| /* Copyright (c) 2013-2017, The Linux Foundation. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials provided |
| * with the distribution. |
| * * Neither the name of The Linux Foundation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED |
| * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS |
| * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
| * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE |
| * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN |
| * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include <platform/iomap.h> |
| #include <platform/irqs.h> |
| #include <platform/interrupts.h> |
| #include <platform/timer.h> |
| #include <sys/types.h> |
| #include <target.h> |
| #include <string.h> |
| #include <stdlib.h> |
| #include <bits.h> |
| #include <debug.h> |
| #include <mmc.h> |
| #include <sdhci.h> |
| #include <sdhci_msm.h> |
| |
| |
| #define MX_DRV_SUPPORTED_HS200 3 |
| static bool attempt_cdr_unlock; |
| |
| /* Known data stored in the card & read during tuning |
| * process. 64 bytes for 4bit bus width & 128 bytes |
| * of data for 8 bit bus width. |
| * These values are derived from HPG |
| */ |
| static const uint32_t tuning_block_64[] = { |
| 0x00FF0FFF, 0xCCC3CCFF, 0xFFCC3CC3, 0xEFFEFFFE, |
| 0xDDFFDFFF, 0xFBFFFBFF, 0xFF7FFFBF, 0xEFBDF777, |
| 0xF0FFF0FF, 0x3CCCFC0F, 0xCFCC33CC, 0xEEFFEFFF, |
| 0xFDFFFDFF, 0xFFBFFFDF, 0xFFF7FFBB, 0xDE7B7FF7 |
| }; |
| |
| static const uint32_t tuning_block_128[] = { |
| 0xFF00FFFF, 0x0000FFFF, 0xCCCCFFFF, 0xCCCC33CC, |
| 0xCC3333CC, 0xFFFFCCCC, 0xFFFFEEFF, 0xFFEEEEFF, |
| 0xFFDDFFFF, 0xDDDDFFFF, 0xBBFFFFFF, 0xBBFFFFFF, |
| 0xFFFFFFBB, 0xFFFFFF77, 0x77FF7777, 0xFFEEDDBB, |
| 0x00FFFFFF, 0x00FFFFFF, 0xCCFFFF00, 0xCC33CCCC, |
| 0x3333CCCC, 0xFFCCCCCC, 0xFFEEFFFF, 0xEEEEFFFF, |
| 0xDDFFFFFF, 0xDDFFFFFF, 0xFFFFFFDD, 0xFFFFFFBB, |
| 0xFFFFBBBB, 0xFFFF77FF, 0xFF7777FF, 0xEEDDBB77 |
| }; |
| |
| /* |
| * Function: sdhci int handler |
| * Arg : MSM specific data for sdhci |
| * Return : 0 |
| * Flow: : 1. Read the power control mask register |
| * 2. Check if bus is ON |
| * 3. Write success to ack regiser |
| * Details : This is power control interrupt handler. |
| * Once we receive the interrupt, we will ack the power control |
| * register that we have successfully completed pmic transactions |
| */ |
| static enum handler_return sdhci_int_handler(struct sdhci_msm_data *data) |
| { |
| uint32_t ack; |
| uint32_t status; |
| |
| /* |
| * Read the mask register to check if BUS & IO level |
| * interrupts are enabled |
| */ |
| status = readl(data->pwrctl_base + SDCC_HC_PWRCTL_MASK_REG); |
| |
| if (status & (SDCC_HC_BUS_ON | SDCC_HC_BUS_OFF)) |
| ack = SDCC_HC_BUS_ON_OFF_SUCC; |
| if (status & (SDCC_HC_IO_SIG_LOW | SDCC_HC_IO_SIG_HIGH)) |
| ack |= SDCC_HC_IO_SIG_SUCC; |
| |
| /* Write success to power control register */ |
| writel(ack, (data->pwrctl_base + SDCC_HC_PWRCTL_CTL_REG)); |
| |
| event_signal(data->sdhc_event, false); |
| |
| return 0; |
| } |
| |
| /* |
| * Function: sdhci clear pending interrupts |
| * Arg : MSM specific data for sdhci |
| * Return : None |
| * Flow: : Clear pending interrupts |
| */ |
| static void sdhci_clear_power_ctrl_irq(struct sdhci_msm_data *data) |
| { |
| uint32_t irq_ctl; |
| uint32_t irq_stat; |
| |
| /* |
| * Read the power control status register to know |
| * the status of BUS & IO_HIGH_V |
| */ |
| irq_stat = readl(data->pwrctl_base + SDCC_HC_PWRCTL_STATUS_REG); |
| |
| /* Clear the power control status */ |
| writel(irq_stat, (data->pwrctl_base + SDCC_HC_PWRCTL_CLEAR_REG)); |
