blob: 4030c34d02c02b3c0077042cf0040860ca68a97c [file] [log] [blame]
/*
* Copyright (c) 2008, Google Inc.
* All rights reserved.
* Copyright (c) 2009-2013, The Linux Foundation. All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <debug.h>
#include <reg.h>
#include <stdlib.h>
#include <string.h>
#include <dev/flash.h>
#include <lib/ptable.h>
#include <nand.h>
#include "dmov.h"
#define VERBOSE 0
#define VERIFY_WRITE 0
static void *flash_spare;
static void *flash_data;
void platform_config_interleaved_mode_gpios(void);
typedef struct dmov_ch dmov_ch;
struct dmov_ch {
volatile unsigned cmd;
volatile unsigned result;
volatile unsigned status;
volatile unsigned config;
};
static void dmov_prep_ch(dmov_ch * ch, unsigned id)
{
ch->cmd = DMOV_CMD_PTR(id);
ch->result = DMOV_RSLT(id);
ch->status = DMOV_STATUS(id);
ch->config = DMOV_CONFIG(id);
}
#define SRC_CRCI_NAND_CMD CMD_SRC_CRCI(DMOV_NAND_CRCI_CMD)
#define DST_CRCI_NAND_CMD CMD_DST_CRCI(DMOV_NAND_CRCI_CMD)
#define SRC_CRCI_NAND_DATA CMD_SRC_CRCI(DMOV_NAND_CRCI_DATA)
#define DST_CRCI_NAND_DATA CMD_DST_CRCI(DMOV_NAND_CRCI_DATA)
#define CFG0_RAW 0xA80420C0
#define CFG1_RAW 0x5045D
#define CFG0_RAW_BCHECC 0xA80428C0
static unsigned CFG0, CFG1;
static unsigned CFG0_M, CFG1_M;
static unsigned CFG0_A, CFG1_A;
static unsigned NAND_CFG0_RAW, NAND_CFG1_RAW;
static unsigned ECC_BCH_CFG;
static uint32_t enable_bch_ecc;
static unsigned int *bbtbl;
#define CFG1_WIDE_FLASH (1U << 1)
#define paddr(n) ((unsigned) (n))
static int dmov_exec_cmdptr(unsigned id, unsigned *ptr)
{
dmov_ch ch;
unsigned n;
dmov_prep_ch(&ch, id);
/* Set IRQ_EN low, not using IRQ mode */
writel(DMOV_CONFIG_FOREC_FLUSH_RSLT | 0x0, ch.config);
writel(DMOV_CMD_PTR_LIST | DMOV_CMD_ADDR(paddr(ptr)), ch.cmd);
while (!(readl(ch.status) & DMOV_STATUS_RSLT_VALID)) ;
n = readl(ch.status);
while (DMOV_STATUS_RSLT_COUNT(n)) {
n = readl(ch.result);
if (n != 0x80000002) {
dprintf(CRITICAL, "ERROR: result: %x\n", n);
dprintf(CRITICAL, "ERROR: flush: %x %x %x %x\n",
readl(DMOV_FLUSH0(DMOV_NAND_CHAN)),
readl(DMOV_FLUSH1(DMOV_NAND_CHAN)),
readl(DMOV_FLUSH2(DMOV_NAND_CHAN)),
readl(DMOV_FLUSH3(DMOV_NAND_CHAN)));
}
n = readl(ch.status);
}
return 0;
}
static struct flash_info flash_info;
static unsigned flash_pagesize = 0;
static int interleaved_mode = 0;
static unsigned num_pages_per_blk = 0;
static unsigned num_pages_per_blk_mask = 0;
struct flash_identification {
unsigned flash_id;
unsigned mask;
unsigned density;
unsigned widebus;
unsigned pagesize;
unsigned blksize;
unsigned oobsize;
unsigned onenand;
};
static struct flash_identification supported_flash[] = {
/* Flash ID ID Mask Density(MB) Wid Pgsz Blksz oobsz onenand Manuf */
{0x00000000, 0xFFFFFFFF, 0, 0, 0, 0, 0, 0}, /*ONFI*/ {0x1500aaec, 0xFF00FFFF, (256 << 20), 0, 2048, (2048 << 6), 64, 0}, /*Sams */
{0x5500baec, 0xFF00FFFF, (256 << 20), 1, 2048, (2048 << 6), 64, 0}, /*Sams */
{0x1500aa98, 0xFFFFFFFF, (256 << 20), 0, 2048, (2048 << 6), 64, 0}, /*Tosh */
{0x5500ba98, 0xFFFFFFFF, (256 << 20), 1, 2048, (2048 << 6), 64, 0}, /*Tosh */
{0xd580b12c, 0xFFFFFFFF, (256 << 20), 1, 2048, (2048 << 6), 64, 0}, /*Micr */
{0x5590bc2c, 0xFFFFFFFF, (512 << 20), 1, 2048, (2048 << 6), 64, 0}, /*Micr */
{0x1580aa2c, 0xFFFFFFFF, (256 << 20), 0, 2048, (2048 << 6), 64, 0}, /*Micr */
{0x1590aa2c, 0xFFFFFFFF, (256 << 20), 0, 2048, (2048 << 6), 64, 0}, /*Micr */
{0x1590ac2c, 0xFFFFFFFF, (512 << 20), 0, 2048, (2048 << 6), 64, 0}, /*Micr */
{0x5580baad, 0xFFFFFFFF, (256 << 20), 1, 2048, (2048 << 6), 64, 0}, /*Hynx */
{0x5510baad, 0xFFFFFFFF, (256 << 20), 1, 2048, (2048 << 6), 64, 0}, /*Hynx */
{0x004000ec, 0xFFFFFFFF, (256 << 20), 0, 2048, (2048 << 6), 64, 1}, /*Sams */
{0x005c00ec, 0xFFFFFFFF, (256 << 20), 0, 2048, (2048 << 6), 64, 1}, /*Sams */
{0x005800ec, 0xFFFFFFFF, (256 << 20), 0, 2048, (2048 << 6), 64, 1}, /*Sams */
{0x6600bcec, 0xFF00FFFF, (512 << 20), 1, 4096, (4096 << 6), 128, 0}, /*Sams */
{0x5580ba2c, 0xFFFFFFFF, (256 << 20), 1, 2048, (2048 << 6), 64, 0}, /*Hynx */
{0x6600b3ec, 0xFFFFFFFF, (1024 << 20), 1, 4096, (4096 << 6), 128, 0}, /*Sams */
{0x2600482c, 0xFF00FFFF, (2048 << 20), 0, 4096, (4096 << 7), 224, 0}, /*8bit bch ecc */
{0x55d1b32c, 0xFFFFFFFF, (1024 << 20), 1, 2048, (2048 << 6), 64, 0}, /*Micr */
/* Note: Width flag is 0 for 8 bit Flash and 1 for 16 bit flash */
/* Note: Onenand flag is 0 for NAND Flash and 1 for OneNAND flash */
/* Note: The First row will be filled at runtime during ONFI probe */
};
static void set_nand_configuration(char type)
{
if (type == TYPE_MODEM_PARTITION) {
CFG0 = CFG0_M;
CFG1 = CFG1_M;
} else {
CFG0 = CFG0_A;
CFG1 = CFG1_A;
}
}
static void flash_nand_read_id(dmov_s * cmdlist, unsigned *ptrlist)
{
dmov_s *cmd = cmdlist;
unsigned *ptr = ptrlist;
unsigned *data = ptrlist + 4;
data[0] = 0 | 4;
data[1] = NAND_CMD_FETCH_ID;
data[2] = 1;
data[3] = 0;
data[4] = 0;
data[5] = 0;
data[6] = 0;
data[7] = 0xAAD40000; /* Default value for CFG0 for reading device id */
/* Read NAND device id */
cmd[0].cmd = 0 | CMD_OCB;
cmd[0].src = paddr(&data[7]);
cmd[0].dst = NAND_DEV0_CFG0;
cmd[0].len = 4;
cmd[1].cmd = 0;
cmd[1].src = NAND_SFLASHC_BURST_CFG;
cmd[1].dst = paddr(&data[5]);
cmd[1].len = 4;
cmd[2].cmd = 0;
cmd[2].src = paddr(&data[6]);
cmd[2].dst = NAND_SFLASHC_BURST_CFG;
cmd[2].len = 4;
cmd[3].cmd = 0;
cmd[3].src = paddr(&data[0]);
cmd[3].dst = NAND_FLASH_CHIP_SELECT;
cmd[3].len = 4;
cmd[4].cmd = DST_CRCI_NAND_CMD;
cmd[4].src = paddr(&data[1]);
cmd[4].dst = NAND_FLASH_CMD;
cmd[4].len = 4;
cmd[5].cmd = 0;
cmd[5].src = paddr(&data[2]);
cmd[5].dst = NAND_EXEC_CMD;
cmd[5].len = 4;
cmd[6].cmd = SRC_CRCI_NAND_DATA;
cmd[6].src = NAND_FLASH_STATUS;
cmd[6].dst = paddr(&data[3]);
cmd[6].len = 4;
cmd[7].cmd = 0;
cmd[7].src = NAND_READ_ID;
cmd[7].dst = paddr(&data[4]);
cmd[7].len = 4;
cmd[8].cmd = CMD_OCU | CMD_LC;
cmd[8].src = paddr(&data[5]);
cmd[8].dst = NAND_SFLASHC_BURST_CFG;
cmd[8].len = 4;
ptr[0] = (paddr(cmd) >> 3) | CMD_PTR_LP;
dmov_exec_cmdptr(DMOV_NAND_CHAN, ptr);
#if VERBOSE
dprintf(INFO, "status: %x\n", data[3]);
#endif
flash_info.id = data[4];
flash_info.vendor = data[4] & 0xff;
flash_info.device = (data[4] >> 8) & 0xff;
return;
}
static int
flash_nand_block_isbad(dmov_s * cmdlist, unsigned *ptrlist, unsigned page)
{
dmov_s *cmd = cmdlist;
unsigned *ptr = ptrlist;
unsigned *data = ptrlist + 4;
char buf[4];
unsigned cwperpage;
cwperpage = (flash_pagesize >> 9);
/* Check first page of this block */
if (page & num_pages_per_blk_mask)
page = page - (page & num_pages_per_blk_mask);
/* Check bad block marker */
data[0] = NAND_CMD_PAGE_READ; /* command */
/* addr0 */
if (CFG1 & CFG1_WIDE_FLASH)
data[1] = enable_bch_ecc ?
((page << 16) | ((532 * (cwperpage - 1)) >> 1)) :
((page << 16) | ((528 * (cwperpage - 1)) >> 1));
else
data[1] = enable_bch_ecc ?
((page << 16) | (532 * (cwperpage - 1))) :
((page << 16) | (528 * (cwperpage - 1)));
data[2] = (page >> 16) & 0xff; /* addr1 */
data[3] = 0 | 4; /* chipsel */
data[4] = NAND_CFG0_RAW & ~(7U << 6); /* cfg0 */
data[5] = NAND_CFG1_RAW | (CFG1 & CFG1_WIDE_FLASH); /* cfg1 */
if (enable_bch_ecc) {
data[6] = ECC_BCH_CFG; /* ECC CFG */
}
data[7] = 1;
data[8] = CLEAN_DATA_32; /* flash status */
data[9] = CLEAN_DATA_32; /* buf status */
cmd[0].cmd = DST_CRCI_NAND_CMD | CMD_OCB;
cmd[0].src = paddr(&data[0]);
cmd[0].dst = NAND_FLASH_CMD;
cmd[0].len = 16;
cmd[1].cmd = 0;
cmd[1].src = paddr(&data[4]);
cmd[1].dst = NAND_DEV0_CFG0;
if (enable_bch_ecc) {
cmd[1].len = 12;
} else {
cmd[1].len = 8;
}
cmd[2].cmd = 0;
cmd[2].src = paddr(&data[7]);
cmd[2].dst = NAND_EXEC_CMD;
cmd[2].len = 4;
cmd[3].cmd = SRC_CRCI_NAND_DATA;
cmd[3].src = NAND_FLASH_STATUS;
cmd[3].dst = paddr(&data[8]);
cmd[3].len = 8;
cmd[4].cmd = CMD_OCU | CMD_LC;
cmd[4].src = NAND_FLASH_BUFFER + (flash_pagesize - (enable_bch_ecc ?
