blob: 86a31c704349fa03e347cf9e7d6a25d4ab0a1f1b [file] [log] [blame]
/*
* Copyright (c) 2009, Google Inc.
* All rights reserved.
*
* Copyright (c) 2009-2010, Code Aurora Forum. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google, Inc. nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <assert.h>
#include <bits.h>
#include <stdlib.h>
#include <string.h>
#include <dev/keys.h>
#include <dev/gpio.h>
#include <dev/gpio_keypad.h>
#include <kernel/event.h>
#include <kernel/timer.h>
#include <reg.h>
#include <platform/iomap.h>
struct gpio_kp {
struct gpio_keypad_info *keypad_info;
struct timer timer;
event_t full_scan;
int current_output;
unsigned int some_keys_pressed:2;
unsigned long keys_pressed[0];
};
struct gpio_qwerty_kp {
struct qwerty_keypad_info *keypad_info;
struct timer timer;
event_t full_scan;
int num_of_scans;
unsigned int some_keys_pressed:2;
unsigned long keys_pressed[0];
};
static struct gpio_qwerty_kp *qwerty_keypad;
/* TODO: Support multiple keypads? */
static struct gpio_kp *keypad;
static void check_output(struct gpio_kp *kp, int out, int polarity)
{
struct gpio_keypad_info *kpinfo = kp->keypad_info;
int key_index;
int in;
int gpio;
int changed = 0;
key_index = out * kpinfo->ninputs;
for (in = 0; in < kpinfo->ninputs; in++, key_index++) {
gpio = kpinfo->input_gpios[in];
changed = 0;
if (gpio_get(gpio) ^ !polarity) {
if (kp->some_keys_pressed < 3)
kp->some_keys_pressed++;
changed = !bitmap_set(kp->keys_pressed, key_index);
} else {
changed = bitmap_clear(kp->keys_pressed, key_index);
}
if (changed) {
int state = bitmap_test(kp->keys_pressed, key_index);
keys_post_event(kpinfo->keymap[key_index], state);
}
}
/* sets up the right state for the next poll cycle */
gpio = kpinfo->output_gpios[out];
if (kpinfo->flags & GPIOKPF_DRIVE_INACTIVE)
gpio_set(gpio, !polarity);
else
gpio_config(gpio, GPIO_INPUT);
}
static enum handler_return
gpio_keypad_timer_func(struct timer *timer, time_t now, void *arg)
{
struct gpio_kp *kp = keypad;
struct gpio_keypad_info *kpinfo = kp->keypad_info;
int polarity = !!(kpinfo->flags & GPIOKPF_ACTIVE_HIGH);
int out;
int gpio;
out = kp->current_output;
if (out == kpinfo->noutputs) {
out = 0;
kp->some_keys_pressed = 0;
} else {
check_output(kp, out, polarity);
out++;
}
kp->current_output = out;
if (out < kpinfo->noutputs) {
gpio = kpinfo->output_gpios[out];
if (kpinfo->flags & GPIOKPF_DRIVE_INACTIVE)
gpio_set(gpio, polarity);
else
gpio_config(gpio, polarity ? GPIO_OUTPUT : 0);
timer_set_oneshot(timer, kpinfo->settle_time,
gpio_keypad_timer_func, NULL);
goto done;
}
if (/*!kp->use_irq*/ 1 || kp->some_keys_pressed) {
event_signal(&kp->full_scan, false);
timer_set_oneshot(timer, kpinfo->poll_time,
gpio_keypad_timer_func, NULL);
goto done;
}
#if 0
/* No keys are pressed, reenable interrupt */
for (out = 0; out < kpinfo->noutputs; out++) {
if (gpio_keypad_flags & GPIOKPF_DRIVE_INACTIVE)
gpio_set(kpinfo->output_gpios[out], polarity);
else
gpio_config(kpinfo->output_gpios[out], polarity ? GPIO_OUTPUT : 0);
}
for (in = 0; in < kpinfo->ninputs; in++)
enable_irq(gpio_to_irq(kpinfo->input_gpios[in]));
return INT_RESCHEDULE;
#endif
done:
return INT_RESCHEDULE;
}
void gpio_keypad_init(struct gpio_keypad_info *kpinfo)
{
int key_count;
int output_val;
int output_cfg;
int i;
int len;
ASSERT(kpinfo->keymap && kpinfo->input_gpios && kpinfo->output_gpios);