| |
| /* |
| * Handle the pending irq by ack'ing the bus & IO switch |
| */ |
| irq_ctl = readl(data->pwrctl_base + SDCC_HC_PWRCTL_CTL_REG); |
| |
| if (irq_stat & (SDCC_HC_BUS_ON | SDCC_HC_BUS_OFF)) |
| irq_ctl |= SDCC_HC_BUS_ON_OFF_SUCC; |
| if (irq_stat & (SDCC_HC_IO_SIG_LOW | SDCC_HC_IO_SIG_HIGH)) |
| irq_ctl |= SDCC_HC_IO_SIG_SUCC; |
| |
| writel(irq_ctl, (data->pwrctl_base + SDCC_HC_PWRCTL_CTL_REG)); |
| } |
| |
| /* |
| * Function: sdhci msm init |
| * Arg : MSM specific config data for sdhci |
| * Return : None |
| * Flow: : Enable sdhci mode & do msm specific init |
| */ |
| void sdhci_msm_init(struct sdhci_host *host, struct sdhci_msm_data *config) |
| { |
| uint32_t io_switch; |
| uint32_t caps = 0; |
| uint32_t version; |
| |
| REG_WRITE32(host, 0xA1C, SDCC_VENDOR_SPECIFIC_FUNC); |
| |
| /* Enable sdhc mode */ |
| RMWREG32((config->pwrctl_base + SDCC_MCI_HC_MODE), SDHCI_HC_START_BIT, SDHCI_HC_WIDTH, SDHCI_HC_MODE_EN); |
| |
| /* Set the FF_CLK_SW_RST_DIS to 1 */ |
| RMWREG32((config->pwrctl_base + SDCC_MCI_HC_MODE), FF_CLK_SW_RST_DIS_START, FF_CLK_SW_RST_DIS_WIDTH, 1); |
| |
| /* |
| * Reset the controller |
| */ |
| sdhci_reset(host, SDHCI_SOFT_RESET); |
| |
| /* |
| * Some platforms have same SDC instance shared between emmc & sd card. |
| * For such platforms the emmc IO voltage has to be switched from 3.3 to |
| * 1.8 for the contoller to work with emmc. |
| */ |
| |
| if(config->use_io_switch) |
| { |
| io_switch = REG_READ32(host, SDCC_VENDOR_SPECIFIC_FUNC); |
| io_switch |= HC_IO_PAD_PWR_SWITCH | HC_IO_PAD_PWR_SWITCH_EN; |
| REG_WRITE32(host, io_switch, SDCC_VENDOR_SPECIFIC_FUNC); |
| } |
| |
| /* |
| * CORE_SW_RST may trigger power irq if previous status of PWRCTL |
| * was either BUS_ON or IO_HIGH. So before we enable the power irq |
| * interrupt in GIC (by registering the interrupt handler), we need to |
| * ensure that any pending power irq interrupt status is acknowledged |
| * otherwise power irq interrupt handler would be fired prematurely. |
| */ |
| sdhci_clear_power_ctrl_irq(config); |
| |
| /* |
| * Register the interrupt handler for pwr irq |
| */ |
| register_int_handler(config->pwr_irq, (int_handler)sdhci_int_handler, (void *)config); |
| |
| unmask_interrupt(config->pwr_irq); |
| |
| /* Enable pwr control interrupt */ |
| writel(SDCC_HC_PWR_CTRL_INT, (config->pwrctl_base + SDCC_HC_PWRCTL_MASK_REG)); |
| |
| version = readl(host->msm_host->pwrctl_base + MCI_VERSION); |
| |
| host->major = (version & CORE_VERSION_MAJOR_MASK) >> CORE_VERSION_MAJOR_SHIFT; |
| host->minor = (version & CORE_VERSION_MINOR_MASK); |
| |
| /* |
| * For SDCC5 the capabilities registers does not have voltage advertised |
| * Override the values using SDCC_HC_VENDOR_SPECIFIC_CAPABILITIES0 |
| */ |
| if (host->major >= 1 && host->minor != 0x11 && host->minor != 0x12) |
| { |
| caps = REG_READ32(host, SDHCI_CAPS_REG1); |
| |
| if (config->slot == 0x1) |
| REG_WRITE32(host, (caps | SDHCI_1_8_VOL_MASK), SDCC_HC_VENDOR_SPECIFIC_CAPABILITIES0); |
| else |
| REG_WRITE32(host, (caps | SDHCI_3_0_VOL_MASK), SDCC_HC_VENDOR_SPECIFIC_CAPABILITIES0); |
| } |
| |
| config->tuning_done = false; |
| config->calibration_done = false; |
| host->tuning_in_progress = false; |
| } |
| |
| /* |
| * Function: sdhci msm set mci clk |
| * Arg : Host structure |
| * Return : None |
| * Flow: : Set HC_SELECT & HC_SELECT_EN for hs400 |
| */ |
| void sdhci_msm_set_mci_clk(struct sdhci_host *host) |
| { |
| struct sdhci_msm_data *msm_host; |
| |
| msm_host = host->msm_host; |
| |
| if (host->timing == MMC_HS400_TIMING) |
| { |
| /* |
