blob: 6aea42a8a7a7f1069b3dff111a56cc28923c55b6 [file] [log] [blame]
/*
* Copyright (c) 2009, Google Inc.
* All rights reserved.
*
* Copyright (c) 2013-2015, 2018, The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <debug.h>
#include <string.h>
#include <stdlib.h>
#include <platform.h>
#include <target.h>
#include <kernel/thread.h>
#include <kernel/event.h>
#include <dev/udc.h>
#include "fastboot.h"
#include <err.h>
/*[20200605][TracyChui] Implement get Serial Number start*/
#include <devinfo.h>
/*[20200605][TracyChui] Implement get Serial Number end*/
#ifdef USB30_SUPPORT
#include <usb30_udc.h>
#endif
typedef struct
{
int (*udc_init)(struct udc_device *devinfo);
int (*udc_register_gadget)(struct udc_gadget *gadget);
int (*udc_start)(void);
int (*udc_stop)(void);
struct udc_endpoint *(*udc_endpoint_alloc)(unsigned type, unsigned maxpkt);
void (*udc_endpoint_free)(struct udc_endpoint *ept);
struct udc_request *(*udc_request_alloc)(void);
void (*udc_request_free)(struct udc_request *req);
int (*usb_read)(void *buf, unsigned len);
int (*usb_write)(void *buf, unsigned len);
} usb_controller_interface_t;
usb_controller_interface_t usb_if;
#define MAX_USBFS_BULK_SIZE (32 * 1024)
#define MAX_USBSS_BULK_SIZE (0x1000000)
void boot_linux(void *bootimg, unsigned sz);
static void fastboot_notify(struct udc_gadget *gadget, unsigned event);
static struct udc_endpoint *fastboot_endpoints[2];
static struct udc_device surf_udc_device = {
.vendor_id = 0x18d1,
.product_id = 0xD00D,
.version_id = 0x0100,
.manufacturer = "Google",
.product = "Android",
};
static struct udc_gadget fastboot_gadget = {
.notify = fastboot_notify,
.ifc_class = 0xff,
.ifc_subclass = 0x42,
.ifc_protocol = 0x03,
.ifc_endpoints = 2,
.ifc_string = "fastboot",
.ept = fastboot_endpoints,
};
/* todo: give lk strtoul and nuke this */
static unsigned hex2unsigned(const char *x)
{
unsigned n = 0;
while(*x) {
switch(*x) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
n = (n << 4) | (*x - '0');
break;
case 'a': case 'b': case 'c':
case 'd': case 'e': case 'f':
n = (n << 4) | (*x - 'a' + 10);
break;
case 'A': case 'B': case 'C':
case 'D': case 'E': case 'F':
n = (n << 4) | (*x - 'A' + 10);
break;
default:
return n;
}
x++;
}
return n;
}
struct fastboot_cmd {
struct fastboot_cmd *next;
const char *prefix;
unsigned prefix_len;
void (*handle)(const char *arg, void *data, unsigned sz);
};
struct fastboot_var {
struct fastboot_var *next;
const char *name;
const char *value;
};
static struct fastboot_cmd *cmdlist;
void fastboot_register(const char *prefix,
void (*handle)(const char *arg, void *data, unsigned sz))
{
struct fastboot_cmd *cmd;
cmd = malloc(sizeof(*cmd));
if (cmd) {
cmd->prefix = prefix;
cmd->prefix_len = strlen(prefix);
cmd->handle = handle;
cmd->next = cmdlist;
cmdlist = cmd;
}
}
static struct fastboot_var *varlist;
void fastboot_publish(const char *name, const char *value)
{
struct fastboot_var *var;
var = malloc(sizeof(*var));
if (var) {
var->name = name;
var->value = value;
var->next = varlist;
varlist = var;
}
}
static event_t usb_online;
static event_t txn_done;
static struct udc_endpoint *in, *out;
static struct udc_request *req;
int txn_status;
static void *download_base;
static unsigned download_max;
static unsigned download_size;
static void *upload_base_addr;
static unsigned upload_size;
#define STATE_OFFLINE 0
#define STATE_COMMAND 1
#define STATE_COMPLETE 2
#define STATE_ERROR 3
static unsigned fastboot_state = STATE_OFFLINE;
static void req_complete(struct udc_request *req, unsigned actual, int status)