key_count = kpinfo->ninputs * kpinfo->noutputs;
len = sizeof(struct gpio_kp) + (sizeof(unsigned long) *
BITMAP_NUM_WORDS(key_count));
keypad = malloc(len);
ASSERT(keypad);
memset(keypad, 0, len);
keypad->keypad_info = kpinfo;
output_val = (!!(kpinfo->flags & GPIOKPF_ACTIVE_HIGH)) ^
(!!(kpinfo->flags & GPIOKPF_DRIVE_INACTIVE));
output_cfg = kpinfo->flags & GPIOKPF_DRIVE_INACTIVE ? GPIO_OUTPUT : 0;
for (i = 0; i < kpinfo->noutputs; i++) {
gpio_set(kpinfo->output_gpios[i], output_val);
gpio_config(kpinfo->output_gpios[i], output_cfg);
}
for (i = 0; i < kpinfo->ninputs; i++)
gpio_config(kpinfo->input_gpios[i], GPIO_INPUT);
keypad->current_output = kpinfo->noutputs;
event_init(&keypad->full_scan, false, EVENT_FLAG_AUTOUNSIGNAL);
timer_initialize(&keypad->timer);
timer_set_oneshot(&keypad->timer, 0, gpio_keypad_timer_func, NULL);
/* wait for the keypad to complete one full scan */
event_wait(&keypad->full_scan);
}
int i2c_ssbi_poll_for_device_ready(void)
{
unsigned long timeout = SSBI_TIMEOUT_US;
while (!(readl(MSM_SSBI_BASE + SSBI2_STATUS) & SSBI_STATUS_READY)) {
if (--timeout == 0) {
dprintf(INFO, "In Device ready function:Timeout, status %x\n", readl(MSM_SSBI_BASE + SSBI2_STATUS));
return 1;
}
}
return 0;
}
int i2c_ssbi_poll_for_read_completed(void)
{
unsigned long timeout = SSBI_TIMEOUT_US;
while (!(readl(MSM_SSBI_BASE + SSBI2_STATUS) & SSBI_STATUS_RD_READY)) {
if (--timeout == 0) {
dprintf(INFO, "In read completed function:Timeout, status %x\n", readl(MSM_SSBI_BASE + SSBI2_STATUS));
return 1;
}
}
return 0;
}
int i2c_ssbi_read_bytes(unsigned char *buffer, unsigned short length,
unsigned short slave_addr)
{
int ret = 0;
unsigned char *buf = buffer;
unsigned short len = length;
unsigned short addr = slave_addr;
unsigned long read_cmd = SSBI_CMD_READ(addr);
unsigned long mode2 = readl(MSM_SSBI_BASE + SSBI2_MODE2);
//buf = alloc(len * sizeof(8));
if (mode2 & SSBI_MODE2_SSBI2_MODE)
writel(SSBI_MODE2_REG_ADDR_15_8(mode2, addr),
MSM_SSBI_BASE + SSBI2_MODE2);
while (len) {
ret = i2c_ssbi_poll_for_device_ready();
if (ret) {
dprintf (CRITICAL, "Error: device not ready\n");
return ret;
}
writel(read_cmd, MSM_SSBI_BASE + SSBI2_CMD);
ret = i2c_ssbi_poll_for_read_completed();
if (ret) {
dprintf (CRITICAL, "Error: read not completed\n");
return ret;
}
*buf++ = readl(MSM_SSBI_BASE + SSBI2_RD) & SSBI_RD_REG_DATA_MASK;
len--;
}
return 0;
}
int i2c_ssbi_write_bytes(unsigned char *buffer, unsigned short length,
unsigned short slave_addr)
{
int ret = 0;
unsigned long timeout = SSBI_TIMEOUT_US;
unsigned char *buf = buffer;
unsigned short len = length;
unsigned short addr = slave_addr;
unsigned long mode2 = readl(MSM_SSBI_BASE + SSBI2_MODE2);
if (mode2 & SSBI_MODE2_SSBI2_MODE)
writel(SSBI_MODE2_REG_ADDR_15_8(mode2, addr),
MSM_SSBI_BASE + SSBI2_MODE2);
while (len) {
ret = i2c_ssbi_poll_for_device_ready();
if (ret) {
dprintf (CRITICAL, "Error: device not ready\n");
return ret;
}
writel(SSBI_CMD_WRITE(addr, *buf++), MSM_SSBI_BASE + SSBI2_CMD);
while (readl(MSM_SSBI_BASE + SSBI2_STATUS) & SSBI_STATUS_MCHN_BUSY) {
if (--timeout == 0) {
dprintf(INFO, "In Device ready function:Timeout, status %x\n", readl(MSM_SSBI_BASE + SSBI2_STATUS));
return 1;
}
}
len--;
}
return 0;
}
int pa1_ssbi2_read_bytes(unsigned char *buffer, unsigned short length,
unsigned short slave_addr)
{
unsigned val = 0x0;
unsigned temp = 0x0000;
unsigned char *buf = buffer;