(532 *
(cwperpage -
1)) : (528 *
(cwperpage
- 1))));
cmd[4].dst = paddr(&buf);
cmd[4].len = 4;
ptr[0] = (paddr(cmd) >> 3) | CMD_PTR_LP;
dmov_exec_cmdptr(DMOV_NAND_CHAN, ptr);
#if VERBOSE
dprintf(INFO, "status: %x\n", data[8]);
#endif
/* we fail if there was an operation error, a mpu error, or the
** erase success bit was not set.
*/
if (data[8] & 0x110)
return -1;
/* Check for bad block marker byte */
if (CFG1 & CFG1_WIDE_FLASH) {
if (buf[0] != 0xFF || buf[1] != 0xFF)
return 1;
} else {
if (buf[0] != 0xFF)
return 1;
}
return 0;
}
static int
flash_nand_block_isbad_interleave(dmov_s * cmdlist, unsigned *ptrlist,
unsigned page)
{
dmov_s *cmd = cmdlist;
unsigned *ptr = ptrlist;
unsigned *data = ptrlist + 4;
char buf01[4];
char buf10[4];
unsigned cwperpage;
cwperpage = ((flash_pagesize >> 1) >> 9);
/* Check first page of this block */
if (page & 63)
page = page - (page & 63);
/* Check bad block marker */
data[0] = NAND_CMD_PAGE_READ; /* command */
/* addr0 */
if (CFG1 & CFG1_WIDE_FLASH)
data[1] = (page << 16) | ((528 * (cwperpage - 1)) >> 1);
else
data[1] = (page << 16) | (528 * (cwperpage - 1));
data[2] = (page >> 16) & 0xff; /* addr1 */
data[3] = 0 | 4; /* chipsel CS0 */
data[4] = 0 | 5; /* chipsel CS1 */
data[5] = NAND_CFG0_RAW & ~(7U << 6); /* cfg0 */
data[6] = NAND_CFG1_RAW | (CFG1 & CFG1_WIDE_FLASH); /* cfg1 */
data[7] = 1;
data[8] = CLEAN_DATA_32; /* NC01 flash status */
data[9] = CLEAN_DATA_32; /* NC01 buf01 status */
data[10] = CLEAN_DATA_32; /* NC10 flash status */
data[11] = CLEAN_DATA_32; /* NC10 buf10 status */
data[12] = 0x00000A3C; /* adm_mux_data_ack_req_nc01 */
data[13] = 0x0000053C; /* adm_mux_cmd_ack_req_nc01 */
data[14] = 0x00000F28; /* adm_mux_data_ack_req_nc10 */
data[15] = 0x00000F14; /* adm_mux_cmd_ack_req_nc10 */
data[16] = 0x00000FC0; /* adm_default_mux */
data[17] = 0x00000805; /* enable CS1 */
data[18] = 0x00000801; /* disable CS1 */
/* enable CS1 */
cmd[0].cmd = 0;
cmd[0].src = paddr(data[17]);
cmd[0].dst = EBI2_CHIP_SELECT_CFG0;
cmd[0].len = 4;
/* Reading last code word from NC01 */
/* 0xF14 */
cmd[1].cmd = 0;
cmd[1].src = paddr(data[15]);
cmd[1].dst = EBI2_NAND_ADM_MUX;
cmd[1].len = 4;
cmd[2].cmd = DST_CRCI_NAND_CMD;
cmd[2].src = paddr(&data[0]);
cmd[2].dst = NC01(NAND_FLASH_CMD);
cmd[2].len = 16;
cmd[3].cmd = 0;
cmd[3].src = paddr(&data[5]);
cmd[3].dst = NC01(NAND_DEV0_CFG0);
cmd[3].len = 8;
cmd[4].cmd = 0;
cmd[4].src = paddr(&data[7]);
cmd[4].dst = NC01(NAND_EXEC_CMD);
cmd[4].len = 4;
/* 0xF28 */
cmd[5].cmd = 0;
cmd[5].src = paddr(data[14]);
cmd[5].dst = EBI2_NAND_ADM_MUX;
cmd[5].len = 4;
cmd[6].cmd = SRC_CRCI_NAND_DATA;
cmd[6].src = NC01(NAND_FLASH_STATUS);
cmd[6].dst = paddr(&data[8]);
cmd[6].len = 8;
cmd[7].cmd = 0;
cmd[7].src =
NC01(NAND_FLASH_BUFFER) + (flash_pagesize -
(528 * (cwperpage - 1)));
cmd[7].dst = paddr(&buf01);
cmd[7].len = 4;
/* Reading last code word from NC10 */
/* 0x53C */
cmd[8].cmd = 0;
cmd[8].src = paddr(data[13]);
cmd[8].dst = EBI2_NAND_ADM_MUX;
cmd[8].len = 4;
cmd[9].cmd = DST_CRCI_NAND_CMD;
cmd[9].src = paddr(&data[0]);
cmd[9].dst = NC10(NAND_FLASH_CMD);
cmd[9].len = 12;
cmd[10].cmd = 0;
cmd[10].src = paddr(&data[4]);
cmd[10].dst = NC10(NAND_FLASH_CHIP_SELECT);
cmd[10].len = 4;
cmd[11].cmd = 0;
cmd[11].src = paddr(&data[5]);
cmd[11].dst = NC10(NAND_DEV1_CFG0);
cmd[11].len = 8;
cmd[12].cmd = 0;
cmd[12].src = paddr(&data[7]);
cmd[12].dst = NC10(NAND_EXEC_CMD);
cmd[12].len = 4;
/* 0xA3C */
cmd[13].cmd = 0;
cmd[13].src = paddr(data[12]);
cmd[13].dst = EBI2_NAND_ADM_MUX;
cmd[13].len = 4;
cmd[14].cmd = SRC_CRCI_NAND_DATA;
cmd[14].src = NC10(NAND_FLASH_STATUS);
cmd[14].dst = paddr(&data[10]);
cmd[14].len = 8;
cmd[15].cmd = 0;
cmd[15].src =
NC10(NAND_FLASH_BUFFER) + (flash_pagesize -
(528 * (cwperpage - 1)));
cmd[15].dst = paddr(&buf10);
cmd[15].len = 4;
cmd[16].cmd = 0;
cmd[16].src = paddr(&data[16]);
cmd[16].dst = EBI2_NAND_ADM_MUX;
cmd[16].len = 4;
/* setting default value */
cmd[17].cmd = CMD_OCU | CMD_LC;
cmd[17].src = paddr(&data[18]);
cmd[17].dst = EBI2_CHIP_SELECT_CFG0;
cmd[17].len = 4;
ptr[0] = (paddr(cmd) >> 3) | CMD_PTR_LP;
dmov_exec_cmdptr(DMOV_NAND_CHAN, ptr);
#if VERBOSE
dprintf(INFO, "NC01 status: %x\n", data[8]);
dprintf(INFO, "NC10 status: %x\n", data[10]);
#endif
/* we fail if there was an operation error, a mpu error, or the
** erase success bit was not set.
*/
if ((data[8] & 0x110) || (data[10] & 0x110))
return -1;
/* Check for bad block marker byte */
if (CFG1 & CFG1_WIDE_FLASH) {
if ((buf01[0] != 0xFF || buf01[1] != 0xFF) ||
(buf10[0] != 0xFF || buf10[1] != 0xFF))
return 1;
} else {
if (buf01[0] != 0xFF || buf10[0] != 0xFF)
return 1;
}
return 0;
}
static int
flash_nand_erase_block(dmov_s * cmdlist, unsigned *ptrlist, unsigned page)
{
dmov_s *cmd = cmdlist;
unsigned *ptr = ptrlist;
unsigned *data = ptrlist + 4;
int isbad = 0;
/* only allow erasing on block boundaries */
if (page & num_pages_per_blk_mask)
return -1;
/* Check for bad block and erase only if block is not marked bad */
isbad = flash_nand_block_isbad(cmdlist, ptrlist, page);
if (isbad) {
dprintf(INFO, "skipping @ %d (bad block)\n",
page / num_pages_per_blk);
return -1;
}
/* Erase block */
data[0] = NAND_CMD_BLOCK_ERASE;
data[1] = page;
data[2] = 0;
data[3] = 0 | 4;
data[4] = 1;
data[5] = 0xeeeeeeee;
data[6] = CFG0 & (~(7 << 6)); /* CW_PER_PAGE = 0 */
data[7] = CFG1;
data[8] = ECC_BCH_CFG;
data[9] = 0x00000020;
data[10] = 0x000000C0;
cmd[0].cmd = DST_CRCI_NAND_CMD | CMD_OCB;
cmd[0].src = paddr(&data[0]);
cmd[0].dst = NAND_FLASH_CMD;
cmd[0].len = 16;
cmd[1].cmd = 0;
cmd[1].src = paddr(&data[6]);
cmd[1].dst = NAND_DEV0_CFG0;
if (enable_bch_ecc) {
cmd[1].len = 12;
} else {
cmd[1].len = 8;
}
cmd[2].cmd = 0;
cmd[2].src = paddr(&data[4]);
cmd[2].dst = NAND_EXEC_CMD;
cmd[2].len = 4;
cmd[3].cmd = SRC_CRCI_NAND_DATA;
cmd[3].src = NAND_FLASH_STATUS;
cmd[3].dst = paddr(&data[5]);
cmd[3].len = 4;
cmd[4].cmd = 0;
cmd[4].src = paddr(&data[9]);
cmd[4].dst = NAND_FLASH_STATUS;
cmd[4].len = 4;
cmd[5].cmd = CMD_OCU | CMD_LC;
cmd[5].src = paddr(&data[10]);
cmd[5].dst = NAND_READ_STATUS;
cmd[5].len = 4;
ptr[0] = (paddr(cmd) >> 3) | CMD_PTR_LP;
dmov_exec_cmdptr(DMOV_NAND_CHAN, ptr);
#if VERBOSE
dprintf(INFO, "status: %x\n", data[5]);
#endif
/* we fail if there was an operation error, a mpu error, or the
** erase success bit was not set.
*/
if (data[5] & 0x110)
return -1;
if (!(data[5] & 0x80))
return -1;
return 0;
}
static int
flash_nand_erase_block_interleave(dmov_s * cmdlist, unsigned *ptrlist,
unsigned page)
{
dmov_s *cmd = cmdlist;
unsigned *ptr = ptrlist;
unsigned *data = ptrlist + 4;
int isbad = 0;
/* only allow erasing on block boundaries */
if (page & 63)
return -1;
/* Check for bad block and erase only if block is not marked bad */
isbad = flash_nand_block_isbad(cmdlist, ptrlist, page);
if (isbad) {
dprintf(INFO, "skipping @ %d (bad block)\n", page >> 6);
return -1;
}
/* Erase block */
data[0] = NAND_CMD_BLOCK_ERASE;
data[1] = page;
data[2] = 0;
data[3] = 0 | 4; /* chipselect CS0 */
data[4] = 0 | 5; /* chipselect CS1 */
data[5] = 1;
data[6] = 0xeeeeeeee;
data[7] = 0xeeeeeeee;
data[8] = CFG0 & (~(7 << 6)); /* CW_PER_PAGE = 0 */
data[9] = CFG1;
data[10] = 0x00000A3C; /* adm_mux_data_ack_req_nc01 */
data[11] = 0x0000053C; /* adm_mux_cmd_ack_req_nc01 */
data[12] = 0x00000F28; /* adm_mux_data_ack_req_nc10 */
data[13] = 0x00000F14; /* adm_mux_cmd_ack_req_nc10 */
data[14] = 0x00000FC0; /* adm_default_mux */
data[15] = 0x00000805; /* enable CS1 */
data[16] = 0x00000801; /* disable CS1 */
/* enable CS1 */
cmd[0].cmd = 0 | CMD_OCB;
cmd[0].src = paddr(data[15]);
cmd[0].dst = EBI2_CHIP_SELECT_CFG0;
cmd[0].len = 4;
/* Reading last code word from NC01 */
/* 0xF14 */
cmd[1].cmd = 0;
cmd[1].src = paddr(data[13]);
cmd[1].dst = EBI2_NAND_ADM_MUX;
cmd[1].len = 4;
cmd[2].cmd = DST_CRCI_NAND_CMD;
cmd[2].src = paddr(&data[0]);
cmd[2].dst = NC01(NAND_FLASH_CMD);
cmd[2].len = 16;
cmd[3].cmd = 0;
cmd[3].src = paddr(&data[8]);
cmd[3].dst = NC01(NAND_DEV0_CFG0);
cmd[3].len = 8;
cmd[4].cmd = 0;
cmd[4].src = paddr(&data[5]);
cmd[4].dst = NC01(NAND_EXEC_CMD);
cmd[4].len = 4;
/* 0xF28 */
cmd[5].cmd = 0;
cmd[5].src = paddr(data[12]);
cmd[5].dst = EBI2_NAND_ADM_MUX;
cmd[5].len = 4;
cmd[6].cmd = SRC_CRCI_NAND_DATA;
cmd[6].src = NC01(NAND_FLASH_STATUS);
cmd[6].dst = paddr(&data[6]);
cmd[6].len = 4;
/* Reading last code word from NC10 */
/* 0x53C */
cmd[7].cmd = 0;
cmd[7].src = paddr(data[11]);
cmd[7].dst = EBI2_NAND_ADM_MUX;
cmd[7].len = 4;
cmd[8].cmd = DST_CRCI_NAND_CMD;
cmd[8].src = paddr(&data[0]);
cmd[8].dst = NC10(NAND_FLASH_CMD);
cmd[8].len = 12;
cmd[9].cmd = 0;
cmd[9].src = paddr(&data[4]);
cmd[9].dst = NC10(NAND_FLASH_CHIP_SELECT);
cmd[9].len = 4;
cmd[10].cmd = 0;
cmd[10].src = paddr(&data[8]);
cmd[10].dst = NC10(NAND_DEV1_CFG0);
cmd[10].len = 8;
cmd[11].cmd = 0;
cmd[11].src = paddr(&data[5]);
cmd[11].dst = NC10(NAND_EXEC_CMD);
cmd[11].len = 4;
/* 0xA3C */
cmd[12].cmd = 0;
cmd[12].src = paddr(data[10]);
cmd[12].dst = EBI2_NAND_ADM_MUX;
cmd[12].len = 4;
cmd[13].cmd = SRC_CRCI_NAND_DATA;
cmd[13].src = NC10(NAND_FLASH_STATUS);
cmd[13].dst = paddr(&data[7]);
cmd[13].len = 4;
/* adm default mux state */
/* 0xFCO */
cmd[14].cmd = 0;
cmd[14].src = paddr(data[14]);
cmd[14].dst = EBI2_NAND_ADM_MUX;
cmd[14].len = 4;
/* disable CS1 */
cmd[15].cmd = CMD_OCU | CMD_LC;
cmd[15].src = paddr(data[16]);
cmd[15].dst = EBI2_CHIP_SELECT_CFG0;
cmd[15].len = 4;
ptr[0] = (paddr(cmd) >> 3) | CMD_PTR_LP;
dmov_exec_cmdptr(DMOV_NAND_CHAN, ptr);
#if VERBOSE
dprintf(INFO, "NC01 status: %x\n", data[6]);
dprintf(INFO, "NC10 status: %x\n", data[7]);