{
txn_status = status;
req->length = actual;
event_signal(&txn_done, 0);
}
#ifdef USB30_SUPPORT
static int usb30_usb_read(void *_buf, unsigned len)
{
int r;
struct udc_request req;
uint32_t xfer;
int count = 0;
uint32_t trans_len = len;
const char *buf = _buf;
ASSERT(buf);
ASSERT(len);
if (fastboot_state == STATE_ERROR)
goto oops;
dprintf(SPEW, "usb_read(): len = %d\n", len);
while (len > 0)
{
xfer = (len > MAX_USBSS_BULK_SIZE) ? MAX_USBSS_BULK_SIZE : len;
req.buf = (void*) PA((addr_t)buf);
req.length = xfer;
req.complete = req_complete;
r = usb30_udc_request_queue(out, &req);
if (r < 0)
{
dprintf(CRITICAL, "usb_read() queue failed. r = %d\n", r);
goto oops;
}
event_wait(&txn_done);
if (txn_status < 0)
{
dprintf(CRITICAL, "usb_read() transaction failed. txn_status = %d\n",
txn_status);
goto oops;
}
count += req.length;
buf += req.length;
len -= req.length;
/* note: req.length is update by callback to reflect the amount of data
* actually read.
*/
dprintf(SPEW, "usb_read(): DONE. req.length = %d\n\n", req.length);
/* For USB3.0 if the data transfer is less than MaxpacketSize, its
* short packet and DWC layer generates transfer complete. App layer
* shold handle this and continue trasnferring the data instead of treating
* this as a transfer complete. This case is not applicable for transfers
* which involve protocol communication to exchange information whose length
* is always equal to MAX_RSP_SIZE. This check ensures that we dont abort
* data transfers on short packet.
*/
if (req.length != xfer && trans_len == MAX_RSP_SIZE) break;
}
/* invalidate any cached buf data (controller updates main memory) */
arch_invalidate_cache_range((addr_t) _buf, ROUNDUP(count, CACHE_LINE));
return count;
oops:
fastboot_state = STATE_ERROR;
dprintf(CRITICAL, "usb_read(): DONE: ERROR: len = %d\n", len);
return -1;
}
static int usb30_usb_write(void *buf, unsigned len)
{
int r;
struct udc_request req;
ASSERT(buf);
ASSERT(len);
if (fastboot_state == STATE_ERROR)
goto oops;
dprintf(SPEW, "usb_write(): len = %d str = %s\n", len, (char *) buf);
/* flush buffer to main memory before giving to udc */
arch_clean_invalidate_cache_range((addr_t) buf, len);
req.buf = (void*) PA((addr_t)buf);
req.length = len;
req.complete = req_complete;
r = usb30_udc_request_queue(in, &req);
if (r < 0) {
dprintf(CRITICAL, "usb_write() queue failed. r = %d\n", r);
goto oops;
}
event_wait(&txn_done);
dprintf(SPEW, "usb_write(): DONE: len = %d req->length = %d str = %s\n",
len, req.length, (char *) buf);
if (txn_status < 0) {
dprintf(CRITICAL, "usb_write() transaction failed. txn_status = %d\n",
txn_status);
goto oops;
}
return req.length;
oops:
fastboot_state = STATE_ERROR;
dprintf(CRITICAL, "usb_write(): DONE: ERROR: len = %d\n", len);
return -1;
}
#endif
static int hsusb_usb_read(void *_buf, unsigned len)
{
int r;
unsigned xfer;
unsigned char *buf = _buf;
int count = 0;
if (fastboot_state == STATE_ERROR)
goto oops;
while (len > 0) {
xfer = (len > MAX_USBFS_BULK_SIZE) ? MAX_USBFS_BULK_SIZE : len;
req->buf = (unsigned char *)PA((addr_t)buf);
req->length = xfer;
req->complete = req_complete;
r = udc_request_queue(out, req);
if (r < 0) {
dprintf(INFO, "usb_read() queue failed\n");
goto oops;
}
event_wait(&txn_done);
if (txn_status < 0) {
dprintf(INFO, "usb_read() transaction failed\n");
goto oops;
}
count += req->length;
buf += req->length;
len -= req->length;
/* short transfer? */
if (req->length != xfer) break;
}
/*
* Force reload of buffer from memory
* since transaction is complete now.