| * If the current tuning mode is HS400 then we should set the MCLK to run |
| * the clock @ MCLK/2. Also set HS400 mode in SELECT_IN of vendor specific |
| * register |
| */ |
| REG_RMW32(host, SDCC_VENDOR_SPECIFIC_FUNC, SDCC_HC_MCLK_HS400_START, SDCC_HC_MCLK_HS400_WIDTH, SDCC_HC_MCLK_SEL_HS400); |
| |
| /* Enable HS400 mode from HC_SELECT_IN bit of VENDOR_SPEC register |
| * As the SDCC spec does not have matching mode for HS400 |
| */ |
| if (msm_host->tuning_done && !msm_host->calibration_done) |
| { |
| REG_RMW32(host, SDCC_VENDOR_SPECIFIC_FUNC, SDCC_HC_MCLK_SEL_IN_START, SDCC_HC_MCLK_SEL_IN_WIDTH, SDCC_HC_MCLK_SEL_IN_HS400); |
| REG_RMW32(host, SDCC_VENDOR_SPECIFIC_FUNC, SDCC_HC_MCLK_SEL_IN_EN_START, SDCC_HC_MCLK_SEL_IN_EN_WIDTH, SDCC_HC_MCLK_SEL_IN_EN); |
| } |
| } |
| else |
| { |
| /* |
| * Set 0x0 mode in SELECT_IN of vendor specific register so that the |
| * host control2 register settings from sdhc spec are used for |
| * speed mode |
| */ |
| REG_RMW32(host, SDCC_VENDOR_SPECIFIC_FUNC, SDCC_HC_MCLK_SEL_IN_START, SDCC_HC_MCLK_SEL_IN_WIDTH, 0x0); |
| REG_RMW32(host, SDCC_VENDOR_SPECIFIC_FUNC, SDCC_HC_MCLK_SEL_IN_EN_START, SDCC_HC_MCLK_SEL_IN_EN_WIDTH, 0x0); |
| } |
| } |
| |
| /* |
| * Set the value based on sdcc clock frequency |
| */ |
| static void msm_set_dll_freq(struct sdhci_host *host) |
| { |
| uint32_t reg_val = 0; |
| |
| /* Set clock freq value based on clock range */ |
| if (host->cur_clk_rate <= 112000000) |
| reg_val = 0x0; |
| else if (host->cur_clk_rate <= 125000000) |
| reg_val = 0x1; |
| else if (host->cur_clk_rate <= 137000000) |
| reg_val = 0x2; |
| else if (host->cur_clk_rate <= 150000000) |
| reg_val = 0x3; |
| else if (host->cur_clk_rate <= 162000000) |
| reg_val = 0x4; |
| else if (host->cur_clk_rate <= 175000000) |
| reg_val = 0x5; |
| else if (host->cur_clk_rate <= 187000000) |
| reg_val = 0x6; |
| else if (host->cur_clk_rate <= 200000000) |
| reg_val = 0x7; |
| |
| DBG("\n %s: DLL freq: 0x%08x\n", __func__, reg_val); |
| |
| REG_RMW32(host, SDCC_DLL_CONFIG_REG, SDCC_DLL_CONFIG_MCLK_START, SDCC_DLL_CONFIG_MCLK_WIDTH, reg_val); |
| } |
| |
| static void sdhci_dll_clk_enable(struct sdhci_host *host, int enable) |
| { |
| if (enable) |
| { |
| REG_WRITE32(host, (REG_READ32(host, SDCC_HC_REG_DLL_CONFIG_2) & ~SDCC_DLL_CLOCK_DISABLE), SDCC_HC_REG_DLL_CONFIG_2); |
| } |
| else |
| { |
| REG_WRITE32(host, (REG_READ32(host, SDCC_DLL_CONFIG_REG) & ~SDCC_DLL_CLK_OUT_EN), SDCC_DLL_CONFIG_REG); |
| REG_WRITE32(host, (REG_READ32(host, SDCC_HC_REG_DLL_CONFIG_2) | SDCC_DLL_CLOCK_DISABLE), SDCC_HC_REG_DLL_CONFIG_2); |
| } |
| } |
| |
| /* Initialize DLL (Programmable Delay Line) */ |
| static uint32_t sdhci_msm_init_dll(struct sdhci_host *host) |
| { |
| uint32_t pwr_save = 0; |
| uint32_t timeout = SDHCI_DLL_TIMEOUT; |
| uint32_t dll_cfg2; |
| uint32_t mclk_clk_freq = 0; |
| |
| pwr_save = REG_READ32(host, SDCC_VENDOR_SPECIFIC_FUNC) & SDCC_DLL_PWR_SAVE_EN; |
| |
| /* Dll sequence needs additional steps for sdcc core version 42 */ |
| if (host->major == 1 && host->minor >= 0x42) |
| { |
| /* Disable DLL clock before configuring */ |
| sdhci_dll_clk_enable(host, 0); |
| } |
| |
| /* PWR SAVE to 0 */ |
| if (pwr_save) |
| REG_WRITE32(host, (REG_READ32(host, SDCC_VENDOR_SPECIFIC_FUNC) & ~SDCC_DLL_PWR_SAVE_EN), SDCC_VENDOR_SPECIFIC_FUNC); |
| /* Set DLL_RST to 1 */ |
| REG_WRITE32(host, (REG_READ32(host, SDCC_DLL_CONFIG_REG) | SDCC_DLL_RESET_EN), SDCC_DLL_CONFIG_REG); |
| /* Set DLL_PDN to 1 */ |
| REG_WRITE32(host, (REG_READ32(host, SDCC_DLL_CONFIG_REG) | SDCC_DLL_PDN_EN), SDCC_DLL_CONFIG_REG); |