#endif
/* we fail if there was an operation error, a mpu error, or the
** erase success bit was not set.
*/
if (data[6] & 0x110 || data[7] & 0x110)
return -1;
if (!(data[6] & 0x80) || !(data[7] & 0x80))
return -1;
return 0;
}
struct data_flash_io {
unsigned cmd;
unsigned addr0;
unsigned addr1;
unsigned chipsel;
unsigned cfg0;
unsigned cfg1;
unsigned ecc_bch_cfg;
unsigned exec;
unsigned ecc_cfg;
unsigned ecc_cfg_save;
unsigned clrfstatus;
unsigned clrrstatus;
struct {
unsigned flash_status;
unsigned buffer_status;
} result[8];
};
struct interleave_data_flash_io {
uint32_t cmd;
uint32_t addr0;
uint32_t addr1;
uint32_t chipsel_cs0;
uint32_t chipsel_cs1;
uint32_t cfg0;
uint32_t cfg1;
uint32_t exec;
uint32_t ecc_cfg;
uint32_t ecc_cfg_save;
uint32_t ebi2_chip_select_cfg0;
uint32_t adm_mux_data_ack_req_nc01;
uint32_t adm_mux_cmd_ack_req_nc01;
uint32_t adm_mux_data_ack_req_nc10;
uint32_t adm_mux_cmd_ack_req_nc10;
uint32_t adm_default_mux;
uint32_t default_ebi2_chip_select_cfg0;
struct {
uint32_t flash_status;
} result[16];
};
static int
_flash_nand_read_page(dmov_s * cmdlist, unsigned *ptrlist,
unsigned page, void *_addr, void *_spareaddr)
{
dmov_s *cmd = cmdlist;
unsigned *ptr = ptrlist;
struct data_flash_io *data = (void *)(ptrlist + 4);
unsigned addr = (unsigned)_addr;
unsigned spareaddr = (unsigned)_spareaddr;
unsigned n;
int isbad = 0;
unsigned cwperpage;
unsigned block = 0;
cwperpage = (flash_pagesize >> 9);
/* Find the block no for the page */
block = page / num_pages_per_blk;
/* Check the bad block table for each block
* -1: indicates the block needs to be checked if good or bad
* 1 : The block is bad
* 0 : The block is good
*/
if (bbtbl[block] == -1) {
isbad = flash_nand_block_isbad(cmdlist, ptrlist, page);
if (isbad) {
/* Found bad , set the bad table entry */
bbtbl[block] = 1;
return -2;
} else {
/* Found good block , set the table entry &
* continue reading the data
*/
bbtbl[block] = 0;
}
} else if (bbtbl[block] == 1) {
/* If the block is already identified as bad, return error */
return -2;
}
data->cmd = NAND_CMD_PAGE_READ_ECC;
data->addr0 = page << 16;
data->addr1 = (page >> 16) & 0xff;
data->chipsel = 0 | 4; /* flash0 + undoc bit */
/* GO bit for the EXEC register */
data->exec = 1;
data->cfg0 = CFG0;
data->cfg1 = CFG1;
if (enable_bch_ecc) {
data->ecc_bch_cfg = ECC_BCH_CFG;
}
data->ecc_cfg = 0x203;
/* save existing ecc config */
cmd->cmd = CMD_OCB;
cmd->src = NAND_EBI2_ECC_BUF_CFG;
cmd->dst = paddr(&data->ecc_cfg_save);
cmd->len = 4;
cmd++;
for (n = 0; n < cwperpage; n++) {
/* write CMD / ADDR0 / ADDR1 / CHIPSEL regs in a burst */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->cmd);
cmd->dst = NAND_FLASH_CMD;
cmd->len = ((n == 0) ? 16 : 4);
cmd++;
if (n == 0) {
/* block on cmd ready, set configuration */
cmd->cmd = 0;
cmd->src = paddr(&data->cfg0);
cmd->dst = NAND_DEV0_CFG0;
if (enable_bch_ecc) {
cmd->len = 12;
} else {
cmd->len = 8;
}
cmd++;
/* set our ecc config */
cmd->cmd = 0;
cmd->src = paddr(&data->ecc_cfg);
cmd->dst = NAND_EBI2_ECC_BUF_CFG;
cmd->len = 4;
cmd++;
}
/* kick the execute register */
cmd->cmd = 0;
cmd->src = paddr(&data->exec);
cmd->dst = NAND_EXEC_CMD;
cmd->len = 4;
cmd++;
/* block on data ready, then read the status register */
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NAND_FLASH_STATUS;
cmd->dst = paddr(&data->result[n]);
cmd->len = 8;
cmd++;
/* read data block */
cmd->cmd = 0;
cmd->src = NAND_FLASH_BUFFER;
cmd->dst = addr + n * 516;
cmd->len =
((n <
(cwperpage - 1)) ? 516 : (512 - ((cwperpage - 1) << 2)));
cmd++;
}
/* read extra data */
cmd->cmd = 0;
cmd->src = NAND_FLASH_BUFFER + (512 - ((cwperpage - 1) << 2));
cmd->dst = spareaddr;
cmd->len = 16;
cmd++;
/* restore saved ecc config */
cmd->cmd = CMD_OCU | CMD_LC;
cmd->src = paddr(&data->ecc_cfg_save);
cmd->dst = NAND_EBI2_ECC_BUF_CFG;
cmd->len = 4;
ptr[0] = (paddr(cmdlist) >> 3) | CMD_PTR_LP;
dmov_exec_cmdptr(DMOV_NAND_CHAN, ptr);
#if VERBOSE
dprintf(INFO, "read page %d: status: %x %x %x %x\n",
page, data[5], data[6], data[7], data[8]);
for (n = 0; n < 4; n++) {
ptr = (unsigned *)(addr + 512 * n);
dprintf(INFO, "data%d: %x %x %x %x\n", n, ptr[0], ptr[1],
ptr[2], ptr[3]);
ptr = (unsigned *)(spareaddr + 16 * n);
dprintf(INFO, "spare data%d %x %x %x %x\n", n, ptr[0],
ptr[1], ptr[2], ptr[3]);
}
#endif
/* if any of the writes failed (0x10), or there was a
** protection violation (0x100), we lose
*/
for (n = 0; n < cwperpage; n++) {
if (data->result[n].flash_status & 0x110) {
return -1;
}
}
return 0;
}
static int
flash_nand_read_page_interleave(dmov_s * cmdlist, unsigned *ptrlist,
unsigned page, void *_addr, void *_spareaddr)
{
dmov_s *cmd = cmdlist;
unsigned *ptr = ptrlist;
struct interleave_data_flash_io *data = (void *)(ptrlist + 4);
unsigned addr = (unsigned)_addr;
unsigned spareaddr = (unsigned)_spareaddr;
unsigned n;
int isbad = 0;
unsigned cwperpage;
cwperpage = (flash_pagesize >> 9);
/* Check for bad block and read only from a good block */
isbad = flash_nand_block_isbad(cmdlist, ptrlist, page);
if (isbad)
return -2;
data->cmd = NAND_CMD_PAGE_READ_ECC;
data->addr0 = page << 16;
data->addr1 = (page >> 16) & 0xff;
data->chipsel_cs0 = 0 | 4; /* flash0 + undoc bit */
data->chipsel_cs1 = 0 | 5; /* flash0 + undoc bit */
data->ebi2_chip_select_cfg0 = 0x00000805;
data->adm_mux_data_ack_req_nc01 = 0x00000A3C;
data->adm_mux_cmd_ack_req_nc01 = 0x0000053C;
data->adm_mux_data_ack_req_nc10 = 0x00000F28;
data->adm_mux_cmd_ack_req_nc10 = 0x00000F14;
data->adm_default_mux = 0x00000FC0;
data->default_ebi2_chip_select_cfg0 = 0x00000801;
/* GO bit for the EXEC register */
data->exec = 1;
data->cfg0 = CFG0;
data->cfg1 = CFG1;
data->ecc_cfg = 0x203;
for (n = 0; n < cwperpage; n++) {
/* flash + buffer status return words */
data->result[n].flash_status = 0xeeeeeeee;
if (n == 0) {
/* enable CS1 */
cmd->cmd = CMD_OCB;
cmd->src = paddr(&data->ebi2_chip_select_cfg0);
cmd->dst = EBI2_CHIP_SELECT_CFG0;
cmd->len = 4;
cmd++;
/* save existing ecc config */
cmd->cmd = 0;
cmd->src = NAND_EBI2_ECC_BUF_CFG;
cmd->dst = paddr(&data->ecc_cfg_save);
cmd->len = 4;
cmd++;
/* NC01, NC10 --> ADDR0/ADDR1 */
cmd->cmd = 0;
cmd->src = paddr(&data->addr0);
cmd->dst = NC11(NAND_ADDR0);
cmd->len = 8;
cmd++;
/* Select the CS0,
* for NC01!
*/
cmd->cmd = 0;
cmd->src = paddr(&data->chipsel_cs0);
cmd->dst = NC01(NAND_FLASH_CHIP_SELECT);
cmd->len = 4;
cmd++;
/* Select the CS1,
* for NC10!