*/
arch_invalidate_cache_range((addr_t)_buf, ROUNDUP(count, CACHE_LINE));
return count;
oops:
fastboot_state = STATE_ERROR;
return -1;
}
static int hsusb_usb_write(void *buf, unsigned len)
{
int r;
uint32_t xfer;
unsigned char *_buf = buf;
int count = 0;
if (fastboot_state == STATE_ERROR)
goto oops;
while (len > 0) {
xfer = (len > MAX_USBFS_BULK_SIZE) ? MAX_USBFS_BULK_SIZE : len;
req->buf = (unsigned char *)PA((addr_t)_buf);
req->length = xfer;
req->complete = req_complete;
r = udc_request_queue(in, req);
if (r < 0) {
dprintf(INFO, "usb_write() queue failed\n");
goto oops;
}
event_wait(&txn_done);
if (txn_status < 0) {
dprintf(INFO, "usb_write() transaction failed\n");
goto oops;
}
count += req->length;
_buf += req->length;
len -= req->length;
/* short transfer? */
if (req->length != xfer) break;
}
return count;
oops:
fastboot_state = STATE_ERROR;
return -1;
}
void fastboot_ack(const char *code, const char *reason)
{
STACKBUF_DMA_ALIGN(response, MAX_RSP_SIZE);
if (fastboot_state != STATE_COMMAND)
return;
if (reason == 0)
reason = "";
snprintf((char *)response, MAX_RSP_SIZE, "%s%s", code, reason);
fastboot_state = STATE_COMPLETE;
usb_if.usb_write(response, strlen((const char *)response));
}
void fastboot_info(const char *reason)
{
STACKBUF_DMA_ALIGN(response, MAX_RSP_SIZE);
if (fastboot_state != STATE_COMMAND)
return;
if (reason == 0)
return;
snprintf((char *)response, MAX_RSP_SIZE, "INFO%s", reason);
usb_if.usb_write(response, strlen((const char *)response));
}
void fastboot_fail(const char *reason)
{
fastboot_ack("FAIL", reason);
}
void fastboot_okay(const char *info)
{
fastboot_ack("OKAY", info);
}
static void getvar_all()
{
struct fastboot_var *var;
char getvar_all[256];
for (var = varlist; var; var = var->next)
{
strlcpy((char *) getvar_all, var->name, sizeof(getvar_all));
strlcat((char *) getvar_all, ":", sizeof(getvar_all));
strlcat((char *) getvar_all, var->value, sizeof(getvar_all));
fastboot_info(getvar_all);
memset((void *) getvar_all, '\0', sizeof(getvar_all));
}
fastboot_okay("");
}
static void cmd_getvar(const char *arg, void *data, unsigned sz)
{
struct fastboot_var *var;
#if CHECK_BAT_VOLTAGE
update_battery_status();
#endif
if (!strncmp("all", arg, strlen(arg)))
{
getvar_all();
return;
}
for (var = varlist; var; var = var->next) {
if (!strcmp(var->name, arg)) {
fastboot_okay(var->value);
return;
}
}
fastboot_okay("");
}
static void cmd_download(const char *arg, void *data, unsigned sz)
{
STACKBUF_DMA_ALIGN(response, MAX_RSP_SIZE);
unsigned len = hex2unsigned(arg);
int r;
download_size = 0;
if (len > download_max) {
fastboot_fail("data too large");
return;
}
snprintf((char *)response, MAX_RSP_SIZE, "DATA%08x", len);
if (usb_if.usb_write(response, strlen((const char *)response)) < 0)
return;
/*
* Discard the cache contents before starting the download
*/
arch_invalidate_cache_range((addr_t) download_base, ROUNDUP(len, CACHE_LINE));
r = usb_if.usb_read(download_base, len);
if ((r < 0) || ((unsigned) r != len)) {