unsigned short len = length;
unsigned short addr = slave_addr;
unsigned long timeout = SSBI_TIMEOUT_US;
while(len)
{
val |= ((addr << PA1_SSBI2_REG_ADDR_SHIFT) |
(PA1_SSBI2_CMD_READ << PA1_SSBI2_CMD_RDWRN_SHIFT));
writel(val, PA1_SSBI2_CMD);
while(!((temp = readl(PA1_SSBI2_RD_STATUS)) & (1 << PA1_SSBI2_TRANS_DONE_SHIFT))) {
if (--timeout == 0) {
dprintf(INFO, "In Device ready function:Timeout\n");
return 1;
}
}
len--;
*buf++ = (temp & (PA1_SSBI2_REG_DATA_MASK << PA1_SSBI2_REG_DATA_SHIFT));
}
return 0;
}
int pa1_ssbi2_write_bytes(unsigned char *buffer, unsigned short length,
unsigned short slave_addr)
{
unsigned val;
unsigned char *buf = buffer;
unsigned short len = length;
unsigned short addr = slave_addr;
unsigned temp = 0x00;
unsigned char written_data1 = 0x00;
unsigned long timeout = SSBI_TIMEOUT_US;
//unsigned char written_data2 = 0x00;
while(len)
{
temp = 0x00;
written_data1 = 0x00;
val = (addr << PA1_SSBI2_REG_ADDR_SHIFT) |
(PA1_SSBI2_CMD_WRITE << PA1_SSBI2_CMD_RDWRN_SHIFT) |
(*buf & 0xFF);
writel(val, PA1_SSBI2_CMD);
while(!((temp = readl(PA1_SSBI2_RD_STATUS)) & (1 << PA1_SSBI2_TRANS_DONE_SHIFT))) {
if (--timeout == 0) {
dprintf(INFO, "In Device write function:Timeout\n");
return 1;
}
}
len--;
buf++;
}
return 0;
}
int pa2_ssbi2_read_bytes(unsigned char *buffer, unsigned short length,
unsigned short slave_addr)
{
unsigned val = 0x0;
unsigned temp = 0x0000;
unsigned char *buf = buffer;
unsigned short len = length;
unsigned short addr = slave_addr;
unsigned long timeout = SSBI_TIMEOUT_US;
while(len)
{
val |= ((addr << PA2_SSBI2_REG_ADDR_SHIFT) |
(PA2_SSBI2_CMD_READ << PA2_SSBI2_CMD_RDWRN_SHIFT));
writel(val, PA2_SSBI2_CMD);
while(!((temp = readl(PA2_SSBI2_RD_STATUS)) & (1 << PA2_SSBI2_TRANS_DONE_SHIFT))) {
if (--timeout == 0) {
dprintf(INFO, "In Device ready function:Timeout\n");
return 1;
}
}
len--;
*buf++ = (temp & (PA2_SSBI2_REG_DATA_MASK << PA2_SSBI2_REG_DATA_SHIFT));
}
return 0;
}
int pa2_ssbi2_write_bytes(unsigned char *buffer, unsigned short length,
unsigned short slave_addr)
{
unsigned val;
unsigned char *buf = buffer;
unsigned short len = length;
unsigned short addr = slave_addr;
unsigned temp = 0x00;
unsigned char written_data1 = 0x00;
unsigned long timeout = SSBI_TIMEOUT_US;
while(len)
{
temp = 0x00;
written_data1 = 0x00;
val = (addr << PA2_SSBI2_REG_ADDR_SHIFT) |
(PA2_SSBI2_CMD_WRITE << PA2_SSBI2_CMD_RDWRN_SHIFT) |
(*buf & 0xFF);
writel(val, PA2_SSBI2_CMD);
while(!((temp = readl(PA2_SSBI2_RD_STATUS)) & (1 << PA2_SSBI2_TRANS_DONE_SHIFT))) {
if (--timeout == 0) {
dprintf(INFO, "In Device write function:Timeout\n");
return 1;
}
}
len--;
buf++;
}
return 0;
}
int pm8058_gpio_config(int gpio, struct pm8058_gpio *param)
{
int rc;
write_func wr_function = (qwerty_keypad->keypad_info)->wr_func;
unsigned char bank[8];
static int dir_map[] = {
PM8058_GPIO_MODE_OFF,
PM8058_GPIO_MODE_OUTPUT,
PM8058_GPIO_MODE_INPUT,
PM8058_GPIO_MODE_BOTH,
};
if (param == 0) {
dprintf (INFO, "pm8058_gpio struct not defined\n");
return -1;
}
/* Select banks and configure the gpio */
bank[0] = PM8058_GPIO_WRITE |
((param->vin_sel << PM8058_GPIO_VIN_SHIFT) &
PM8058_GPIO_VIN_MASK) |
PM8058_GPIO_MODE_ENABLE;
bank[1] = PM8058_GPIO_WRITE |
((1 << PM8058_GPIO_BANK_SHIFT) & PM8058_GPIO_BANK_MASK) |
((dir_map[param->direction] << PM8058_GPIO_MODE_SHIFT) &
PM8058_GPIO_MODE_MASK) |
((param->direction & PM_GPIO_DIR_OUT) ?