*/
cmd->cmd = 0;
cmd->src = paddr(&data->chipsel_cs1);
cmd->dst = NC10(NAND_FLASH_CHIP_SELECT);
cmd->len = 4;
cmd++;
cmd->cmd = 0;
cmd->src = paddr(&data->cfg0);
cmd->dst = NC01(NAND_DEV0_CFG0);
cmd->len = 8;
cmd++;
/* config DEV1 for CS1 */
cmd->cmd = 0;
cmd->src = paddr(&data->cfg0);
cmd->dst = NC10(NAND_DEV1_CFG0);
cmd->len = 8;
cmd++;
cmd->cmd = 0;
cmd->src = paddr(&data->ecc_cfg);
cmd->dst = NC11(NAND_EBI2_ECC_BUF_CFG);
cmd->len = 4;
cmd++;
/* if 'only' the last code word */
if (n == cwperpage - 1) {
/* MASK CMD ACK/REQ --> NC01 (0x53C) */
cmd->cmd = 0;
cmd->src =
paddr(&data->adm_mux_cmd_ack_req_nc01);
cmd->dst = EBI2_NAND_ADM_MUX;
cmd->len = 4;
cmd++;
/* CMD */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->cmd);
cmd->dst = NC10(NAND_FLASH_CMD);
cmd->len = 4;
cmd++;
/* kick the execute register for NC10 */
cmd->cmd = 0;
cmd->src = paddr(&data->exec);
cmd->dst = NC10(NAND_EXEC_CMD);
cmd->len = 4;
cmd++;
/* MASK DATA ACK/REQ --> NC01 (0xA3C) */
cmd->cmd = 0;
cmd->src =
paddr(&data->adm_mux_data_ack_req_nc01);
cmd->dst = EBI2_NAND_ADM_MUX;
cmd->len = 4;
cmd++;
/* block on data ready from NC10, then
* read the status register
*/
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NC10(NAND_FLASH_STATUS);
cmd->dst = paddr(&data->result[n]);
/* NAND_FLASH_STATUS +
* NAND_BUFFER_STATUS
*/
cmd->len = 4;
cmd++;
} else {
/* MASK CMD ACK/REQ --> NC10 (0xF14) */
cmd->cmd = 0;
cmd->src =
paddr(&data->adm_mux_cmd_ack_req_nc10);
cmd->dst = EBI2_NAND_ADM_MUX;
cmd->len = 4;
cmd++;
/* CMD */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->cmd);
cmd->dst = NC01(NAND_FLASH_CMD);
cmd->len = 4;
cmd++;
/* kick the execute register for NC01 */
cmd->cmd = 0;
cmd->src = paddr(&data->exec);
cmd->dst = NC01(NAND_EXEC_CMD);
cmd->len = 4;
cmd++;
}
}
if (n % 2 == 0) {
/* MASK CMD ACK/REQ --> NC01 (0x53C) */
cmd->cmd = 0;
cmd->src = paddr(&data->adm_mux_cmd_ack_req_nc01);
cmd->dst = EBI2_NAND_ADM_MUX;
cmd->len = 4;
cmd++;
/* CMD */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->cmd);
cmd->dst = NC10(NAND_FLASH_CMD);
cmd->len = 4;
cmd++;
/* kick the execute register for NC10 */
cmd->cmd = 0;
cmd->src = paddr(&data->exec);
cmd->dst = NC10(NAND_EXEC_CMD);
cmd->len = 4;
cmd++;
/* MASK DATA ACK/REQ --> NC10 (0xF28) */
cmd->cmd = 0;
cmd->src = paddr(&data->adm_mux_data_ack_req_nc10);
cmd->dst = EBI2_NAND_ADM_MUX;
cmd->len = 4;
cmd++;
/* block on data ready from NC01, then
* read the status register
*/
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NC01(NAND_FLASH_STATUS);
cmd->dst = paddr(&data->result[n]);
/* NAND_FLASH_STATUS +
* NAND_BUFFER_STATUS
*/
cmd->len = 4;
cmd++;
/* read data block */
cmd->cmd = 0;
cmd->src = NC01(NAND_FLASH_BUFFER);
cmd->dst = addr + n * 516;
cmd->len =
((n <
(cwperpage - 1)) ? 516 : (512 -
((cwperpage -
1) << 2)));
cmd++;
} else {
if (n != cwperpage - 1) {
/* MASK CMD ACK/REQ -->
* NC10 (0xF14)
*/
cmd->cmd = 0;
cmd->src =
paddr(&data->adm_mux_cmd_ack_req_nc10);
cmd->dst = EBI2_NAND_ADM_MUX;
cmd->len = 4;
cmd++;
/* CMD */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->cmd);
cmd->dst = NC01(NAND_FLASH_CMD);
cmd->len = 4;
cmd++;
/* EXEC */
cmd->cmd = 0;
cmd->src = paddr(&data->exec);
cmd->dst = NC01(NAND_EXEC_CMD);
cmd->len = 4;
cmd++;
/* MASK DATA ACK/REQ -->
* NC01 (0xA3C)
*/
cmd->cmd = 0;
cmd->src =
paddr(&data->adm_mux_data_ack_req_nc01);
cmd->dst = EBI2_NAND_ADM_MUX;
cmd->len = 4;
cmd++;
/* block on data ready from NC10
* then read the status register
*/
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NC10(NAND_FLASH_STATUS);
cmd->dst = paddr(&data->result[n]);
/* NAND_FLASH_STATUS +
* NAND_BUFFER_STATUS
*/
cmd->len = 4;
cmd++;
} else {
/* MASK DATA ACK/REQ ->
* NC01 (0xA3C)
*/
cmd->cmd = 0;
cmd->src =
paddr(&data->adm_mux_data_ack_req_nc01);
cmd->dst = EBI2_NAND_ADM_MUX;
cmd->len = 4;
cmd++;
/* block on data ready from NC10
* then read the status register
*/
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NC10(NAND_FLASH_STATUS);
cmd->dst = paddr(&data->result[n]);
/* NAND_FLASH_STATUS +
* NAND_BUFFER_STATUS
*/
cmd->len = 4;
cmd++;
}
/* read data block */
cmd->cmd = 0;
cmd->src = NC10(NAND_FLASH_BUFFER);
cmd->dst = addr + n * 516;
cmd->len =
((n <
(cwperpage - 1)) ? 516 : (512 -
((cwperpage -
1) << 2)));
cmd++;
if (n == (cwperpage - 1)) {
/* Use NC10 for reading the
* last codeword!!!
*/
cmd->cmd = 0;
cmd->src = NC10(NAND_FLASH_BUFFER) +
(512 - ((cwperpage - 1) << 2));
cmd->dst = spareaddr;
cmd->len = 16;
cmd++;
}
}
}
/* restore saved ecc config */
cmd->cmd = CMD_OCU | CMD_LC;
cmd->src = paddr(&data->ecc_cfg_save);
cmd->dst = NAND_EBI2_ECC_BUF_CFG;
cmd->len = 4;
/* ADM --> Default mux state (0xFC0) */
cmd->cmd = 0;
cmd->src = paddr(&data->adm_default_mux);
cmd->dst = EBI2_NAND_ADM_MUX;
cmd->len = 4;
cmd++;
/* disable CS1 */
cmd->cmd = 0;
cmd->src = paddr(&data->default_ebi2_chip_select_cfg0);
cmd->dst = EBI2_CHIP_SELECT_CFG0;
cmd->len = 4;
cmd++;
ptr[0] = (paddr(cmdlist) >> 3) | CMD_PTR_LP;
dmov_exec_cmdptr(DMOV_NAND_CHAN, ptr);
#if VERBOSE
dprintf(INFO, "read page %d: status: %x %x %x %x %x %x %x %x \
%x %x %x %x %x %x %x %x \n", page, data->result[0].flash_status[0], data->result[1].flash_status[1], data->result[2].flash_status[2], data->result[3].flash_status[3], data->result[4].flash_status[4], data->result[5].flash_status[5], data->result[6].flash_status[6], data->result[7].flash_status[7], data->result[8].flash_status[8], data->result[9].flash_status[9], data->result[10].flash_status[10], data->result[11].flash_status[11], data->result[12].flash_status[12], data->result[13].flash_status[13], data->result[14].flash_status[14], data->result[15].flash_status[15]);
for (n = 0; n < 4; n++) {
ptr = (unsigned *)(addr + 512 * n);
dprintf(INFO, "data%d: %x %x %x %x\n", n, ptr[0], ptr[1],
ptr[2], ptr[3]);
ptr = (unsigned *)(spareaddr + 16 * n);
dprintf(INFO, "spare data%d %x %x %x %x\n", n, ptr[0],
ptr[1], ptr[2], ptr[3]);
}
#endif
/* if any of the writes failed (0x10), or there was a
** protection violation (0x100), we lose
*/
for (n = 0; n < cwperpage; n++) {
if (data->result[n].flash_status & 0x110) {
return -1;
}
}
return 0;
}
static int
_flash_nand_write_page(dmov_s * cmdlist, unsigned *ptrlist, unsigned page,
const void *_addr, const void *_spareaddr,
unsigned raw_mode)
{
dmov_s *cmd = cmdlist;
unsigned *ptr = ptrlist;
struct data_flash_io *data = (void *)(ptrlist + 4);
unsigned addr = (unsigned)_addr;
unsigned spareaddr = (unsigned)_spareaddr;
unsigned n;
unsigned cwperpage;
cwperpage = (flash_pagesize >> 9);
unsigned modem_partition = 0;
if (CFG0 == CFG0_M) {
modem_partition = 1;
}
data->cmd = NAND_CMD_PRG_PAGE;
data->addr0 = page << 16;
data->addr1 = (page >> 16) & 0xff;
data->chipsel = 0 | 4; /* flash0 + undoc bit */
data->clrfstatus = 0x00000020;
data->clrrstatus = 0x000000C0;
if (!raw_mode) {
data->cfg0 = CFG0;
data->cfg1 = CFG1;
if (enable_bch_ecc) {
data->ecc_bch_cfg = ECC_BCH_CFG;
}
} else {
data->cfg0 =
(NAND_CFG0_RAW & ~(7 << 6)) | ((cwperpage - 1) << 6);
data->cfg1 = NAND_CFG1_RAW | (CFG1 & CFG1_WIDE_FLASH);
}
/* GO bit for the EXEC register */
data->exec = 1;
if (modem_partition)
data->ecc_cfg = 0x1FF;
else
data->ecc_cfg = 0x203;
/* save existing ecc config */
cmd->cmd = CMD_OCB;
cmd->src = NAND_EBI2_ECC_BUF_CFG;
cmd->dst = paddr(&data->ecc_cfg_save);
cmd->len = 4;
cmd++;
for (n = 0; n < cwperpage; n++) {
/* write CMD / ADDR0 / ADDR1 / CHIPSEL regs in a burst */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->cmd);
cmd->dst = NAND_FLASH_CMD;
cmd->len = ((n == 0) ? 16 : 4);
cmd++;
if (n == 0) {
/* set configuration */
cmd->cmd = 0;
cmd->src = paddr(&data->cfg0);
cmd->dst = NAND_DEV0_CFG0;
if (enable_bch_ecc) {
cmd->len = 12;
} else {
cmd->len = 8;
}
cmd++;
/* set our ecc config */
cmd->cmd = 0;
cmd->src = paddr(&data->ecc_cfg);
cmd->dst = NAND_EBI2_ECC_BUF_CFG;
cmd->len = 4;
cmd++;
}
/* write data block */
cmd->cmd = 0;
cmd->dst = NAND_FLASH_BUFFER;
if (!raw_mode) {
if (modem_partition) {
cmd->src = addr + n * 512;
cmd->len = 512;
} else {
cmd->src = addr + n * 516;
cmd->len =
((n <
(cwperpage - 1)) ? 516 : (512 -
((cwperpage -
1) << 2)));
}
} else {
cmd->src = addr;
cmd->len = 528;
}
cmd++;
if ((n == (cwperpage - 1)) && (!raw_mode) && (!modem_partition)) {
/* write extra data */
cmd->cmd = 0;
cmd->src = spareaddr;
cmd->dst =
NAND_FLASH_BUFFER + (512 - ((cwperpage - 1) << 2));
cmd->len = (cwperpage << 2);
cmd++;
}
/* kick the execute register */
cmd->cmd = 0;
cmd->src = paddr(&data->exec);
cmd->dst = NAND_EXEC_CMD;
cmd->len = 4;
cmd++;
/* block on data ready, then read the status register */
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NAND_FLASH_STATUS;
cmd->dst = paddr(&data->result[n]);
cmd->len = 8;
cmd++;
cmd->cmd = 0;
cmd->src = paddr(&data->clrfstatus);
cmd->dst = NAND_FLASH_STATUS;
cmd->len = 4;
cmd++;
cmd->cmd = 0;
cmd->src = paddr(&data->clrrstatus);
cmd->dst = NAND_READ_STATUS;
cmd->len = 4;
cmd++;
}
/* restore saved ecc config */
cmd->cmd = CMD_OCU | CMD_LC;
cmd->src = paddr(&data->ecc_cfg_save);
cmd->dst = NAND_EBI2_ECC_BUF_CFG;
cmd->len = 4;
ptr[0] = (paddr(cmdlist) >> 3) | CMD_PTR_LP;
dmov_exec_cmdptr(DMOV_NAND_CHAN, ptr);
#if VERBOSE
dprintf(INFO, "write page %d: status: %x %x %x %x\n",
page, data[5], data[6], data[7], data[8]);
#endif
/* if any of the writes failed (0x10), or there was a
** protection violation (0x100), or the program success
** bit (0x80) is unset, we lose
*/
for (n = 0; n < cwperpage; n++) {
if (data->result[n].flash_status & 0x110)
return -1;
if (!(data->result[n].flash_status & 0x80))
return -1;
}
#if VERIFY_WRITE
n = _flash_read_page(cmdlist, ptrlist, page, flash_data,
flash_data + 2048);
if (n != 0)
return -1;
if (memcmp(flash_data, _addr, 2048) ||
