blob: 4a909a07822920c3a570c82ab0041cf281671afe [file] [log] [blame]
/*-
* Copyright (c) 2015 Oleksandr Tymoshenko <gonzo@FreeBSD.org>
* All rights reserved.
*
* This software was developed by Semihalf under sponsorship from
* the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "ufdt_overlay.h"
#include "libufdt.h"
/*
* The original version of fdt_overlay.c is slow in searching for particular
* nodes and adding subnodes/properties due to the operations on flattened
* device tree (FDT).
*
* Here we introduce `libufdt` which builds a real tree structure (named
* ufdt -- unflattned device tree) from FDT. In the real tree, we can perform
* certain operations (e.g., merge 2 subtrees, search for a node by path) in
* almost optimal time complexity with acceptable additional memory usage.
*
* This file is the improved version of fdt_overlay.c by using the real tree
* structure defined in libufdt.
*
* How the device tree overlay works and some
* special terms (e.g., fixups, local fixups, fragment, etc)
* are described in the document
* external/dtc/Documentation/dt-object-internal.txt.
*/
/* BEGIN of operations about phandles in ufdt. */
/*
* Increases u32 value at pos by offset.
*/
static void fdt_increase_u32(void *pos, uint32_t offset) {
uint32_t val;
dto_memcpy(&val, pos, sizeof(val));
val = cpu_to_fdt32(fdt32_to_cpu(val) + offset);
dto_memcpy(pos, &val, sizeof(val));
}
/*
* Gets the max phandle of a given ufdt.
*/
static uint32_t ufdt_get_max_phandle(struct ufdt *tree) {
struct static_phandle_table sorted_table = tree->phandle_table;
if (sorted_table.len > 0)
return sorted_table.data[sorted_table.len - 1].phandle;
else
return 0;
}
/*
* Tries to increase the phandle value of a node
* if the phandle exists.
*/
static void ufdt_node_try_increase_phandle(struct ufdt_node *node,
uint32_t offset) {
int len = 0;
char *prop_data = ufdt_node_get_fdt_prop_data_by_name(node, "phandle", &len);
if (prop_data != NULL && len == sizeof(fdt32_t)) {
fdt_increase_u32(prop_data, offset);
}
prop_data = ufdt_node_get_fdt_prop_data_by_name(node, "linux,phandle", &len);
if (prop_data != NULL && len == sizeof(fdt32_t)) {
fdt_increase_u32(prop_data, offset);
}
}
/*
* Increases all phandles by offset in a ufdt
* in O(n) time.
*/
static void ufdt_try_increase_phandle(struct ufdt *tree, uint32_t offset) {
struct static_phandle_table sorted_table = tree->phandle_table;
int i;
for (i = 0; i < sorted_table.len; i++) {
struct ufdt_node *target_node = sorted_table.data[i].node;
ufdt_node_try_increase_phandle(target_node, offset);
}
}
/* END of operations about phandles in ufdt. */
/*
* In the overlay_tree, there are some references (phandle)
* pointing to somewhere in the main_tree.
* Fix-up operations is to resolve the right address
* in the overlay_tree.
*/
/* BEGIN of doing fixup in the overlay ufdt. */
/*
* Returns exact memory location specified by fixup in format
* /path/to/node:property:offset.
* A property might contain multiple values and the offset is used to locate a
* reference inside the property.
* e.g.,
* "property"=<1, 2, &ref, 4>, we can use /path/to/node:property:8 to get ref,
* where 8 is sizeof(uint32) + sizeof(unit32).
*/
static void *ufdt_get_fixup_location(struct ufdt *tree, const char *fixup) {
char *path, *prop_ptr, *offset_ptr, *end_ptr;
int prop_offset, prop_len;
const char *prop_data;
/*
* TODO(akaineko): Keep track of substring lengths so we don't have to
* dto_malloc a copy and split it up.