| |
| /* Set frequency field in DLL_CONFIG */ |
| msm_set_dll_freq(host); |
| |
| /* Configure the mclk freq based on the current clock rate |
| * and fll cycle count |
| */ |
| if (host->major == 1 && host->minor >= 0x42) |
| { |
| dll_cfg2 = REG_READ32(host, SDCC_HC_REG_DLL_CONFIG_2); |
| if (dll_cfg2 & SDCC_FLL_CYCLE_CNT) |
| mclk_clk_freq = (host->cur_clk_rate / TCXO_FREQ) * 8; |
| else |
| mclk_clk_freq = (host->cur_clk_rate / TCXO_FREQ) * 4; |
| |
| REG_WRITE32(host, ((REG_READ32(host, SDCC_HC_REG_DLL_CONFIG_2) & ~(0xFF << 10)) | (mclk_clk_freq << 10)), SDCC_HC_REG_DLL_CONFIG_2); |
| |
| udelay(5); |
| } |
| |
| /* Write 0 to DLL_RST */ |
| REG_WRITE32(host, (REG_READ32(host, SDCC_DLL_CONFIG_REG) & ~SDCC_DLL_RESET_EN), SDCC_DLL_CONFIG_REG); |
| /* Write 0 to DLL_PDN */ |
| REG_WRITE32(host, (REG_READ32(host, SDCC_DLL_CONFIG_REG) & ~SDCC_DLL_PDN_EN), SDCC_DLL_CONFIG_REG); |
| |
| /* Set the mclk clock and enable the dll clock */ |
| if (host->major == 1 && host->minor >= 0x42) |
| { |
| msm_set_dll_freq(host); |
| sdhci_dll_clk_enable(host, 1); |
| } |
| /* Write 1 to DLL_EN */ |
| REG_WRITE32(host, (REG_READ32(host, SDCC_DLL_CONFIG_REG) | SDCC_DLL_EN), SDCC_DLL_CONFIG_REG); |
| /* Write 1 to CLK_OUT_EN */ |
| REG_WRITE32(host, (REG_READ32(host, SDCC_DLL_CONFIG_REG) | SDCC_DLL_CLK_OUT_EN), SDCC_DLL_CONFIG_REG); |
| /* Wait for DLL_LOCK in DLL_STATUS register, wait time 50us */ |
| while(!((REG_READ32(host, SDCC_REG_DLL_STATUS)) & SDCC_DLL_LOCK_STAT)) |
| { |
| udelay(1); |
| timeout--; |
| if (!timeout) |
| { |
| dprintf(CRITICAL, "%s: Failed to get DLL lock: 0x%08x\n", __func__, REG_READ32(host, SDCC_REG_DLL_STATUS)); |
| return 1; |
| } |
| } |
| |
| /* Set the powersave back on */ |
| if (pwr_save) |
| REG_WRITE32(host, (REG_READ32(host, SDCC_VENDOR_SPECIFIC_FUNC) | SDCC_DLL_PWR_SAVE_EN), SDCC_VENDOR_SPECIFIC_FUNC); |
| |
| return 0; |
| } |
| |
| void sdhci_msm_toggle_cdr(struct sdhci_host *host, bool enable) |
| { |
| uint32_t core_cfg; |
| |
| core_cfg = REG_READ32(host, SDCC_DLL_CONFIG_REG); |
| |
| if (enable) |
| { |
| core_cfg |= SDCC_DLL_CDR_EN; |
| core_cfg &= ~SDCC_DLL_CDR_EXT_EN; |
| } |
| else |
| { |
| core_cfg &= ~SDCC_DLL_CDR_EN; |
| core_cfg |= SDCC_DLL_CDR_EXT_EN; |
| } |
| |
| REG_WRITE32(host, core_cfg, SDCC_DLL_CONFIG_REG); |
| } |
| |
| /* Configure DLL with delay value based on 'phase' */ |
| static uint32_t sdhci_msm_config_dll(struct sdhci_host *host, uint32_t phase) |
| { |
| uint32_t core_cfg = 0; |
| uint32_t timeout = SDHCI_DLL_TIMEOUT; |
| |
| /* Gray code values from SWI */ |
| uint32_t gray_code [] = { 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4, 0xC, 0xD, 0xF, 0xE, 0xA, 0xB, 0x9, 0x8 }; |
| |
| /* set CDR_EN & CLK_OUT_EN to 0 and |
| * CDR_EXT_EN & DLL_EN to 1*/ |
| core_cfg = REG_READ32(host, SDCC_DLL_CONFIG_REG); |
| core_cfg &= ~(SDCC_DLL_CDR_EN | SDCC_DLL_CLK_OUT_EN); |
| core_cfg |= (SDCC_DLL_CDR_EXT_EN | SDCC_DLL_EN); |
| REG_WRITE32(host, core_cfg, SDCC_DLL_CONFIG_REG); |
| |
| /* Wait until CLK_OUT_EN is 0 */ |
| while(REG_READ32(host, SDCC_DLL_CONFIG_REG) & SDCC_DLL_CLK_OUT_EN); |
| |
| REG_RMW32(host, SDCC_DLL_CONFIG_REG, SDCC_DLL_GRAY_CODE_START, SDCC_DLL_GRAY_CODE_WIDTH, gray_code[phase]); |
| |
| REG_WRITE32(host, (REG_READ32(host, SDCC_DLL_CONFIG_REG) | SDCC_DLL_CLK_OUT_EN), SDCC_DLL_CONFIG_REG); |
| |
| /* Wait until CLK_OUT_EN is 1, wait time 50us */ |
| while(!(REG_READ32(host, SDCC_DLL_CONFIG_REG) & SDCC_DLL_CLK_OUT_EN)) |
| { |
| timeout--; |
| udelay(1); |
| if (!timeout) |
| { |