memcmp(flash_data + 2048, _spareaddr, 16)) {
dprintf(CRITICAL, "verify error @ page %d\n", page);
return -1;
}
#endif
return 0;
}
static int
flash_nand_write_page_interleave(dmov_s * cmdlist, unsigned *ptrlist,
unsigned page, const void *_addr,
const void *_spareaddr, unsigned raw_mode)
{
dmov_s *cmd = cmdlist;
unsigned *ptr = ptrlist;
struct interleave_data_flash_io *data = (void *)(ptrlist + 4);
unsigned addr = (unsigned)_addr;
unsigned spareaddr = (unsigned)_spareaddr;
unsigned n;
unsigned cwperpage, cwcount;
cwperpage = (flash_pagesize >> 9) * 2; /* double for interleave mode */
cwcount = (cwperpage << 1);
data->cmd = NAND_CMD_PRG_PAGE;
data->addr0 = page << 16;
data->addr1 = (page >> 16) & 0xff;
data->chipsel_cs0 = 0 | 4; /* flash0 + undoc bit */
data->chipsel_cs1 = 0 | 5; /* flash0 + undoc bit */
data->ebi2_chip_select_cfg0 = 0x00000805;
data->adm_mux_data_ack_req_nc01 = 0x00000A3C;
data->adm_mux_cmd_ack_req_nc01 = 0x0000053C;
data->adm_mux_data_ack_req_nc10 = 0x00000F28;
data->adm_mux_cmd_ack_req_nc10 = 0x00000F14;
data->adm_default_mux = 0x00000FC0;
data->default_ebi2_chip_select_cfg0 = 0x00000801;
if (!raw_mode) {
data->cfg0 = CFG0;
data->cfg1 = CFG1;
} else {
data->cfg0 = (NAND_CFG0_RAW & ~(7 << 6)) | ((cwcount - 1) << 6);
data->cfg1 = NAND_CFG1_RAW | (CFG1 & CFG1_WIDE_FLASH);
}
/* GO bit for the EXEC register */
data->exec = 1;
data->ecc_cfg = 0x203;
for (n = 0; n < cwperpage; n++) {
/* status return words */
data->result[n].flash_status = 0xeeeeeeee;
if (n == 0) {
/* enable CS1 */
cmd->cmd = CMD_OCB;
cmd->src = paddr(&data->ebi2_chip_select_cfg0);
cmd->dst = EBI2_CHIP_SELECT_CFG0;
cmd->len = 4;
cmd++;
/* save existing ecc config */
cmd->cmd = 0;
cmd->src = NC11(NAND_EBI2_ECC_BUF_CFG);
cmd->dst = paddr(&data->ecc_cfg_save);
cmd->len = 4;
cmd++;
cmd->cmd = 0;
cmd->src = paddr(&data->ecc_cfg);
cmd->dst = NC11(NAND_EBI2_ECC_BUF_CFG);
cmd->len = 4;
cmd++;
cmd->cmd = 0;
cmd->src = paddr(&data->addr0);
cmd->dst = NC11(NAND_ADDR0);
cmd->len = 8;
cmd++;
/* enable CS0 */
cmd->cmd = 0;
cmd->src = paddr(&data->chipsel_cs0);
cmd->dst = NC01(NAND_FLASH_CHIP_SELECT);
cmd->len = 4;
cmd++;
/* enable CS1 */
cmd->cmd = 0;
cmd->src = paddr(&data->chipsel_cs1);
cmd->dst = NC10(NAND_FLASH_CHIP_SELECT);
cmd->len = 4;
cmd++;
cmd->cmd = 0;
cmd->src = paddr(&data->cfg0);
cmd->dst = NC01(NAND_DEV0_CFG0);
cmd->len = 8;
cmd++;
/* config CFG1 for CS1 */
cmd->cmd = 0;
cmd->src = paddr(&data->cfg0);
cmd->dst = NC10(NAND_DEV1_CFG0);
cmd->len = 8;
cmd++;
}
if (n % 2 == 0) {
/* MASK CMD ACK/REQ --> NC10 (0xF14) */
cmd->cmd = 0;
cmd->src = paddr(&data->adm_mux_cmd_ack_req_nc10);
cmd->dst = EBI2_NAND_ADM_MUX;
cmd->len = 4;
cmd++;
/* CMD */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->cmd);
cmd->dst = NC01(NAND_FLASH_CMD);
cmd->len = 4;
cmd++;
} else {
/* MASK CMD ACK/REQ --> NC01 (0x53C) */
cmd->cmd = 0;
cmd->src = paddr(&data->adm_mux_cmd_ack_req_nc01);
cmd->dst = EBI2_NAND_ADM_MUX;
cmd->len = 4;
cmd++;
/* CMD */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->cmd);
cmd->dst = NC10(NAND_FLASH_CMD);
cmd->len = 4;
cmd++;
}
cmd->cmd = 0;
if (!raw_mode) {
cmd->src = addr + n * 516;
cmd->len =
((n <
(cwperpage - 1)) ? 516 : (512 -
((cwperpage -
1) << 2)));
} else {
cmd->src = addr;
cmd->len = 528;
}
if (n % 2 == 0)
cmd->dst = NC01(NAND_FLASH_BUFFER);
else
cmd->dst = NC10(NAND_FLASH_BUFFER);
cmd++;
if ((n == (cwperpage - 1)) && (!raw_mode)) {
/* write extra data */
cmd->cmd = 0;
cmd->src = spareaddr;
cmd->dst =
NC10(NAND_FLASH_BUFFER) + (512 -
((cwperpage - 1) << 2));
cmd->len = (cwperpage << 2);
cmd++;
}
if (n % 2 == 0) {
/* kick the NC01 execute register */
cmd->cmd = 0;
cmd->src = paddr(&data->exec);
cmd->dst = NC01(NAND_EXEC_CMD);
cmd->len = 4;
cmd++;
if (n != 0) {
/* MASK DATA ACK/REQ --> NC01 (0xA3C) */
cmd->cmd = 0;
cmd->src =
paddr(&data->adm_mux_data_ack_req_nc01);
cmd->dst = EBI2_NAND_ADM_MUX;
cmd->len = 4;
cmd++;
/* block on data ready from NC10, then
* read the status register
*/
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NC10(NAND_FLASH_STATUS);
cmd->dst = paddr(&data->result[n - 1]);
cmd->len = 4;
cmd++;
}
} else {
/* kick the execute register */
cmd->cmd = 0;
cmd->src = paddr(&data->exec);
cmd->dst = NC10(NAND_EXEC_CMD);
cmd->len = 4;
cmd++;
/* MASK DATA ACK/REQ --> NC10 (0xF28) */
cmd->cmd = 0;
cmd->src = paddr(&data->adm_mux_data_ack_req_nc10);
cmd->dst = EBI2_NAND_ADM_MUX;
cmd->len = 4;
cmd++;
/* block on data ready from NC01, then
* read the status register
*/
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NC01(NAND_FLASH_STATUS);
cmd->dst = paddr(&data->result[n - 1]);
cmd->len = 4;
cmd++;
}
}
/* MASK DATA ACK/REQ --> NC01 (0xA3C) */
cmd->cmd = 0;
cmd->src = paddr(&data->adm_mux_data_ack_req_nc01);
cmd->dst = EBI2_NAND_ADM_MUX;
cmd->len = 4;
cmd++;
/* we should process outstanding request */
/* block on data ready, then
* read the status register
*/
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NC10(NAND_FLASH_STATUS);
cmd->dst = paddr(&data->result[n - 1]);
cmd->len = 4;
cmd++;
/* restore saved ecc config */
cmd->cmd = 0;
cmd->src = paddr(&data->ecc_cfg_save);
cmd->dst = NAND_EBI2_ECC_BUF_CFG;
cmd->len = 4;
/* MASK DATA ACK/REQ --> NC01 (0xFC0) */
cmd->cmd = 0;
cmd->src = paddr(&data->adm_default_mux);
cmd->dst = EBI2_NAND_ADM_MUX;
cmd->len = 4;
cmd++;
/* disable CS1 */
cmd->cmd = CMD_OCU | CMD_LC;
cmd->src = paddr(&data->default_ebi2_chip_select_cfg0);
cmd->dst = EBI2_CHIP_SELECT_CFG0;
cmd->len = 4;
cmd++;
ptr[0] = (paddr(cmdlist) >> 3) | CMD_PTR_LP;
dmov_exec_cmdptr(DMOV_NAND_CHAN, ptr);
#if VERBOSE
dprintf(INFO, "write page %d: status: %x %x %x %x %x %x %x %x \
%x %x %x %x %x %x %x %x \n", page, data->result[0].flash_status[0], data->result[1].flash_status[1], data->result[2].flash_status[2], data->result[3].flash_status[3], data->result[4].flash_status[4], data->result[5].flash_status[5], data->result[6].flash_status[6], data->result[7].flash_status[7], data->result[8].flash_status[8], data->result[9].flash_status[9], data->result[10].flash_status[10], data->result[11].flash_status[11], data->result[12].flash_status[12], data->result[13].flash_status[13], data->result[14].flash_status[14], data->result[15].flash_status[15]);
#endif
/* if any of the writes failed (0x10), or there was a
** protection violation (0x100), or the program success
** bit (0x80) is unset, we lose
*/
for (n = 0; n < cwperpage; n++) {
if (data->result[n].flash_status & 0x110)
return -1;
if (!(data->result[n].flash_status & 0x80))
return -1;
}
#if VERIFY_WRITE
n = _flash_read_page(cmdlist, ptrlist, page, flash_data,
flash_data + 2048);
if (n != 0)
return -1;
if (memcmp(flash_data, _addr, 2048) ||
memcmp(flash_data + 2048, _spareaddr, 16)) {
dprintf(CRITICAL, "verify error @ page %d\n", page);
return -1;
}
#endif
return 0;
}
char empty_buf[528];
static int
flash_nand_mark_badblock(dmov_s * cmdlist, unsigned *ptrlist, unsigned page)
{
memset(empty_buf, 0, 528);
/* Going to first page of the block */
if (page & num_pages_per_blk_mask)
page = page - (page & num_pages_per_blk_mask);
return _flash_nand_write_page(cmdlist, ptrlist, page, empty_buf, 0, 1);
}
unsigned nand_cfg0;
unsigned nand_cfg1;
static int flash_nand_read_config(dmov_s * cmdlist, unsigned *ptrlist)
{
static unsigned CFG0_TMP, CFG1_TMP;
cmdlist[0].cmd = CMD_OCB;
cmdlist[0].src = NAND_DEV0_CFG0;
cmdlist[0].dst = paddr(&CFG0_TMP);
cmdlist[0].len = 4;
cmdlist[1].cmd = CMD_OCU | CMD_LC;
cmdlist[1].src = NAND_DEV0_CFG1;
cmdlist[1].dst = paddr(&CFG1_TMP);
cmdlist[1].len = 4;
*ptrlist = (paddr(cmdlist) >> 3) | CMD_PTR_LP;
dmov_exec_cmdptr(DMOV_NAND_CHAN, ptrlist);
if ((CFG0_TMP == 0) || (CFG1_TMP == 0)) {
return -1;
}
CFG0_A = CFG0_TMP;
CFG1_A = CFG1_TMP;
if (flash_info.type == FLASH_16BIT_NAND_DEVICE) {
nand_cfg1 |= CFG1_WIDE_FLASH;
}
dprintf(INFO, "nandcfg: %x %x (initial)\n", CFG0, CFG1);
CFG0_A = (((flash_pagesize >> 9) - 1) << 6) /* 4/8 cw/pg for 2/4k */
|(516 << 9) /* 516 user data bytes */
|(10 << 19) /* 10 parity bytes */
|(5 << 27) /* 5 address cycles */
|(0 << 30) /* Do not read status before data */
|(1 << 31)
/* Send read cmd */
/* 0 spare bytes for 16 bit nand or 1 spare bytes for 8 bit */
|((nand_cfg1 & CFG1_WIDE_FLASH) ? (0 << 23) : (enable_bch_ecc ? (2 << 23) : (1 << 23))); /* 2 spare bytes for 8 bit bch ecc */
CFG1_A = (0 << 0) /* Enable ecc */
|(7 << 2) /* 8 recovery cycles */
|(0 << 5) /* Allow CS deassertion */
|((flash_pagesize - ((enable_bch_ecc ? 532 : 528) * ((flash_pagesize >> 9) - 1)) + 1) << 6) /* Bad block marker location */
|(0 << 16) /* Bad block in user data area */
|(2 << 17) /* 6 cycle tWB/tRB */
|(nand_cfg1 & CFG1_WIDE_FLASH); /* preserve wide flash flag */
NAND_CFG0_RAW = CFG0_RAW;
NAND_CFG1_RAW = CFG1_RAW;
if (enable_bch_ecc) {
CFG1_A |= (1 << 27); /* Enable BCH engine */
ECC_BCH_CFG = (0 << 0) /* Enable ECC */
|(0 << 1) /* Enable/Disable SW reset of ECC engine */
|(1 << 4) /* 8bit ecc */
|((nand_cfg1 & CFG1_WIDE_FLASH) ? (14 << 8) : (13 << 8)) /*parity bytes */
|(516 << 16) /* 516 user data bytes */
|(1 << 30); /* Turn on ECC engine clocks always */
NAND_CFG0_RAW = CFG0_RAW_BCHECC; /* CW size is increased to 532B */
}
dprintf(INFO, "nandcfg(Apps): %x %x (used)\n", CFG0_A, CFG1_A);
CFG0_M = CFG0_TMP;
CFG1_M = CFG1_TMP;
if (flash_info.type == FLASH_16BIT_NAND_DEVICE) {
nand_cfg1 |= CFG1_WIDE_FLASH;
}
CFG0_M = (((flash_pagesize >> 9) - 1) << 6) /* 4/8 cw/pg for 2/4k */
|(512 << 9) /* 512 user data bytes */
|(10 << 19) /* 10 parity bytes */
|(5 << 27) /* 5 address cycles */
|(0 << 30) /* Do not read status before data */
|(1 << 31) /* Send read cmd */
|((nand_cfg1 & CFG1_WIDE_FLASH) ? (4 << 23) : (5 << 23));
CFG1_M = (0 << 0) /* Enable ecc */
|(7 << 2) /* 8 recovery cycles */
|(0 << 5) /* Allow CS deassertion */