PM8058_GPIO_OUT_BUFFER : 0);
bank[2] = PM8058_GPIO_WRITE |
((2 << PM8058_GPIO_BANK_SHIFT) & PM8058_GPIO_BANK_MASK) |
((param->pull << PM8058_GPIO_PULL_SHIFT) &
PM8058_GPIO_PULL_MASK);
bank[3] = PM8058_GPIO_WRITE |
((3 << PM8058_GPIO_BANK_SHIFT) & PM8058_GPIO_BANK_MASK) |
((param->out_strength << PM8058_GPIO_OUT_STRENGTH_SHIFT) &
PM8058_GPIO_OUT_STRENGTH_MASK);
bank[4] = PM8058_GPIO_WRITE |
((4 << PM8058_GPIO_BANK_SHIFT) & PM8058_GPIO_BANK_MASK) |
((param->function << PM8058_GPIO_FUNC_SHIFT) &
PM8058_GPIO_FUNC_MASK);
rc = (*wr_function)(bank, 5, SSBI_REG_ADDR_GPIO(gpio));
if (rc) {
dprintf(INFO, "Failed on 1st ssbi_write(): rc=%d.\n", rc);
return 1;
}
return 0;
}
int pm8058_gpio_config_kypd_drv(int gpio_start, int num_gpios)
{
int rc;
struct pm8058_gpio kypd_drv = {
.direction = PM_GPIO_DIR_OUT,
.pull = PM_GPIO_PULL_NO,
.vin_sel = 2,
.out_strength = PM_GPIO_STRENGTH_LOW,
.function = PM_GPIO_FUNC_1,
.inv_int_pol = 1,
};
while (num_gpios--) {
rc = pm8058_gpio_config(gpio_start++, &kypd_drv);
if (rc) {
dprintf(INFO, "FAIL pm8058_gpio_config(): rc=%d.\n", rc);
return rc;
}
}
return 0;
}
int pm8058_gpio_config_kypd_sns(int gpio_start, int num_gpios)
{
int rc;
struct pm8058_gpio kypd_sns = {
.direction = PM_GPIO_DIR_IN,
.pull = PM_GPIO_PULL_UP1,
.vin_sel = 2,
.out_strength = PM_GPIO_STRENGTH_NO,
.function = PM_GPIO_FUNC_NORMAL,
.inv_int_pol = 1,
};
while (num_gpios--) {
rc = pm8058_gpio_config(gpio_start++, &kypd_sns);
if (rc) {
dprintf(INFO, "FAIL pm8058_gpio_config(): rc=%d.\n", rc);
return rc;
}
}
return 0;
}
void ssbi_gpio_init(void)
{
unsigned char kypd_cntl_init = 0x84;
unsigned char kypd_scan_init = 0x20;
int rows = (qwerty_keypad->keypad_info)->rows;
int columns = (qwerty_keypad->keypad_info)->columns;
write_func wr_function = (qwerty_keypad->keypad_info)->wr_func;
if ((*wr_function)(&kypd_cntl_init, 1, SSBI_REG_KYPD_CNTL_ADDR))
dprintf (CRITICAL, "Error in initializing SSBI_REG_KYPD_CNTL register\n");
if ((*wr_function)(&kypd_scan_init, 1, SSBI_REG_KYPD_SCAN_ADDR))
dprintf (CRITICAL, "Error in initializing SSBI_REG_KYPD_SCAN register\n");
pm8058_gpio_config_kypd_sns(SSBI_OFFSET_ADDR_GPIO_KYPD_SNS, columns);
pm8058_gpio_config_kypd_drv(SSBI_OFFSET_ADDR_GPIO_KYPD_DRV, rows);
}
static enum handler_return
scan_qwerty_keypad(struct timer *timer, time_t now, void *arg)
{
unsigned int rows = (qwerty_keypad->keypad_info)->rows;
unsigned int columns = (qwerty_keypad->keypad_info)->columns;
unsigned int num_of_ssbi_reads = (qwerty_keypad->keypad_info)->num_of_reads;
read_func rd_function = (qwerty_keypad->keypad_info)->rd_func;