fastboot_state = STATE_ERROR;
return;
}
download_size = len;
fastboot_okay("");
}
int fboot_set_upload(void *buf, uint32_t buf_size)
{
/* sanity checks*/
if((buf == NULL)||(buf_size > download_max))
{
return ERR_INVALID_ARGS;
}
upload_base_addr = buf;
upload_size = buf_size;
return NO_ERROR;
}
static void cmd_upload(const char *arg, void *data, unsigned sz)
{
STACKBUF_DMA_ALIGN(response, MAX_RSP_SIZE);
unsigned len = upload_size;
int r;
if ((upload_base_addr == NULL)||(upload_size == 0)) {
fastboot_fail("invalid data");
goto cleanup;
}
snprintf((char *)response, MAX_RSP_SIZE, "DATA%08x", len);
if (usb_if.usb_write(response, strlen((const char *)response)) < 0)
goto cleanup;
/*
* Discard the cache contents before starting the download
*/
arch_invalidate_cache_range((addr_t) upload_base_addr, len);
r = usb_if.usb_write(upload_base_addr, len);
if ((r < 0) || ((unsigned) r != len)) {
fastboot_state = STATE_ERROR;
goto cleanup;
}
fastboot_okay("");
cleanup:
upload_base_addr = NULL;
upload_size = 0;
return;
}
static void fastboot_command_loop(void)
{
struct fastboot_cmd *cmd;
int r;
#if CHECK_BAT_VOLTAGE
boolean is_first_erase_flash = false;
#endif
dprintf(INFO,"fastboot: processing commands\n");
uint8_t *buffer = (uint8_t *)memalign(CACHE_LINE, ROUNDUP(4096, CACHE_LINE));
if (!buffer)
{
dprintf(CRITICAL, "Could not allocate memory for fastboot buffer\n.");
ASSERT(0);
}
again:
while (fastboot_state != STATE_ERROR) {
/* Read buffer must be cleared first. If buffer is not cleared,
* the original data in buf trailing the received command is
* interpreted as part of the command.
*/
memset(buffer, 0, MAX_RSP_SIZE);
arch_clean_invalidate_cache_range((addr_t) buffer, MAX_RSP_SIZE);
r = usb_if.usb_read(buffer, MAX_RSP_SIZE);
if (r < 0) break;
buffer[r] = 0;
dprintf(INFO,"fastboot: %s\n", buffer);
#if CHECK_BAT_VOLTAGE
/* check battery voltage before erase or flash image */
if (!strncmp((const char*) buffer, "getvar:partition-type", 21))
is_first_erase_flash = true;
if (is_first_erase_flash) {
if (!strncmp((const char*) buffer, "erase", 5) ||
!strncmp((const char*) buffer, "flash", 5)) {
if (!target_battery_soc_ok()) {
dprintf(INFO,"fastboot: battery voltage: %d\n",
target_get_battery_voltage());
fastboot_fail("Warning: battery's capacity is very low\n");
continue;
}
}
}
#endif
fastboot_state = STATE_COMMAND;
for (cmd = cmdlist; cmd; cmd = cmd->next) {
if (memcmp(buffer, cmd->prefix, cmd->prefix_len))
continue;
cmd->handle((const char*) buffer + cmd->prefix_len,
(void*) download_base, download_size);
if (fastboot_state == STATE_COMMAND)
fastboot_fail("unknown reason");
#if CHECK_BAT_VOLTAGE
if (!strncmp((const char*) buffer, "erase", 5) ||
!strncmp((const char*) buffer, "flash", 5)) {
if (is_first_erase_flash) {
is_first_erase_flash = false;
}
}
#endif
goto again;
}
fastboot_fail("unknown command");
}
fastboot_state = STATE_OFFLINE;
dprintf(INFO,"fastboot: oops!\n");
free(buffer);
}
static int fastboot_handler(void *arg)
{
for (;;) {
event_wait(&usb_online);