|((flash_pagesize - (528 * ((flash_pagesize >> 9) - 1)) + 1) << 6) /* Bad block marker location */
|(0 << 16) /* Bad block in user data area */
|(2 << 17) /* 6 cycle tWB/tRB */
|(nand_cfg1 & CFG1_WIDE_FLASH); /* preserve wide flash flag */
dprintf(INFO, "nandcfg(Modem): %x %x (used)\n", CFG0_M, CFG1_M);
return 0;
}
/* OneNAND programming functions */
static void flash_onenand_read_id(dmov_s * cmdlist, unsigned *ptrlist)
{
dmov_s *cmd = cmdlist;
unsigned *ptr = ptrlist;
unsigned *data = ptrlist + 4;
data[0] = SFLASH_BCFG;
data[1] =
SFLASH_PREPCMD(8, 0, 0, NAND_SFCMD_DATXS, NAND_SFCMD_ASYNC,
NAND_SFCMD_REGRD);
data[2] = (ONENAND_DEVICE_ID << 16) | (ONENAND_MANUFACTURER_ID);
data[3] = (ONENAND_DATA_BUFFER_SIZE << 16) | (ONENAND_VERSION_ID);
data[4] =
(ONENAND_AMOUNT_OF_BUFFERS << 16) | (ONENAND_BOOT_BUFFER_SIZE);
data[5] = (CLEAN_DATA_16 << 16) | (ONENAND_TECHNOLOGY);
data[6] = CLEAN_DATA_32; //status
data[7] = CLEAN_DATA_32; //register read
data[8] = CLEAN_DATA_32; //register read
data[9] = CLEAN_DATA_32; //register read
data[10] = CLEAN_DATA_32; //register read
data[11] = 1;
data[12] = 0 | 4;
/* Setup controller in SFLASH mode */
cmd[0].cmd = 0 | CMD_OCB;
cmd[0].src = paddr(&data[0]);
cmd[0].dst = NAND_SFLASHC_BURST_CFG;
cmd[0].len = 4;
/* Enable data mover for controller */
cmd[1].cmd = 0;
cmd[1].src = paddr(&data[12]);
cmd[1].dst = NAND_FLASH_CHIP_SELECT;
cmd[1].len = 4;
/* Setup SFLASHC_CMD with xfers in async mode */
cmd[2].cmd = DST_CRCI_NAND_CMD;
cmd[2].src = paddr(&data[1]);
cmd[2].dst = NAND_SFLASHC_CMD;
cmd[2].len = 4;
/* Setup to read device information */
cmd[3].cmd = 0;
cmd[3].src = paddr(&data[2]);
cmd[3].dst = NAND_ADDR0;
cmd[3].len = 8;
cmd[4].cmd = 0;
cmd[4].src = paddr(&data[4]);
cmd[4].dst = NAND_ADDR2;
cmd[4].len = 8;
/* Set execute bit */
cmd[5].cmd = 0;
cmd[5].src = paddr(&data[11]);
cmd[5].dst = NAND_SFLASHC_EXEC_CMD;
cmd[5].len = 4;
/* Check status */
cmd[6].cmd = SRC_CRCI_NAND_DATA;
cmd[6].src = NAND_SFLASHC_STATUS;
cmd[6].dst = paddr(&data[6]);
cmd[6].len = 4;
/* Read result device registers */
cmd[7].cmd = 0 | CMD_OCU | CMD_LC;
cmd[7].src = NAND_GENP_REG0;
cmd[7].dst = paddr(&data[7]);
cmd[7].len = 16;
ptr[0] = (paddr(cmd) >> 3) | CMD_PTR_LP;
dmov_exec_cmdptr(DMOV_NAND_CHAN, ptr);
#if VERBOSE
dprintf(INFO, "status: %x\n", data[6]);
#endif
flash_info.id = data[7];
flash_info.vendor = data[7] & CLEAN_DATA_16;
flash_info.device = (data[7] >> 16) & CLEAN_DATA_16;
return;
}
struct data_onenand_erase {
unsigned sfbcfg;
unsigned sfcmd[4];
unsigned sfexec;
unsigned sfstat[4];
unsigned addr0;
unsigned addr1;
unsigned addr2;
unsigned addr3;
unsigned addr4;
unsigned addr5;
unsigned addr6;
unsigned data0;
unsigned data1;
unsigned data2;
unsigned data3;
unsigned data4;
unsigned data5;
unsigned data6;
};
static int _flash_onenand_read_page(dmov_s * cmdlist, unsigned *ptrlist,
unsigned page, void *_addr,
void *_spareaddr, unsigned raw_mode);
static int
flash_onenand_block_isbad(dmov_s * cmdlist, unsigned *ptrlist, unsigned page)
{
unsigned char page_data[2112];
unsigned char *oobptr = &(page_data[2048]);
/* Going to first page of the block */
if (page & num_pages_per_blk_mask)
page = page - (page & num_pages_per_blk_mask);
/* Reading page in raw mode */
if (_flash_onenand_read_page(cmdlist, ptrlist, page, page_data, 0, 1))
return 1;
/* Checking if block is bad */
if ((oobptr[0] != 0xFF) || (oobptr[1] != 0xFF) ||
(oobptr[16] != 0xFF) || (oobptr[17] != 0xFF) ||
(oobptr[32] != 0xFF) || (oobptr[33] != 0xFF) ||
(oobptr[48] != 0xFF) || (oobptr[49] != 0xFF)) {
return 1;
}
return 0;
}
static int
flash_onenand_erase_block(dmov_s * cmdlist, unsigned *ptrlist, unsigned page)
{
dmov_s *cmd = cmdlist;
unsigned *ptr = ptrlist;
struct data_onenand_erase *data = (void *)ptrlist + 4;
int isbad = 0;
unsigned erasesize = (flash_pagesize * num_pages_per_blk);
unsigned onenand_startaddr1 =
DEVICE_FLASHCORE_0 | (page * flash_pagesize) / erasesize;
unsigned onenand_startaddr8 = 0x0000;
unsigned onenand_startaddr2 = DEVICE_BUFFERRAM_0 << 15;
unsigned onenand_startbuffer = DATARAM0_0 << 8;
unsigned controller_status;
unsigned interrupt_status;
unsigned ecc_status;
if ((page * flash_pagesize) & (erasesize - 1))
return -1;
/* Check for bad block and erase only if block is not marked bad */
isbad = flash_onenand_block_isbad(cmdlist, ptrlist, page);
if (isbad) {
dprintf(INFO, "skipping @ %d (bad block)\n",
page / num_pages_per_blk);
return -1;
}
/*Erase block */
onenand_startaddr1 = DEVICE_FLASHCORE_0 |
((page * flash_pagesize) / (erasesize));
onenand_startaddr8 = 0x0000;
onenand_startaddr2 = DEVICE_BUFFERRAM_0 << 15;
onenand_startbuffer = DATARAM0_0 << 8;
data->sfbcfg = SFLASH_BCFG;
data->sfcmd[0] = SFLASH_PREPCMD(7, 0, 0,
NAND_SFCMD_CMDXS,
NAND_SFCMD_ASYNC, NAND_SFCMD_REGWR);
data->sfcmd[1] = SFLASH_PREPCMD(0, 0, 32,
NAND_SFCMD_CMDXS,
NAND_SFCMD_ASYNC, NAND_SFCMD_INTHI);
data->sfcmd[2] = SFLASH_PREPCMD(3, 7, 0,
NAND_SFCMD_DATXS,
NAND_SFCMD_ASYNC, NAND_SFCMD_REGRD);
data->sfcmd[3] = SFLASH_PREPCMD(4, 10, 0,
NAND_SFCMD_CMDXS,
NAND_SFCMD_ASYNC, NAND_SFCMD_REGWR);
data->sfexec = 1;
data->sfstat[0] = CLEAN_DATA_32;
data->sfstat[1] = CLEAN_DATA_32;
data->sfstat[2] = CLEAN_DATA_32;
data->sfstat[3] = CLEAN_DATA_32;
data->addr0 =
(ONENAND_INTERRUPT_STATUS << 16) | (ONENAND_SYSTEM_CONFIG_1);
data->addr1 =
(ONENAND_START_ADDRESS_8 << 16) | (ONENAND_START_ADDRESS_1);
data->addr2 = (ONENAND_START_BUFFER << 16) | (ONENAND_START_ADDRESS_2);
data->addr3 = (ONENAND_ECC_STATUS << 16) | (ONENAND_COMMAND);
data->addr4 = (ONENAND_CONTROLLER_STATUS << 16) |
(ONENAND_INTERRUPT_STATUS);
data->addr5 =
(ONENAND_INTERRUPT_STATUS << 16) | (ONENAND_SYSTEM_CONFIG_1);
data->addr6 =
(ONENAND_START_ADDRESS_3 << 16) | (ONENAND_START_ADDRESS_1);
data->data0 = (ONENAND_CLRINTR << 16) | (ONENAND_SYSCFG1_ECCENA);
data->data1 = (onenand_startaddr8 << 16) | (onenand_startaddr1);
data->data2 = (onenand_startbuffer << 16) | (onenand_startaddr2);
data->data3 = (CLEAN_DATA_16 << 16) | (ONENAND_CMDERAS);
data->data4 = (CLEAN_DATA_16 << 16) | (CLEAN_DATA_16);
data->data5 = (ONENAND_CLRINTR << 16) | (ONENAND_SYSCFG1_ECCENA);
data->data6 = (ONENAND_STARTADDR3_RES << 16) | (ONENAND_STARTADDR1_RES);
/***************************************************************/
/* Write the necessary address registers in the onenand device */
/***************************************************************/
/* Enable and configure the SFlash controller */
cmd->cmd = 0 | CMD_OCB;
cmd->src = paddr(&data->sfbcfg);
cmd->dst = NAND_SFLASHC_BURST_CFG;
cmd->len = 4;
cmd++;
/* Block on cmd ready and write CMD register */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->sfcmd[0]);
cmd->dst = NAND_SFLASHC_CMD;
cmd->len = 4;
cmd++;
/* Write the ADDR0 and ADDR1 registers */
cmd->cmd = 0;
cmd->src = paddr(&data->addr0);
cmd->dst = NAND_ADDR0;
cmd->len = 8;
cmd++;
/* Write the ADDR2 ADDR3 ADDR4 ADDR5 registers */
cmd->cmd = 0;
cmd->src = paddr(&data->addr2);
cmd->dst = NAND_ADDR2;
cmd->len = 16;
cmd++;
/* Write the ADDR6 registers */
cmd->cmd = 0;
cmd->src = paddr(&data->addr6);
cmd->dst = NAND_ADDR6;
cmd->len = 4;
cmd++;
/* Write the GENP0, GENP1, GENP2, GENP3, GENP4 registers */
cmd->cmd = 0;
cmd->src = paddr(&data->data0);
cmd->dst = NAND_GENP_REG0;
cmd->len = 16;
cmd++;
/* Write the FLASH_DEV_CMD4,5,6 registers */
cmd->cmd = 0;
cmd->src = paddr(&data->data4);
cmd->dst = NAND_DEV_CMD4;
cmd->len = 12;
cmd++;
/* Kick the execute command */
cmd->cmd = 0;
cmd->src = paddr(&data->sfexec);
cmd->dst = NAND_SFLASHC_EXEC_CMD;
cmd->len = 4;
cmd++;
/* Block on data ready, and read the status register */
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NAND_SFLASHC_STATUS;
cmd->dst = paddr(&data->sfstat[0]);
cmd->len = 4;
cmd++;
/***************************************************************/
/* Wait for the interrupt from the Onenand device controller */
/***************************************************************/
/* Block on cmd ready and write CMD register */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->sfcmd[1]);
cmd->dst = NAND_SFLASHC_CMD;
cmd->len = 4;
cmd++;
/* Kick the execute command */
cmd->cmd = 0;
cmd->src = paddr(&data->sfexec);
cmd->dst = NAND_SFLASHC_EXEC_CMD;
cmd->len = 4;
cmd++;
/* Block on data ready, and read the status register */
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NAND_SFLASHC_STATUS;
cmd->dst = paddr(&data->sfstat[1]);
cmd->len = 4;
cmd++;
/***************************************************************/
/* Read the necessary status registers from the onenand device */
/***************************************************************/
/* Block on cmd ready and write CMD register */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->sfcmd[2]);
cmd->dst = NAND_SFLASHC_CMD;
cmd->len = 4;
cmd++;
/* Kick the execute command */
cmd->cmd = 0;
cmd->src = paddr(&data->sfexec);
cmd->dst = NAND_SFLASHC_EXEC_CMD;
cmd->len = 4;
cmd++;
/* Block on data ready, and read the status register */
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NAND_SFLASHC_STATUS;
cmd->dst = paddr(&data->sfstat[2]);
cmd->len = 4;
cmd++;
/* Read the GENP3 register */
cmd->cmd = 0;
cmd->src = NAND_GENP_REG3;
cmd->dst = paddr(&data->data3);
cmd->len = 4;
cmd++;
/* Read the DEVCMD4 register */
cmd->cmd = 0;
cmd->src = NAND_DEV_CMD4;
cmd->dst = paddr(&data->data4);
cmd->len = 4;
cmd++;
/***************************************************************/
/* Restore the necessary registers to proper values */
/***************************************************************/
/* Block on cmd ready and write CMD register */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->sfcmd[3]);
cmd->dst = NAND_SFLASHC_CMD;
cmd->len = 4;
cmd++;
/* Kick the execute command */
