCI_STATUS );
if( mmc_status & read_error )
{
mmc_ret = mmc_boot_status_error(mmc_status);
break;
}
if( mmc_status & MMC_BOOT_MCI_STAT_RX_DATA_AVLBL )
{
unsigned read_count = 1;
if ( mmc_status & MMC_BOOT_MCI_STAT_RX_FIFO_HFULL)
{
read_count = MMC_BOOT_MCI_HFIFO_COUNT;
}
for (unsigned int i=0; i<read_count; i++)
{
/* FIFO contains 16 32-bit data buffer on 16 sequential addresses*/
*mmc_ptr = readl( MMC_BOOT_MCI_FIFO +
( mmc_count % MMC_BOOT_MCI_FIFO_SIZE ) );
mmc_ptr++;
/* increase mmc_count by word size */
mmc_count += sizeof( unsigned int );
}
/* quit if we have read enough of data */
if (mmc_count == data_len)
break;
}
else if( mmc_status & MMC_BOOT_MCI_STAT_DATA_END )
{
break;
}
}while(1);
return mmc_ret;
}
/*
* Write data to SDC FIFO.
*/
static unsigned int mmc_boot_fifo_write(unsigned int* mmc_ptr,
unsigned int data_len)
{
unsigned int mmc_ret = MMC_BOOT_E_SUCCESS;
unsigned int mmc_status = 0;
unsigned int mmc_count = 0;
unsigned int write_error = MMC_BOOT_MCI_STAT_DATA_CRC_FAIL | \
MMC_BOOT_MCI_STAT_DATA_TIMEOUT | \
MMC_BOOT_MCI_STAT_TX_UNDRUN;
/* Write the transfer data to SDCC3 FIFO */
do
{
mmc_ret = MMC_BOOT_E_SUCCESS;
mmc_status = readl( MMC_BOOT_MCI_STATUS );
if( mmc_status & write_error )
{
mmc_ret = mmc_boot_status_error(mmc_status);
break;
}
/* Write the data in MCI_FIFO register as long as TXFIFO_FULL bit of
MCI_STATUS register is 0. Continue the writes until the whole
transfer data is written. */
if (((data_len-mmc_count) >= MMC_BOOT_MCI_FIFO_SIZE/2) &&
( mmc_status & MMC_BOOT_MCI_STAT_TX_FIFO_HFULL ))
{
for (int i=0; i < MMC_BOOT_MCI_HFIFO_COUNT; i++ )
{
/* FIFO contains 16 32-bit data buffer on 16 sequential addresses*/
writel( *mmc_ptr, MMC_BOOT_MCI_FIFO +
( mmc_count % MMC_BOOT_MCI_FIFO_SIZE ) );
mmc_ptr++;
/* increase mmc_count by word size */
mmc_count += sizeof( unsigned int );
}
}
else if( !( mmc_status & MMC_BOOT_MCI_STAT_TX_FIFO_FULL ) && (mmc_count != data_len))
{
/* FIFO contains 16 32-bit data buffer on 16 sequential addresses*/
writel( *mmc_ptr, MMC_BOOT_MCI_FIFO +
( mmc_count % MMC_BOOT_MCI_FIFO_SIZE ) );
mmc_ptr++;
/* increase mmc_count by word size */
mmc_count += sizeof( unsigned int );
}
else if((mmc_status & MMC_BOOT_MCI_STAT_DATA_END))
{
break; //success
}
} while(1);
return mmc_ret;
}