| dprintf(CRITICAL, "%s: clk_out_en timed out: %08x\n", __func__, REG_READ32(host, SDCC_DLL_CONFIG_REG)); |
| return 1; |
| } |
| } |
| |
| core_cfg = REG_READ32(host, SDCC_DLL_CONFIG_REG); |
| |
| core_cfg |= SDCC_DLL_CDR_EN; |
| core_cfg &= ~SDCC_DLL_CDR_EXT_EN; |
| |
| REG_WRITE32(host, core_cfg, SDCC_DLL_CONFIG_REG); |
| |
| return 0; |
| } |
| |
| /* |
| * Find the right tuning delay, this function finds the largest |
| * consecutive sequence of phases & then selects the 3/4 th of |
| * the range which has max entries |
| * For eg: If we get the following sequence in phase_table[] |
| * (A) phase_table[] = 0x1, 0x2, 0x3, 0x4 , 0x5 |
| * (B) phase_table[] = 0xA, 0xB, 0xC |
| * In the above case the (A) has maximum consecutive entries with '5' entries |
| * So delay would be phase_table[(0x5 * 3) / 4] = 0x3 |
| */ |
| static int sdhci_msm_find_appropriate_phase(struct sdhci_host *host, |
| uint32_t *phase_table, |
| uint32_t total_phases) |
| { |
| int sub_phases[MAX_PHASES][MAX_PHASES]={{0}}; |
| uint32_t phases_per_row[MAX_PHASES] = {0}; |
| uint32_t i,j; |
| int selected_phase = 0; |
| uint32_t row_index = 0; |
| uint32_t col_index = 0; |
| uint32_t phase_15_row_idx = 0; |
| uint32_t phases_0_row_idx = 0; |
| uint32_t max_phases_3_4_idx = 0; |
| uint32_t max_phases = 0; |
| uint32_t max_phases_row = 0; |
| bool found_loop = false; |
| |
| if (!phase_table[0] && phase_table[total_phases - 1] == (MAX_PHASES - 1)) |
| found_loop = true; |
| |
| for (i = 0; i < total_phases; i++) |
| { |
| /* Break the phase table entries into different sub arrays based |
| * on the consecutive entries. Each row will have one sub array |
| * of consecutive entries. |
| * for eg: phase_table [] = { 0x0, 0x1, 0x2, 0xA, 0xB} |
| * sub_phases [0][] = { 0x0, 0x1, 0x2} |
| * sub_phases [1][] = { 0xA, 0xB} |
| */ |
| sub_phases[row_index][col_index] = phase_table[i]; |
| phases_per_row[row_index]++; |
| col_index++; |
| |
| /* If we are at the last phase no need to check further */ |
| if ((i + 1) == total_phases) |
| break; |
| |
| /* If phase_table does not have consecutive entries, move to next entry */ |
| if (phase_table[i]+1 != phase_table[i+1]) |
| { |
| row_index++; |
| col_index = 0; |
| } |
| } |
| |
| if (found_loop && total_phases < MAX_PHASES) |
| { |
| /* For consecutive entries we need to consider loops. |
| * If the phase_table contains 0x0 & 0xF then we have |
| * a loop, the number after 0xF in the sequence would be |
| * 0x0. |
| * for eg: |
| * phase_table = { 0x0, 0x1, 0x2, 0xD, 0xE, 0xF } |
| * then |
| * sub_phase [0][] = { 0x0, 0x1, 0x2 } |
| * sub_phase [1][] = { 0xD, 0xE, 0xF } |
| * Since we have a loop here, we need to merge the sub arrays as: |
| * sub_phase [1][] = { 0xD, 0xE, 0xF, 0x0, 0x1, 0x2 } |
| */ |
| |
| /* The entry 0xF will always be in the last row |
| * and entry 0x0 will always be in the first row |
| */ |
| phase_15_row_idx = row_index; |
| j = 0; |
| for (i = phases_per_row[phase_15_row_idx] ; i < MAX_PHASES ; i++) |
| { |
| sub_phases[phase_15_row_idx][i] = sub_phases[phases_0_row_idx][j]; |
| if (++j >= phases_per_row[phases_0_row_idx]) |
| break; |
| } |
| |
| /* Update the number of entries for the sub_phase after the merger */ |
| phases_per_row[phase_15_row_idx] = phases_per_row[phase_15_row_idx] + phases_per_row[phases_0_row_idx]; |
| phases_per_row[phases_0_row_idx] = 0; |
| } |
| |
| for (i = 0 ; i <= row_index; i++) |
| { |
| if (phases_per_row[i] > max_phases) |
| { |
| max_phases = phases_per_row[i]; |
| max_phases_row = i; |
| } |
| } |
| |
| max_phases_3_4_idx = (max_phases * 3) / 4; |
| if (max_phases_3_4_idx) |