cmd->cmd = 0;
cmd->src = paddr(&data->sfexec);
cmd->dst = NAND_SFLASHC_EXEC_CMD;
cmd->len = 4;
cmd++;
/* Block on data ready, and read the status register */
cmd->cmd = SRC_CRCI_NAND_DATA | CMD_OCU | CMD_LC;
cmd->src = NAND_SFLASHC_STATUS;
cmd->dst = paddr(&data->sfstat[3]);
cmd->len = 4;
cmd++;
ptr[0] = (paddr(cmdlist) >> 3) | CMD_PTR_LP;
dmov_exec_cmdptr(DMOV_NAND_CHAN, ptr);
ecc_status = (data->data3 >> 16) & 0x0000FFFF;
interrupt_status = (data->data4 >> 0) & 0x0000FFFF;
controller_status = (data->data4 >> 16) & 0x0000FFFF;
#if VERBOSE
dprintf(INFO, "\n%s: sflash status %x %x %x %x\n", __func__,
data->sfstat[0],
data->sfstat[1], data->sfstat[2], data->sfstat[3]);
dprintf(INFO, "%s: controller_status = %x\n", __func__,
controller_status);
dprintf(INFO, "%s: interrupt_status = %x\n", __func__,
interrupt_status);
dprintf(INFO, "%s: ecc_status = %x\n", __func__, ecc_status);
#endif
/* Check for errors, protection violations etc */
if ((controller_status != 0)
|| (data->sfstat[0] & 0x110)
|| (data->sfstat[1] & 0x110)
|| (data->sfstat[2] & 0x110) || (data->sfstat[3] & 0x110)) {
dprintf(CRITICAL, "%s: ECC/MPU/OP error\n", __func__);
return -1;
}
#if VERBOSE
dprintf(INFO, "status: %x\n", data[5]);
#endif
return 0;
}
struct data_onenand_read {
unsigned sfbcfg;
unsigned sfcmd[9];
unsigned sfexec;
unsigned sfstat[9];
unsigned addr0;
unsigned addr1;
unsigned addr2;
unsigned addr3;
unsigned addr4;
unsigned addr5;
unsigned addr6;
unsigned data0;
unsigned data1;
unsigned data2;
unsigned data3;
unsigned data4;
unsigned data5;
unsigned data6;
unsigned macro[5];
};
static int
_flash_onenand_read_page(dmov_s * cmdlist, unsigned *ptrlist,
unsigned page, void *_addr, void *_spareaddr,
unsigned raw_mode)
{
dmov_s *cmd = cmdlist;
unsigned *ptr = ptrlist;
struct data_onenand_read *data = (void *)(ptrlist + 4);
unsigned addr = (unsigned)_addr;
unsigned curr_addr = (unsigned)_addr;
#if VERBOSE
unsigned spareaddr = (unsigned)_spareaddr;
#endif
unsigned i;
unsigned erasesize = (flash_pagesize * num_pages_per_blk);
unsigned writesize = flash_pagesize;
unsigned onenand_startaddr1 = DEVICE_FLASHCORE_0 |
((unsigned)(page * flash_pagesize) / erasesize);
unsigned onenand_startaddr8 = (((unsigned)(page * flash_pagesize) &
(erasesize - 1)) / writesize) << 2;
unsigned onenand_startaddr2 = DEVICE_BUFFERRAM_0 << 15;
unsigned onenand_startbuffer = DATARAM0_0 << 8;
unsigned onenand_sysconfig1 = (raw_mode == 1) ? ONENAND_SYSCFG1_ECCDIS :
ONENAND_SYSCFG1_ECCENA;
unsigned controller_status;
unsigned interrupt_status;
unsigned ecc_status;
if (raw_mode != 1) {
int isbad = 0;
isbad = flash_onenand_block_isbad(cmdlist, ptrlist, page);
if (isbad)
return -2;
}
//static int oobfree_offset[8] = {2, 14, 18, 30, 34, 46, 50, 62};
//static int oobfree_length[8] = {3, 2, 3, 2, 3, 2, 3, 2};
data->sfbcfg = SFLASH_BCFG;
data->sfcmd[0] = SFLASH_PREPCMD(7, 0, 0,
NAND_SFCMD_CMDXS,
NAND_SFCMD_ASYNC, NAND_SFCMD_REGWR);
data->sfcmd[1] = SFLASH_PREPCMD(0, 0, 32,
NAND_SFCMD_CMDXS,
NAND_SFCMD_ASYNC, NAND_SFCMD_INTHI);
data->sfcmd[2] = SFLASH_PREPCMD(3, 7, 0,
NAND_SFCMD_DATXS,
NAND_SFCMD_ASYNC, NAND_SFCMD_REGRD);
data->sfcmd[3] = SFLASH_PREPCMD(256, 0, 0,
NAND_SFCMD_DATXS,
NAND_SFCMD_ASYNC, NAND_SFCMD_DATRD);
data->sfcmd[4] = SFLASH_PREPCMD(256, 0, 0,
NAND_SFCMD_DATXS,
NAND_SFCMD_ASYNC, NAND_SFCMD_DATRD);
data->sfcmd[5] = SFLASH_PREPCMD(256, 0, 0,
NAND_SFCMD_DATXS,
NAND_SFCMD_ASYNC, NAND_SFCMD_DATRD);
data->sfcmd[6] = SFLASH_PREPCMD(256, 0, 0,
NAND_SFCMD_DATXS,
NAND_SFCMD_ASYNC, NAND_SFCMD_DATRD);
data->sfcmd[7] = SFLASH_PREPCMD(32, 0, 0,
NAND_SFCMD_DATXS,
NAND_SFCMD_ASYNC, NAND_SFCMD_DATRD);
data->sfcmd[8] = SFLASH_PREPCMD(4, 10, 0,
NAND_SFCMD_CMDXS,
NAND_SFCMD_ASYNC, NAND_SFCMD_REGWR);
data->sfexec = 1;
data->sfstat[0] = CLEAN_DATA_32;
data->sfstat[1] = CLEAN_DATA_32;
data->sfstat[2] = CLEAN_DATA_32;
data->sfstat[3] = CLEAN_DATA_32;
data->sfstat[4] = CLEAN_DATA_32;
data->sfstat[5] = CLEAN_DATA_32;
data->sfstat[6] = CLEAN_DATA_32;
data->sfstat[7] = CLEAN_DATA_32;
data->sfstat[8] = CLEAN_DATA_32;
data->addr0 =
(ONENAND_INTERRUPT_STATUS << 16) | (ONENAND_SYSTEM_CONFIG_1);
data->addr1 =
(ONENAND_START_ADDRESS_8 << 16) | (ONENAND_START_ADDRESS_1);
data->addr2 = (ONENAND_START_BUFFER << 16) | (ONENAND_START_ADDRESS_2);
data->addr3 = (ONENAND_ECC_STATUS << 16) | (ONENAND_COMMAND);
data->addr4 = (ONENAND_CONTROLLER_STATUS << 16) |
(ONENAND_INTERRUPT_STATUS);
data->addr5 =
(ONENAND_INTERRUPT_STATUS << 16) | (ONENAND_SYSTEM_CONFIG_1);
data->addr6 =
(ONENAND_START_ADDRESS_3 << 16) | (ONENAND_START_ADDRESS_1);
data->data0 = (ONENAND_CLRINTR << 16) | (onenand_sysconfig1);
data->data1 = (onenand_startaddr8 << 16) | (onenand_startaddr1);
data->data2 = (onenand_startbuffer << 16) | (onenand_startaddr2);
data->data3 = (CLEAN_DATA_16 << 16) | (ONENAND_CMDLOADSPARE);
data->data4 = (CLEAN_DATA_16 << 16) | (CLEAN_DATA_16);
data->data5 = (ONENAND_CLRINTR << 16) | (ONENAND_SYSCFG1_ECCENA);
data->data6 = (ONENAND_STARTADDR3_RES << 16) | (ONENAND_STARTADDR1_RES);
data->macro[0] = 0x0200;
data->macro[1] = 0x0300;
data->macro[2] = 0x0400;
data->macro[3] = 0x0500;
data->macro[4] = 0x8010;
/*************************************************************/
/* Write necessary address registers in the onenand device */
/*************************************************************/
/* Enable and configure the SFlash controller */
cmd->cmd = 0 | CMD_OCB;
cmd->src = paddr(&data->sfbcfg);
cmd->dst = NAND_SFLASHC_BURST_CFG;
cmd->len = 4;
cmd++;
/* Block on cmd ready and write CMD register */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->sfcmd[0]);
cmd->dst = NAND_SFLASHC_CMD;
cmd->len = 4;
cmd++;
/* Write the ADDR0 and ADDR1 registers */
cmd->cmd = 0;
cmd->src = paddr(&data->addr0);
cmd->dst = NAND_ADDR0;
cmd->len = 8;
cmd++;
/* Write the ADDR2 ADDR3 ADDR4 ADDR5 registers */
cmd->cmd = 0;
cmd->src = paddr(&data->addr2);
cmd->dst = NAND_ADDR2;
cmd->len = 16;
cmd++;
/* Write the ADDR6 registers */
cmd->cmd = 0;
cmd->src = paddr(&data->addr6);
cmd->dst = NAND_ADDR6;
cmd->len = 4;
cmd++;
/* Write the GENP0, GENP1, GENP2, GENP3 registers */
cmd->cmd = 0;
cmd->src = paddr(&data->data0);
cmd->dst = NAND_GENP_REG0;
cmd->len = 16;
cmd++;
/* Write the FLASH_DEV_CMD4,5,6 registers */
cmd->cmd = 0;
cmd->src = paddr(&data->data4);
cmd->dst = NAND_DEV_CMD4;
cmd->len = 12;
cmd++;
/* Kick the execute command */
cmd->cmd = 0;
cmd->src = paddr(&data->sfexec);
cmd->dst = NAND_SFLASHC_EXEC_CMD;
cmd->len = 4;
cmd++;
/* Block on data ready, and read the status register */
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NAND_SFLASHC_STATUS;
cmd->dst = paddr(&data->sfstat[0]);
cmd->len = 4;
cmd++;
/*************************************************************/
/* Wait for the interrupt from the Onenand device controller */
/*************************************************************/
/* Block on cmd ready and write CMD register */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->sfcmd[1]);
cmd->dst = NAND_SFLASHC_CMD;
cmd->len = 4;
cmd++;
/* Kick the execute command */
cmd->cmd = 0;
cmd->src = paddr(&data->sfexec);
cmd->dst = NAND_SFLASHC_EXEC_CMD;
cmd->len = 4;
cmd++;
/* Block on data ready, and read the status register */
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NAND_SFLASHC_STATUS;
cmd->dst = paddr(&data->sfstat[1]);
cmd->len = 4;
cmd++;
/*************************************************************/
/* Read necessary status registers from the onenand device */
/*************************************************************/
/* Block on cmd ready and write CMD register */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->sfcmd[2]);
cmd->dst = NAND_SFLASHC_CMD;
cmd->len = 4;
cmd++;
/* Kick the execute command */
cmd->cmd = 0;
cmd->src = paddr(&data->sfexec);
cmd->dst = NAND_SFLASHC_EXEC_CMD;
cmd->len = 4;
cmd++;
/* Block on data ready, and read the status register */
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NAND_SFLASHC_STATUS;
cmd->dst = paddr(&data->sfstat[2]);
cmd->len = 4;
cmd++;
/* Read the GENP3 register */
cmd->cmd = 0;
cmd->src = NAND_GENP_REG3;
cmd->dst = paddr(&data->data3);
cmd->len = 4;
cmd++;
/* Read the DEVCMD4 register */
cmd->cmd = 0;
cmd->src = NAND_DEV_CMD4;
cmd->dst = paddr(&data->data4);
cmd->len = 4;
cmd++;
/*************************************************************/
/* Read the data ram area from the onenand buffer ram */
/*************************************************************/
if (addr) {
data->data3 = (CLEAN_DATA_16 << 16) | (ONENAND_CMDLOAD);
for (i = 0; i < 4; i++) {
/* Block on cmd ready and write CMD register */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->sfcmd[3 + i]);
cmd->dst = NAND_SFLASHC_CMD;
cmd->len = 4;
cmd++;
/* Write the MACRO1 register */
cmd->cmd = 0;
cmd->src = paddr(&data->macro[i]);
cmd->dst = NAND_MACRO1_REG;
cmd->len = 4;
cmd++;
/* Kick the execute command */
cmd->cmd = 0;
cmd->src = paddr(&data->sfexec);
cmd->dst = NAND_SFLASHC_EXEC_CMD;
cmd->len = 4;
cmd++;
/* Block on data rdy, & read status register */
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NAND_SFLASHC_STATUS;
cmd->dst = paddr(&data->sfstat[3 + i]);
cmd->len = 4;
cmd++;
/* Transfer nand ctlr buf contents to usr buf */
cmd->cmd = 0;
cmd->src = NAND_FLASH_BUFFER;
cmd->dst = curr_addr;
cmd->len = 512;
curr_addr += 512;
cmd++;
}
}
/* Read oob bytes in Raw Mode */
if (raw_mode == 1) {
/* Block on cmd ready and write CMD register */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->sfcmd[7]);
cmd->dst = NAND_SFLASHC_CMD;
cmd->len = 4;
cmd++;
/* Write the MACRO1 register */
cmd->cmd = 0;
cmd->src = paddr(&data->macro[4]);
cmd->dst = NAND_MACRO1_REG;
cmd->len = 4;
cmd++;
/* Kick the execute command */
cmd->cmd = 0;