*/
path = dto_strdup(fixup);
prop_ptr = dto_strchr(path, ':');
if (prop_ptr == NULL) {
dto_error("Missing property part in '%s'\n", path);
goto fail;
}
*prop_ptr = '\0';
prop_ptr++;
offset_ptr = dto_strchr(prop_ptr, ':');
if (offset_ptr == NULL) {
dto_error("Missing offset part in '%s'\n", path);
goto fail;
}
*offset_ptr = '\0';
offset_ptr++;
prop_offset = dto_strtoul(offset_ptr, &end_ptr, 10 /* base */);
if (*end_ptr != '\0') {
dto_error("'%s' is not valid number\n", offset_ptr);
goto fail;
}
struct ufdt_node *target_node;
target_node = ufdt_get_node_by_path(tree, path);
if (target_node == NULL) {
dto_error("Path '%s' not found\n", path);
goto fail;
}
prop_data =
ufdt_node_get_fdt_prop_data_by_name(target_node, prop_ptr, &prop_len);
if (prop_data == NULL) {
dto_error("Property '%s' not found in '%s' node\n", prop_ptr, path);
goto fail;
}
/*
* Note that prop_offset is the offset inside the property data.
*/
if (prop_len < prop_offset + (int)sizeof(uint32_t)) {
dto_error("%s: property length is too small for fixup\n", path);
goto fail;
}
dto_free(path);
return (char *)prop_data + prop_offset;
fail:
dto_free(path);
return NULL;
}
/*
* Process one entry in __fixups__ { } node.
* @fixups is property value, array of NUL-terminated strings
* with fixup locations.
* @fixups_len length of the fixups array in bytes.
* @phandle is value for these locations.
*/
static int ufdt_do_one_fixup(struct ufdt *tree, const char *fixups,
int fixups_len, int phandle) {
void *fixup_pos;
uint32_t val;
val = cpu_to_fdt32(phandle);
while (fixups_len > 0) {
fixup_pos = ufdt_get_fixup_location(tree, fixups);
if (fixup_pos != NULL) {
dto_memcpy(fixup_pos, &val, sizeof(val));
} else {
return -1;
}
fixups_len -= dto_strlen(fixups) + 1;
fixups += dto_strlen(fixups) + 1;
}
return 0;
}
/*
* Handle __fixups__ node in overlay tree.
*/
static int ufdt_overlay_do_fixups(struct ufdt *main_tree,
struct ufdt *overlay_tree) {
int len = 0;
struct ufdt_node *main_symbols_node, *overlay_fixups_node;
main_symbols_node = ufdt_get_node_by_path(main_tree, "/__symbols__");
overlay_fixups_node = ufdt_get_node_by_path(overlay_tree, "/__fixups__");
if (!main_symbols_node) {
dto_error("Bad main_symbols in ufdt_overlay_do_fixups\n");
return -1;
}
if (!overlay_fixups_node) {
dto_error("Bad overlay_fixups in ufdt_overlay_do_fixups\n");
return -1;
}
struct ufdt_node **it;
for_each_prop(it, overlay_fixups_node) {
/*
* A property in __fixups__ looks like:
* symbol_name =
* "/path/to/node:prop:offset0\x00/path/to/node:prop:offset1..."
* So we firstly find the node "symbol_name" and obtain its phandle in
* __symbols__ of the main_tree.
*/
struct ufdt_node *fixups = *it;
char *symbol_path = ufdt_node_get_fdt_prop_data_by_name(
main_symbols_node, name_of(fixups), &len);
if (!symbol_path) {
dto_error("Couldn't find '%s' symbol in main dtb\n", name_of(fixups));
return -1;
}
struct ufdt_node *symbol_node;
symbol_node = ufdt_get_node_by_path(main_tree, symbol_path);
if (!symbol_node) {
dto_error("Couldn't find '%s' path in main dtb\n", symbol_path);
return -1;
}
uint32_t phandle = ufdt_node_get_phandle(symbol_node);
const char *fixups_paths = ufdt_node_get_fdt_prop_data(fixups, &len);
if (ufdt_do_one_fixup(overlay_tree, fixups_paths, len, phandle) < 0) {
dto_error("Failed one fixup in ufdt_do_one_fixup\n");
return -1;
}
}
return 0;
}
/* END of doing fixup in the overlay ufdt. */
/*
* Here is to overlay all fragments in the overlay_tree to the main_tree.