unsigned char column_new_keys = 0x00;
unsigned char column_old_keys = 0x00;
int shift = 0;
static int key_detected = 0;
if ((*rd_function)((qwerty_keypad->keypad_info)->rec_keys, num_of_ssbi_reads,
SSBI_REG_KYPD_REC_DATA_ADDR))
dprintf (CRITICAL, "Error in initializing SSBI_REG_KYPD_CNTL register\n");
if ((*rd_function)((qwerty_keypad->keypad_info)->old_keys, num_of_ssbi_reads,
SSBI_REG_KYPD_OLD_DATA_ADDR))
dprintf (CRITICAL, "Error in initializing SSBI_REG_KYPD_CNTL register\n");
while (rows--) {
if (((qwerty_keypad->keypad_info)->rec_keys[rows]
!= (qwerty_keypad->keypad_info)->old_keys[rows])
&& ((qwerty_keypad->keypad_info)->rec_keys[rows] != 0x00)
&& ((qwerty_keypad->keypad_info)->old_keys[rows] != 0x00)) {
while (columns--) {
column_new_keys = ((qwerty_keypad->keypad_info)->rec_keys[rows]);
column_old_keys = ((qwerty_keypad->keypad_info)->old_keys[rows]);
if (((0x01 << columns) & (~column_new_keys))
&& !((0x01 << columns) & (~column_old_keys))) {
shift = (rows * 8) + columns;
if ((qwerty_keypad->keypad_info)->keymap[shift]) {
if (shift != key_detected) {
key_detected = shift;
keys_post_event((qwerty_keypad->keypad_info)->keymap[shift], 1);
event_signal(&qwerty_keypad->full_scan, false);
timer_set_oneshot(timer, (qwerty_keypad->keypad_info)->poll_time,
scan_qwerty_keypad, NULL);
return INT_RESCHEDULE;
}
}
}
}
}
}
if (qwerty_keypad->num_of_scans < 10)
{
(qwerty_keypad->num_of_scans)++;
timer_set_oneshot(timer, (qwerty_keypad->keypad_info)->settle_time,
scan_qwerty_keypad, NULL);
return INT_RESCHEDULE;
}
event_signal(&qwerty_keypad->full_scan, false);
return INT_RESCHEDULE;
}
void ssbi_keypad_init(struct qwerty_keypad_info *qwerty_kp)
{
int len;
len = sizeof(struct gpio_qwerty_kp);
qwerty_keypad = malloc(len);
ASSERT(qwerty_keypad);
memset(qwerty_keypad, 0, len);
qwerty_keypad->keypad_info = qwerty_kp;
ssbi_gpio_init();
qwerty_keypad->num_of_scans = 0;
event_init(&qwerty_keypad->full_scan, false, EVENT_FLAG_AUTOUNSIGNAL);
timer_initialize(&qwerty_keypad->timer);
timer_set_oneshot(&qwerty_keypad->timer, 0, scan_qwerty_keypad, NULL);
/* wait for the keypad to complete one full scan */
event_wait(&qwerty_keypad->full_scan);
}
void pmic_write(unsigned address, unsigned data)
{
write_func wr_function = &i2c_ssbi_write_bytes;
if(wr_function == NULL)
return;
if ((*wr_function)(&data, 1, address))
dprintf (CRITICAL, "Error in initializing register\n");
}
void toshiba_pmic_gpio_init(unsigned gpio)
{
pmic_write(gpio,0x85);
pmic_write(gpio,0x98);
pmic_write(gpio,0xB8);
pmic_write(gpio,0xC6);
}