| max_phases_3_4_idx--; |
| |
| selected_phase = sub_phases[max_phases_row][max_phases_3_4_idx]; |
| |
| return selected_phase; |
| } |
| |
| static uint32_t sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host) |
| { |
| uint32_t timeout = 0; |
| |
| DBG("\n CM_DLL_SDC4 Calibration Start\n"); |
| |
| /*1.Write the DDR config value to SDCC_HC_REG_DDR_CONFIG register*/ |
| REG_WRITE32(host, target_ddr_cfg_val(), target_ddr_cfg_reg()); |
| |
| /*2. Write DDR_CAL_EN to '1' */ |
| REG_WRITE32(host, (REG_READ32(host, SDCC_HC_REG_DLL_CONFIG_2) | DDR_CAL_EN), SDCC_HC_REG_DLL_CONFIG_2); |
| |
| /*3. Wait for DLL_LOCK for hs400 to be set */ |
| timeout = DDR_CAL_TIMEOUT_MAX; |
| while (!(REG_READ32(host, SDCC_REG_DLL_STATUS) & DDR_DLL_LOCK_JDR)) |
| { |
| timeout--; |
| mdelay(1); |
| if (!timeout) |
| { |
| dprintf(CRITICAL, "Error: DLL lock for hs400 operation is not set\n"); |
| return 1; |
| } |
| } |
| |
| /*4. Set powersave dll */ |
| REG_WRITE32(host, (REG_READ32(host, SDCC_HC_VENDOR_SPECIFIC_FUNC3) | PWRSAVE_DLL), SDCC_HC_VENDOR_SPECIFIC_FUNC3); |
| |
| DBG("\n CM_DLL_SDC4 Calibration Done\n"); |
| |
| return 0; |
| } |
| |
| static uint32_t sdhci_msm_cdclp533_calibration(struct sdhci_host *host) |
| { |
| uint32_t timeout; |
| uint32_t cdc_err; |
| |
| DBG("\n CDCLP533 Calibration Start\n"); |
| |
| /* Write 0 to CDC_T4_DLY_SEL field in VENDOR_SPEC_DDR200_CFG */ |
| REG_WRITE32(host, (REG_READ32(host, SDCC_CDC_DDR200_CFG) & ~CDC_T4_DLY_SEL), SDCC_CDC_DDR200_CFG); |
| |
| /* Write 0 to START_CDC_TRAFFIC field in CORE_DDR200_CFG */ |
| REG_WRITE32(host, (REG_READ32(host, SDCC_CDC_DDR200_CFG) & ~START_CDC_TRAFFIC), SDCC_CDC_DDR200_CFG); |
| |
| /* Write 0 to CDC_SWITCH_BYPASS_OFF field in CSR_CDC_GEN_CFG */ |
| REG_WRITE32(host, (REG_READ32(host, SDCC_VENDOR_SPEC_CSR_CDC_CFG) & ~CDC_SWITCH_BYPASS_OFF), SDCC_VENDOR_SPEC_CSR_CDC_CFG); |
| |
| /* Write 1 to CDC_SWITCH_RC_EN field in CSR_CDC_GEN_CFG */ |
| REG_WRITE32(host, (REG_READ32(host, SDCC_VENDOR_SPEC_CSR_CDC_CFG) | CDC_SWITCH_RC_EN), SDCC_VENDOR_SPEC_CSR_CDC_CFG); |
| |
| /* Write 0 to START_CDC_TRAFFIC field in CORE_DDR200_CFG */ |
| REG_WRITE32(host, (REG_READ32(host, SDCC_CDC_DDR200_CFG) & ~START_CDC_TRAFFIC), SDCC_CDC_DDR200_CFG); |
| |
| /* Perform CDCLP533 initialization sequence |
| * SDCC_CSR_CDC_CTRL_CFG0 --> 0x11800EC |
| * SDCC_CSR_CDC_CTRL_CFG1 --> 0x3011111 |
| * SDCC_CSR_CDC_CAL_TIMER_CFG0 --> 0x1201000 |
| * SDCC_CSR_CDC_CAL_TIMER_CFG1 --> 0x4 |
| * SDCC_CSR_CDC_REFCOUNT_CFG --> 0xCB732020 |
| * SDCC_CSR_CDC_COARSE_CAL_CFG --> 0xB19 |
| * SDCC_CSR_CDC_DELAY_CFG --> 0x4E2 |
| * SDCC_CDC_OFFSET_CFG --> 0x0 |
| * SDCC_CDC_SLAVE_DDA_CFG --> 0x16334 |
| */ |
| |
| REG_WRITE32(host, 0x11800EC, SDCC_CSR_CDC_CTRL_CFG0); |
| REG_WRITE32(host, 0x3011111, SDCC_CSR_CDC_CTRL_CFG1); |
| REG_WRITE32(host, 0x1201000, SDCC_CSR_CDC_CAL_TIMER_CFG0); |
| REG_WRITE32(host, 0x4, SDCC_CSR_CDC_CAL_TIMER_CFG1); |
| REG_WRITE32(host, 0xCB732020, SDCC_CSR_CDC_REFCOUNT_CFG); |
| REG_WRITE32(host, 0xB19, SDCC_CSR_CDC_COARSE_CAL_CFG); |
| REG_WRITE32(host, 0x4E2, SDCC_CSR_CDC_DELAY_CFG); |
| REG_WRITE32(host, 0x0, SDCC_CDC_OFFSET_CFG); |
| REG_WRITE32(host, 0x16334, SDCC_CDC_SLAVE_DDA_CFG); |
| |
| /* Write 1 to SW_TRIGGER_FULL_CALIB */ |
| REG_WRITE32(host, (REG_READ32(host, SDCC_CSR_CDC_CTRL_CFG0) | CDC_SW_TRIGGER_FULL_CALIB), SDCC_CSR_CDC_CTRL_CFG0); |
| |
| /* Write 0 to SW_TRIGGER_FULL_CALIB */ |
| REG_WRITE32(host, (REG_READ32(host, SDCC_CSR_CDC_CTRL_CFG0) & ~CDC_SW_TRIGGER_FULL_CALIB), SDCC_CSR_CDC_CTRL_CFG0); |
| |
| /* Write 1 to HW_AUTO_CAL_EN */ |