* What is "overlay fragment"? The main purpose is to add some subtrees to the
* main_tree in order to complete the entire device tree.
*
* A frgament consists of two parts: 1. the subtree to be added 2. where it
* should be added.
*
* Overlaying a fragment requires: 1. find the node in the main_tree 2. merge
* the subtree into that node in the main_tree.
*/
/* BEGIN of applying fragments. */
/*
* Overlay the overlay_node over target_node.
*/
static int ufdt_overlay_node(struct ufdt_node *target_node,
struct ufdt_node *overlay_node) {
return merge_ufdt_into(target_node, overlay_node);
}
/*
* Return value of ufdt_apply_fragment().
*/
enum overlay_result {
OVERLAY_RESULT_OK,
OVERLAY_RESULT_MISSING_TARGET,
OVERLAY_RESULT_MISSING_OVERLAY,
OVERLAY_RESULT_TARGET_PATH_INVALID,
OVERLAY_RESULT_TARGET_INVALID,
OVERLAY_RESULT_MERGE_FAIL,
};
/*
* Apply one overlay fragment (subtree).
*/
static enum overlay_result ufdt_apply_fragment(struct ufdt *tree,
struct ufdt_node *frag_node) {
uint32_t target;
const char *target_path;
const void *val;
struct ufdt_node *target_node = NULL;
struct ufdt_node *overlay_node = NULL;
val = ufdt_node_get_fdt_prop_data_by_name(frag_node, "target", NULL);
if (val) {
dto_memcpy(&target, val, sizeof(target));
target = fdt32_to_cpu(target);
target_node = ufdt_get_node_by_phandle(tree, target);
if (target_node == NULL) {
dto_error("failed to find target %04x\n", target);
return OVERLAY_RESULT_TARGET_INVALID;
}
}
if (target_node == NULL) {
target_path =
ufdt_node_get_fdt_prop_data_by_name(frag_node, "target-path", NULL);
if (target_path == NULL) {
return OVERLAY_RESULT_MISSING_TARGET;
}
target_node = ufdt_get_node_by_path(tree, target_path);
if (target_node == NULL) {
dto_error("failed to find target-path %s\n", target_path);
return OVERLAY_RESULT_TARGET_PATH_INVALID;
}
}
overlay_node = ufdt_node_get_node_by_path(frag_node, "__overlay__");
if (overlay_node == NULL) {
dto_error("missing __overlay__ sub-node\n");
return OVERLAY_RESULT_MISSING_OVERLAY;
}
int err = ufdt_overlay_node(target_node, overlay_node);
if (err < 0) {
dto_error("failed to overlay node %s to target %s\n", name_of(overlay_node),
name_of(target_node));
return OVERLAY_RESULT_MERGE_FAIL;
}
return OVERLAY_RESULT_OK;
}
/*
* Applies all fragments to the main_tree.
*/
static int ufdt_overlay_apply_fragments(struct ufdt *main_tree,
struct ufdt *overlay_tree) {
enum overlay_result err;
struct ufdt_node **it;
/*
* This loop may iterate to subnodes that's not a fragment node.
* In such case, ufdt_apply_fragment would fail with return value = -1.
*/
for_each_node(it, overlay_tree->root) {
err = ufdt_apply_fragment(main_tree, *it);
if (err == OVERLAY_RESULT_MERGE_FAIL) {
return -1;
}
}
return 0;
}
/* END of applying fragments. */
/*
* Since the overlay_tree will be "merged" into the main_tree, some
* references (e.g., phandle values that acts as an unique ID) need to be
* updated so it won't lead to collision that different nodes have the same
* phandle value.
*
* Two things need to be done:
*
* 1. ufdt_try_increase_phandle()
* Update phandle (an unique integer ID of a node in the device tree) of each
* node in the overlay_tree. To achieve this, we simply increase each phandle
* values in the overlay_tree by the max phandle value of the main_tree.