fastboot_command_loop();
}
return 0;
}
static void fastboot_notify(struct udc_gadget *gadget, unsigned event)
{
if (event == UDC_EVENT_ONLINE) {
event_signal(&usb_online, 0);
}
}
int fastboot_init(void *base, unsigned size)
{
/*[20200605][TracyChui] Implement get Serial Number start*/
#if defined(ENABLE_PRODINFO_ACCESS)
char sn_buf[PRODINFO_MAX_ISN_LEN + 1];
#else
char sn_buf[13];
#endif
/*[20200605][TracyChui] Implement get Serial Number end*/
thread_t *thr;
dprintf(INFO, "fastboot_init()\n");
download_base = base;
download_max = size;
/* target specific initialization before going into fastboot. */
target_fastboot_init();
/* setup serialno */
target_serialno((unsigned char *) sn_buf);
dprintf(SPEW,"serial number: %s\n",sn_buf);
surf_udc_device.serialno = sn_buf;
if(!strcmp(target_usb_controller(), "dwc"))
{
#ifdef USB30_SUPPORT
surf_udc_device.t_usb_if = target_usb30_init();
/* initialize udc functions to use dwc controller */
usb_if.udc_init = usb30_udc_init;
usb_if.udc_register_gadget = usb30_udc_register_gadget;
usb_if.udc_start = usb30_udc_start;
usb_if.udc_stop = usb30_udc_stop;
usb_if.udc_endpoint_alloc = usb30_udc_endpoint_alloc;
usb_if.udc_request_alloc = usb30_udc_request_alloc;
usb_if.udc_request_free = usb30_udc_request_free;
usb_if.usb_read = usb30_usb_read;
usb_if.usb_write = usb30_usb_write;
#else
dprintf(CRITICAL, "USB30 needs to be enabled for this target.\n");
ASSERT(0);
#endif
}
else
{
/* initialize udc functions to use the default chipidea controller */
usb_if.udc_init = udc_init;
usb_if.udc_register_gadget = udc_register_gadget;
usb_if.udc_start = udc_start;
usb_if.udc_stop = udc_stop;
usb_if.udc_endpoint_alloc = udc_endpoint_alloc;
usb_if.udc_request_alloc = udc_request_alloc;
usb_if.udc_request_free = udc_request_free;
usb_if.usb_read = hsusb_usb_read;
usb_if.usb_write = hsusb_usb_write;
}
/* register udc device */
usb_if.udc_init(&surf_udc_device);
event_init(&usb_online, 0, EVENT_FLAG_AUTOUNSIGNAL);
event_init(&txn_done, 0, EVENT_FLAG_AUTOUNSIGNAL);
in = usb_if.udc_endpoint_alloc(UDC_TYPE_BULK_IN, 512);
if (!in)
goto fail_alloc_in;
out = usb_if.udc_endpoint_alloc(UDC_TYPE_BULK_OUT, 512);
if (!out)
goto fail_alloc_out;
fastboot_endpoints[0] = in;
fastboot_endpoints[1] = out;
req = usb_if.udc_request_alloc();
if (!req)
goto fail_alloc_req;
/* register gadget */
if (usb_if.udc_register_gadget(&fastboot_gadget))
goto fail_udc_register;
fastboot_register("getvar:", cmd_getvar);
fastboot_register("download:", cmd_download);
fastboot_register("upload", cmd_upload);
fastboot_publish("version", "0.5");
thr = thread_create("fastboot", fastboot_handler, 0, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE);
if (!thr)
{
goto fail_alloc_in;
}
thread_resume(thr);
usb_if.udc_start();
return 0;
fail_udc_register:
usb_if.udc_request_free(req);
fail_alloc_req:
usb_if.udc_endpoint_free(out);
fail_alloc_out:
usb_if.udc_endpoint_free(in);
fail_alloc_in:
return -1;
}
void fastboot_stop(void)
{
usb_if.udc_stop();
}