| REG_WRITE32(host, (REG_READ32(host, SDCC_CSR_CDC_CTRL_CFG0) | CDC_HW_AUTO_CAL_EN), SDCC_CSR_CDC_CTRL_CFG0); |
| |
| /* Write 1 to TIMER_ENA */ |
| REG_WRITE32(host, (REG_READ32(host, SDCC_CSR_CDC_CAL_TIMER_CFG0) | CDC_TIMER_EN), SDCC_CSR_CDC_CAL_TIMER_CFG0); |
| |
| /* Wait for CALIBRATION_DONE in CDC_STATUS */ |
| timeout = CDC_STATUS_TIMEOUT; |
| while (!(REG_READ32(host, SDCC_CSR_CDC_STATUS0) & BIT(0))) |
| { |
| timeout--; |
| mdelay(1); |
| if (!timeout) |
| { |
| dprintf(CRITICAL, "Error: Calibration done in CDC status not set\n"); |
| return 1; |
| } |
| } |
| |
| cdc_err = REG_READ32(host, SDCC_CSR_CDC_STATUS0) & CSR_CDC_ERROR_MASK; |
| if (cdc_err) |
| { |
| dprintf(CRITICAL, "CDC error set during calibration: %x\n", cdc_err); |
| return 1; |
| } |
| /* Write 1 to START_CDC_TRAFFIC field in CORE_DDR200_CFG */ |
| REG_WRITE32(host, (REG_READ32(host, SDCC_CDC_DDR200_CFG) | START_CDC_TRAFFIC), SDCC_CDC_DDR200_CFG); |
| |
| DBG("\n CDCLP533 Calibration Done\n"); |
| |
| return 0; |
| } |
| |
| |
| static uint32_t sdhci_msm_hs400_calibration(struct sdhci_host *host) |
| { |
| DBG("\n HS400 Calibration Start\n"); |
| |
| /* Reset & Initialize the DLL block */ |
| if (sdhci_msm_init_dll(host)) |
| return 1; |
| |
| /* Write the save phase */ |
| if (sdhci_msm_config_dll(host, host->msm_host->saved_phase)) |
| return 1; |
| |
| /* Write 1 to CMD_DAT_TRACK_SEL field in DLL_CONFIG */ |
| REG_WRITE32(host, (REG_READ32(host, SDCC_DLL_CONFIG_REG) | CMD_DAT_TRACK_SEL), SDCC_DLL_CONFIG_REG); |
| |
| if (host->use_cdclp533) |
| return sdhci_msm_cdclp533_calibration(host); |
| else |
| return sdhci_msm_cm_dll_sdc4_calibration(host); |
| |
| DBG("\n HS400 Calibration Done\n"); |
| |
| return 0; |
| } |
| |
| /* |
| * Function: sdhci msm execute tuning |
| * Arg : Host structure & bus width |
| * Return : 0 on Success, 1 on Failure |
| * Flow: : Execute Tuning sequence for HS200 and calibration for hs400 |
| */ |
| uint32_t sdhci_msm_execute_tuning(struct sdhci_host *host, struct mmc_card *card, uint32_t bus_width) |
| { |
| uint32_t *tuning_block; |
| uint32_t *tuning_data; |
| uint32_t tuned_phases[MAX_PHASES] = {0}; |
| uint32_t size; |
| uint32_t phase = 0; |
| uint32_t tuned_phase_cnt = 0; |
| uint8_t drv_type = 0; |
| bool drv_type_changed = false; |
| int ret = 0; |
| uint32_t i; |
| uint32_t err = 0; |
| struct sdhci_msm_data *msm_host; |
| |
| msm_host = host->msm_host; |
| |
| /* In Tuning mode */ |
| host->tuning_in_progress = true; |
| |
| if (bus_width == DATA_BUS_WIDTH_8BIT) |
| { |
| tuning_block = (uint32_t *)tuning_block_128; |
| size = sizeof(tuning_block_128); |
| } |
| else |
| { |
| tuning_block = (uint32_t *)tuning_block_64; |
| size = sizeof(tuning_block_64); |
| } |
| |
| tuning_data = (uint32_t *) memalign(CACHE_LINE, ROUNDUP(size, CACHE_LINE)); |
| |
| ASSERT(tuning_data); |
| |
| /* Calibration for CDCLP533 needed for HS400 mode */ |
| if (msm_host->tuning_done && !msm_host->calibration_done && host->timing == MMC_HS400_TIMING) |
| { |
| ret = sdhci_msm_hs400_calibration(host); |
| if (!ret) |
| msm_host->calibration_done = true; |
| goto out; |
| } |
| |
| /* Reset & Initialize the DLL block */ |
| if (sdhci_msm_init_dll(host)) |
| { |
| ret = 1; |
| goto out; |
| } |
| |
| retry_tuning: |
| tuned_phase_cnt = 0; |
| phase = 0; |
| struct mmc_command cmd = {0}; |
| struct mmc_command sts_cmd = {0}; |
| uint32_t sts_retry; |
| uint32_t sts_err; |
| |
| while (phase < MAX_PHASES) |
| { |
| /* configure dll to set phase delay */ |
| if (sdhci_msm_config_dll(host, phase)) |
| { |
| ret = 1; |