*
* 2. ufdt_overlay_do_local_fixups()
* If there are some reference in the overlay_tree that references nodes
* inside the overlay_tree, we have to modify the reference value (address of
* the referenced node: phandle) so that it corresponds to the right node inside
* the overlay_tree. Where the reference exists is kept in __local_fixups__ node
* in the overlay_tree.
*/
/* BEGIN of updating local references (phandle values) in the overlay ufdt. */
/*
* local fixups
*/
static int ufdt_local_fixup_prop(struct ufdt_node *target_prop_node,
struct ufdt_node *local_fixup_prop_node,
uint32_t phandle_offset) {
/*
* prop_offsets_ptr should be a list of fdt32_t.
* <offset0 offset1 offset2 ...>
*/
char *prop_offsets_ptr;
int len = 0;
prop_offsets_ptr = ufdt_node_get_fdt_prop_data(local_fixup_prop_node, &len);
char *prop_data;
int target_length = 0;
prop_data = ufdt_node_get_fdt_prop_data(target_prop_node, &target_length);
if (prop_offsets_ptr == NULL || prop_data == NULL) return -1;
int i;
for (i = 0; i < len; i += sizeof(fdt32_t)) {
int offset = fdt32_to_cpu(*(fdt32_t *)(prop_offsets_ptr + i));
if (offset + sizeof(fdt32_t) > (size_t)target_length) return -1;
fdt_increase_u32((prop_data + offset), phandle_offset);
}
return 0;
}
static int ufdt_local_fixup_node(struct ufdt_node *target_node,
struct ufdt_node *local_fixups_node,
uint32_t phandle_offset) {
if (local_fixups_node == NULL) return 0;
struct ufdt_node **it_local_fixups;
struct ufdt_node *sub_target_node;
for_each_prop(it_local_fixups, local_fixups_node) {
sub_target_node =
ufdt_node_get_property_by_name(target_node, name_of(*it_local_fixups));
if (sub_target_node != NULL) {
int err = ufdt_local_fixup_prop(sub_target_node, *it_local_fixups,
phandle_offset);
if (err < 0) return -1;
} else {
return -1;
}
}
for_each_node(it_local_fixups, local_fixups_node) {
sub_target_node =
ufdt_node_get_node_by_path(target_node, name_of(*it_local_fixups));
if (sub_target_node != NULL) {
int err = ufdt_local_fixup_node(sub_target_node, *it_local_fixups,
phandle_offset);
if (err < 0) return -1;
} else {
return -1;
}
}
return 0;
}
static int ufdt_overlay_root_node(struct ufdt *tree,
struct ufdt *overlay_tree) {
struct ufdt_node *target_node = ufdt_get_node_by_path(tree, "/");
struct ufdt_node *overlay_node = ufdt_get_node_by_path(overlay_tree, "/");
struct ufdt_node **it_prop;
struct ufdt_node *target_prop;
if(!target_node)
return 0;
for_each_prop(it_prop, overlay_node) {
target_prop =
ufdt_node_get_property_by_name(target_node, name_of(*it_prop));
if (target_prop) {
if(merge_ufdt_into(target_prop, *it_prop))
return -1;
}
}
return 0;
}
/*
* Handle __local_fixups__ node in overlay DTB
* The __local_fixups__ format we expect is
* __local_fixups__ {
* path {
* to {
* local_ref1 = <offset>;
* };
* };
* path2 {
* to2 {
* local_ref2 = <offset1 offset2 ...>;
* };
* };
* };
*
* which follows the dtc patch from:
* https://marc.info/?l=devicetree&m=144061468601974&w=4
*/
static int ufdt_overlay_do_local_fixups(struct ufdt *tree,
uint32_t phandle_offset) {
struct ufdt_node *overlay_node = ufdt_get_node_by_path(tree, "/");
struct ufdt_node *local_fixups_node =
ufdt_get_node_by_path(tree, "/__local_fixups__");
int err =
ufdt_local_fixup_node(overlay_node, local_fixups_node, phandle_offset);
if (err < 0) return -1;
return 0;
}