| goto out; |
| } |
| |
| cmd.cmd_index = CMD21_SEND_TUNING_BLOCK; |
| cmd.argument = 0x0; |
| cmd.cmd_type = SDHCI_CMD_TYPE_NORMAL; |
| cmd.resp_type = SDHCI_CMD_RESP_R1; |
| cmd.trans_mode = SDHCI_MMC_READ; |
| cmd.data_present = 0x1; |
| cmd.data.data_ptr = tuning_data; |
| cmd.data.blk_sz = size; |
| cmd.data.num_blocks = 0x1; |
| |
| /* send command */ |
| err = sdhci_send_command(host, &cmd); |
| if(err) |
| { |
| |
| sts_retry = 50; |
| sts_cmd.cmd_index = CMD13_SEND_STATUS; |
| sts_cmd.argument = card->rca << 16; |
| sts_cmd.cmd_type = SDHCI_CMD_TYPE_NORMAL; |
| sts_cmd.resp_type = SDHCI_CMD_RESP_R1; |
| while(sts_retry) |
| { |
| sts_err = sdhci_send_command(host, &sts_cmd); |
| DBG(" response is %d err is %d phase is %d\n",sts_cmd.resp[0],sts_err, phase); |
| if( sts_err || (MMC_CARD_STATUS(sts_cmd.resp[0]) != MMC_TRAN_STATE) ) |
| { |
| udelay(10); |
| sts_retry--; |
| continue; |
| } |
| break; |
| } |
| } |
| |
| if (!err && !memcmp(tuning_data, tuning_block, size)) |
| tuned_phases[tuned_phase_cnt++] = phase; |
| |
| phase++; |
| } |
| |
| /* |
| * Check if all the tuning phases passed */ |
| if (tuned_phase_cnt == MAX_PHASES) |
| { |
| /* Change the driver type & rerun tuning */ |
| while(++drv_type <= MX_DRV_SUPPORTED_HS200) |
| { |
| /* Marking driver type changed if we try to change it */ |
| if(!drv_type_changed) |
| drv_type_changed = true; |
| |
| if (mmc_set_drv_type(host, card, drv_type)) |
| goto retry_tuning; |
| } |
| } |
| |
| /* Restore the driver strength to default value */ |
| if (drv_type_changed) |
| mmc_set_drv_type(host, card, 0); |
| |
| if (tuned_phase_cnt == MAX_PHASES) |
| { |
| attempt_cdr_unlock = true; |
| dprintf(CRITICAL, "WARNING: All phase passed.The selected phase may not be optimal\n"); |
| } |
| |
| /* Find the appropriate tuned phase */ |
| if (tuned_phase_cnt) |
| { |
| DBG("\n Tuned phase\n"); |
| for (i = 0 ; i < tuned_phase_cnt ; i++) |
| { |
| DBG("%d\t", tuned_phases[i]); |
| } |
| |
| ret = sdhci_msm_find_appropriate_phase(host, tuned_phases, tuned_phase_cnt); |
| |
| if (ret < 0) |
| { |
| dprintf(CRITICAL, "Failed in selecting the tuning phase\n"); |
| ret = 1; |
| goto out; |
| } |
| |
| phase = (uint32_t) ret; |
| ret = 0; |
| |
| DBG("\n: %s: Tuned Phase: 0x%08x\n", __func__, phase); |
| |
| if (sdhci_msm_config_dll(host, phase)) |
| goto out; |
| |
| /* Save the tuned phase */ |
| host->msm_host->saved_phase = phase; |
| } |
| else |
| { |
| dprintf(CRITICAL, "Failed to get tuned phase\n"); |
| ret = 1; |
| } |
| |
| out: |
| /* If all the tuning phases passed, send CMD21 after enabling |
| * CDR to make sure right tuning phase is selected by CDR |
| */ |
| if (attempt_cdr_unlock) |
| { |
| cmd.cmd_index = CMD21_SEND_TUNING_BLOCK; |
| cmd.argument = 0x0; |
| cmd.cmd_type = SDHCI_CMD_TYPE_NORMAL; |
| cmd.resp_type = SDHCI_CMD_RESP_R1; |
| cmd.trans_mode = SDHCI_MMC_READ; |
| cmd.data_present = 0x1; |
| cmd.data.data_ptr = tuning_data; |
| cmd.data.blk_sz = size; |
| cmd.data.num_blocks = 0x1; |
| |
| /* send command */ |
| if (!sdhci_send_command(host, &cmd)) |
| { |
| DBG("\n: %s: Sending CMD21 after CDR enable with default phases fail\n", __func__); |
| } |
| } |
| |
| free(tuning_data); |
| /* Tuning done */ |
| host->tuning_in_progress = false; |
| host->msm_host->tuning_done = true; |
| return ret; |
| } |
| |
| /* |
| * API to disable HC mode |
| */ |
| void sdhci_mode_disable(struct sdhci_host *host) |
| { |
| /* Disable HC mode */ |
| RMWREG32((host->msm_host->pwrctl_base + SDCC_MCI_HC_MODE), SDHCI_HC_START_BIT, SDHCI_HC_WIDTH, 0); |
| } |
| |