static int ufdt_overlay_local_ref_update(struct ufdt *main_tree,
struct ufdt *overlay_tree) {
uint32_t phandle_offset = 0;
phandle_offset = ufdt_get_max_phandle(main_tree);
if (phandle_offset > 0) {
ufdt_try_increase_phandle(overlay_tree, phandle_offset);
}
int err = ufdt_overlay_do_local_fixups(overlay_tree, phandle_offset);
if (err < 0) {
dto_error("failed to perform local fixups in overlay\n");
return -1;
}
return 0;
}
/* END of updating local references (phandle values) in the overlay ufdt. */
static int ufdt_overlay_apply(struct ufdt *main_tree, struct ufdt *overlay_tree,
size_t overlay_length) {
if (overlay_length < sizeof(struct fdt_header)) {
dto_error("Overlay_length %zu smaller than header size %zu\n",
overlay_length, sizeof(struct fdt_header));
return -1;
}
if(ufdt_overlay_root_node(main_tree, overlay_tree))
return -1;
if (ufdt_overlay_local_ref_update(main_tree, overlay_tree) < 0) {
dto_error("failed to perform local fixups in overlay\n");
return -1;
}
if (ufdt_overlay_do_fixups(main_tree, overlay_tree) < 0) {
dto_error("failed to perform fixups in overlay\n");
return -1;
}
if (ufdt_overlay_apply_fragments(main_tree, overlay_tree) < 0) {
dto_error("failed to apply fragments\n");
return -1;
}
return 0;
}
struct fdt_header *ufdt_install_blob(void *blob, size_t blob_size) {
struct fdt_header *pHeader;
int err;
dto_debug("ufdt_install_blob (0x%08jx)\n", (uintmax_t)blob);
if (blob_size < sizeof(struct fdt_header)) {
dto_error("Blob_size %zu smaller than the header size %zu\n", blob_size,
sizeof(struct fdt_header));
return NULL;
}
pHeader = (struct fdt_header *)blob;
err = fdt_check_header(pHeader);
if (err < 0) {
if (err == -FDT_ERR_BADVERSION) {
dto_error("incompatible blob version: %d, should be: %d",
fdt_version(pHeader), FDT_LAST_SUPPORTED_VERSION);
} else {
dto_error("error validating blob: %s", fdt_strerror(err));
}
return NULL;
}
return pHeader;
}
/*
* From Google, based on dt_overlay_apply() logic
* Will dto_malloc a new fdt blob and return it. Will not dto_free parameters.
*/
struct fdt_header *ufdt_apply_overlay(struct fdt_header *main_fdt_header,
size_t main_fdt_size,
void *overlay_fdtp,
size_t overlay_size) {
size_t out_fdt_size;
if (main_fdt_header == NULL) {
return NULL;
}
if (overlay_size < 8 || overlay_size != fdt_totalsize(overlay_fdtp)) {
dto_error("Bad overlay size!\n");
return NULL;
}
if (main_fdt_size < 8 || main_fdt_size != fdt_totalsize(main_fdt_header)) {
dto_error("Bad fdt size!\n");
return NULL;
}
out_fdt_size = fdt_totalsize(main_fdt_header) + overlay_size;
/* It's actually more than enough */
struct fdt_header *out_fdt_header = dto_malloc(out_fdt_size);
if (out_fdt_header == NULL) {
dto_error("failed to allocate memory for DTB blob with overlays\n");
return NULL;
}
struct ufdt *main_tree, *overlay_tree;
main_tree = fdt_to_ufdt(main_fdt_header, main_fdt_size);
overlay_tree = fdt_to_ufdt(overlay_fdtp, overlay_size);
int err = ufdt_overlay_apply(main_tree, overlay_tree, overlay_size);
if (err < 0) {
goto fail;
}
err = ufdt_to_fdt(main_tree, out_fdt_header, out_fdt_size);
if (err < 0) {
dto_error("Failed to dump the device tree to out_fdt_header\n");
goto fail;
}
ufdt_destruct(main_tree);
ufdt_destruct(overlay_tree);
return out_fdt_header;
fail:
ufdt_destruct(main_tree);
ufdt_destruct(overlay_tree);
dto_free(out_fdt_header);
return NULL;
}