cmd->src = paddr(&data->sfexec);
cmd->dst = NAND_SFLASHC_EXEC_CMD;
cmd->len = 4;
cmd++;
/* Block on data rdy, & read status register */
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NAND_SFLASHC_STATUS;
cmd->dst = paddr(&data->sfstat[7]);
cmd->len = 4;
cmd++;
/* Transfer nand ctlr buf contents to usr buf */
cmd->cmd = 0;
cmd->src = NAND_FLASH_BUFFER;
cmd->dst = curr_addr;
cmd->len = 64;
curr_addr += 64;
cmd++;
}
/*************************************************************/
/* Restore the necessary registers to proper values */
/*************************************************************/
/* Block on cmd ready and write CMD register */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->sfcmd[8]);
cmd->dst = NAND_SFLASHC_CMD;
cmd->len = 4;
cmd++;
/* Kick the execute command */
cmd->cmd = 0;
cmd->src = paddr(&data->sfexec);
cmd->dst = NAND_SFLASHC_EXEC_CMD;
cmd->len = 4;
cmd++;
/* Block on data ready, and read the status register */
cmd->cmd = SRC_CRCI_NAND_DATA | CMD_OCU | CMD_LC;
cmd->src = NAND_SFLASHC_STATUS;
cmd->dst = paddr(&data->sfstat[8]);
cmd->len = 4;
cmd++;
ptr[0] = (paddr(cmdlist) >> 3) | CMD_PTR_LP;
dmov_exec_cmdptr(DMOV_NAND_CHAN, ptr);
ecc_status = (data->data3 >> 16) & 0x0000FFFF;
interrupt_status = (data->data4 >> 0) & 0x0000FFFF;
controller_status = (data->data4 >> 16) & 0x0000FFFF;
#if VERBOSE
dprintf(INFO, "\n%s: sflash status %x %x %x %x %x %x %x"
"%x %x\n", __func__,
data->sfstat[0],
data->sfstat[1],
data->sfstat[2],
data->sfstat[3],
data->sfstat[4],
data->sfstat[5], data->sfstat[6], data->sfstat[7]);
dprintf(INFO, "%s: controller_status = %x\n", __func__,
controller_status);
dprintf(INFO, "%s: interrupt_status = %x\n", __func__,
interrupt_status);
dprintf(INFO, "%s: ecc_status = %x\n", __func__, ecc_status);
#endif
/* Check for errors, protection violations etc */
if ((controller_status != 0)
|| (data->sfstat[0] & 0x110)
|| (data->sfstat[1] & 0x110)
|| (data->sfstat[2] & 0x110)
|| ((data->sfstat[3] & 0x110) && (addr))
|| ((data->sfstat[4] & 0x110) && (addr))
|| ((data->sfstat[5] & 0x110) &&
(addr)) || ((data->sfstat[6] & 0x110) && (addr))) {
dprintf(INFO, "%s: ECC/MPU/OP error\n", __func__);
return -1;
}
#if VERBOSE
dprintf(INFO, "read page %d: status: %x %x %x %x\n",
page, data[5], data[6], data[7], data[8]);
for (n = 0; n < 4; n++) {
ptr = (unsigned *)(addr + 512 * n);
dprintf(INFO, "data%d: %x %x %x %x\n", n, ptr[0], ptr[1],
ptr[2], ptr[3]);
ptr = (unsigned *)(spareaddr + 16 * n);
dprintf(INFO, "spare data%d %x %x %x %x\n", n, ptr[0],
ptr[1], ptr[2], ptr[3]);
}
#endif
return 0;
}
struct data_onenand_write {
unsigned sfbcfg;
unsigned sfcmd[9];
unsigned sfexec;
unsigned sfstat[9];
unsigned addr0;
unsigned addr1;
unsigned addr2;
unsigned addr3;
unsigned addr4;
unsigned addr5;
unsigned addr6;
unsigned data0;
unsigned data1;
unsigned data2;
unsigned data3;
unsigned data4;
unsigned data5;
unsigned data6;
unsigned macro[5];
};
static int
_flash_onenand_write_page(dmov_s * cmdlist, unsigned *ptrlist,
unsigned page, const void *_addr,
const void *_spareaddr, unsigned raw_mode)
{
dmov_s *cmd = cmdlist;
unsigned *ptr = ptrlist;
struct data_onenand_write *data = (void *)(ptrlist + 4);
unsigned addr = (unsigned)_addr;
unsigned addr_curr = (unsigned)_addr;
char *spareaddr = (char *)_spareaddr;
unsigned i, j, k;
unsigned erasesize = (flash_pagesize * num_pages_per_blk);
unsigned writesize = flash_pagesize;
unsigned onenand_startaddr1 = (page * flash_pagesize) / erasesize;
unsigned onenand_startaddr8 = (((unsigned)(page * flash_pagesize) &
(erasesize - 1)) / writesize) << 2;
unsigned onenand_startaddr2 = DEVICE_BUFFERRAM_0 << 15;
unsigned onenand_startbuffer = DATARAM0_0 << 8;
unsigned onenand_sysconfig1 = (raw_mode == 1) ? ONENAND_SYSCFG1_ECCDIS :
ONENAND_SYSCFG1_ECCENA;
unsigned controller_status;
unsigned interrupt_status;
unsigned ecc_status;
char flash_oob[64];
unsigned oobfree_offset[8] = { 2, 14, 18, 30, 34, 46, 50, 62 };
unsigned oobfree_length[8] = { 3, 2, 3, 2, 3, 2, 3, 2 };
for (i = 0; i < 64; i++)
flash_oob[i] = 0xFF;
data->sfbcfg = SFLASH_BCFG;
data->sfcmd[0] = SFLASH_PREPCMD(256, 0, 0,
NAND_SFCMD_CMDXS,
NAND_SFCMD_ASYNC, NAND_SFCMD_DATWR);
data->sfcmd[1] = SFLASH_PREPCMD(256, 0, 0,
NAND_SFCMD_CMDXS,
NAND_SFCMD_ASYNC, NAND_SFCMD_DATWR);
data->sfcmd[2] = SFLASH_PREPCMD(256, 0, 0,
NAND_SFCMD_CMDXS,
NAND_SFCMD_ASYNC, NAND_SFCMD_DATWR);
data->sfcmd[3] = SFLASH_PREPCMD(256, 0, 0,
NAND_SFCMD_CMDXS,
NAND_SFCMD_ASYNC, NAND_SFCMD_DATWR);
data->sfcmd[4] = SFLASH_PREPCMD(32, 0, 0,
NAND_SFCMD_CMDXS,
NAND_SFCMD_ASYNC, NAND_SFCMD_DATWR);
data->sfcmd[5] = SFLASH_PREPCMD(7, 0, 0,
NAND_SFCMD_CMDXS,
NAND_SFCMD_ASYNC, NAND_SFCMD_REGWR);
data->sfcmd[6] = SFLASH_PREPCMD(0, 0, 32,
NAND_SFCMD_CMDXS,
NAND_SFCMD_ASYNC, NAND_SFCMD_INTHI);
data->sfcmd[7] = SFLASH_PREPCMD(3, 7, 0,
NAND_SFCMD_DATXS,
NAND_SFCMD_ASYNC, NAND_SFCMD_REGRD);
data->sfcmd[8] = SFLASH_PREPCMD(4, 10, 0,
NAND_SFCMD_CMDXS,
NAND_SFCMD_ASYNC, NAND_SFCMD_REGWR);
data->sfexec = 1;
data->sfstat[0] = CLEAN_DATA_32;
data->sfstat[1] = CLEAN_DATA_32;
data->sfstat[2] = CLEAN_DATA_32;
data->sfstat[3] = CLEAN_DATA_32;
data->sfstat[4] = CLEAN_DATA_32;
data->sfstat[5] = CLEAN_DATA_32;
data->sfstat[6] = CLEAN_DATA_32;
data->sfstat[7] = CLEAN_DATA_32;
data->sfstat[8] = CLEAN_DATA_32;
data->addr0 =
(ONENAND_INTERRUPT_STATUS << 16) | (ONENAND_SYSTEM_CONFIG_1);
data->addr1 =
(ONENAND_START_ADDRESS_8 << 16) | (ONENAND_START_ADDRESS_1);
data->addr2 = (ONENAND_START_BUFFER << 16) | (ONENAND_START_ADDRESS_2);
data->addr3 = (ONENAND_ECC_STATUS << 16) | (ONENAND_COMMAND);
data->addr4 = (ONENAND_CONTROLLER_STATUS << 16) |
(ONENAND_INTERRUPT_STATUS);
data->addr5 =
(ONENAND_INTERRUPT_STATUS << 16) | (ONENAND_SYSTEM_CONFIG_1);
data->addr6 =
(ONENAND_START_ADDRESS_3 << 16) | (ONENAND_START_ADDRESS_1);
data->data0 = (ONENAND_CLRINTR << 16) | (onenand_sysconfig1);
data->data1 = (onenand_startaddr8 << 16) | (onenand_startaddr1);
data->data2 = (onenand_startbuffer << 16) | (onenand_startaddr2);
data->data3 = (CLEAN_DATA_16 << 16) | (ONENAND_CMDPROGSPARE);
data->data3 = (CLEAN_DATA_16 << 16) | (ONENAND_CMDPROGSPARE);
data->data4 = (CLEAN_DATA_16 << 16) | (CLEAN_DATA_16);
data->data5 = (ONENAND_CLRINTR << 16) | (ONENAND_SYSCFG1_ECCENA);
data->data6 = (ONENAND_STARTADDR3_RES << 16) | (ONENAND_STARTADDR1_RES);
data->macro[0] = 0x0200;
data->macro[1] = 0x0300;
data->macro[2] = 0x0400;
data->macro[3] = 0x0500;
data->macro[4] = 0x8010;
/*************************************************************/
/* Write the data ram area in the onenand buffer ram */
/*************************************************************/
/* Enable and configure the SFlash controller */
cmd->cmd = 0 | CMD_OCB;
cmd->src = paddr(&data->sfbcfg);
cmd->dst = NAND_SFLASHC_BURST_CFG;
cmd->len = 4;
cmd++;
if (addr) {
data->data3 = (CLEAN_DATA_16 << 16) | (ONENAND_CMDPROG);
for (i = 0; i < 4; i++) {
/* Block on cmd ready and write CMD register */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->sfcmd[i]);
cmd->dst = NAND_SFLASHC_CMD;
cmd->len = 4;
cmd++;
/* Trnsfr usr buf contents to nand ctlr buf */
cmd->cmd = 0;
cmd->src = paddr(addr_curr);
cmd->dst = NAND_FLASH_BUFFER;
cmd->len = 512;
if (!raw_mode)
addr_curr += 512;
cmd++;
/* Write the MACRO1 register */
cmd->cmd = 0;
cmd->src = paddr(&data->macro[i]);
cmd->dst = NAND_MACRO1_REG;
cmd->len = 4;
cmd++;
/* Kick the execute command */
cmd->cmd = 0;
cmd->src = paddr(&data->sfexec);
cmd->dst = NAND_SFLASHC_EXEC_CMD;
cmd->len = 4;
cmd++;
/* Block on data rdy, & read status register */
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NAND_SFLASHC_STATUS;
cmd->dst = paddr(&data->sfstat[i]);
cmd->len = 4;
cmd++;
}
}
/* Block on cmd ready and write CMD register */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->sfcmd[4]);
cmd->dst = NAND_SFLASHC_CMD;
cmd->len = 4;
cmd++;
if (spareaddr) {
// Auto mode
for (i = 0, k = 0; i < 8; i++) {
for (j = 0; j < oobfree_length[i]; j++) {
flash_oob[j + oobfree_offset[i]] = spareaddr[k];
k++;
}
}
cmd->cmd = 0;
cmd->src = paddr(&flash_oob);
cmd->dst = NAND_FLASH_BUFFER;
cmd->len = 64;
cmd++;
}
if (raw_mode) {
cmd->cmd = 0;
cmd->src = paddr(addr_curr);
cmd->dst = NAND_FLASH_BUFFER;
cmd->len = 64;
cmd++;
}
/* Write the MACRO1 register */
cmd->cmd = 0;
cmd->src = paddr(&data->macro[4]);
cmd->dst = NAND_MACRO1_REG;
cmd->len = 4;
cmd++;
/* Kick the execute command */
cmd->cmd = 0;
cmd->src = paddr(&data->sfexec);
cmd->dst = NAND_SFLASHC_EXEC_CMD;
cmd->len = 4;
cmd++;
/* Block on data ready, and read the status register */
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NAND_SFLASHC_STATUS;
cmd->dst = paddr(&data->sfstat[4]);
cmd->len = 4;
cmd++;
/*************************************************************/
/* Write necessary address registers in the onenand device */
/*************************************************************/
/* Block on cmd ready and write CMD register */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->sfcmd[5]);
cmd->dst = NAND_SFLASHC_CMD;
cmd->len = 4;
cmd++;
/* Write the ADDR0 and ADDR1 registers */
cmd->cmd = 0;
cmd->src = paddr(&data->addr0);
cmd->dst = NAND_ADDR0;
cmd->len = 8;
cmd++;
/* Write the ADDR2 ADDR3 ADDR4 ADDR5 registers */
cmd->cmd = 0;
cmd->src = paddr(&data->addr2);
cmd->dst = NAND_ADDR2;
cmd->len = 16;
cmd++;
/* Write the ADDR6 registers */
cmd->cmd = 0;
cmd->src = paddr(&data->addr6);
cmd->dst = NAND_ADDR6;
cmd->len = 4;
cmd++;
/* Write the GENP0, GENP1, GENP2, GENP3 registers */
cmd->cmd = 0;
cmd->src = paddr(&data->data0);
cmd->dst = NAND_GENP_REG0;
cmd->len = 16;
cmd++;
/* Write the FLASH_DEV_CMD4,5,6 registers */
cmd->cmd = 0;
cmd->src = paddr(&data->data4);
cmd->dst = NAND_DEV_CMD4;
cmd->len = 12;
cmd++;
/* Kick the execute command */
cmd->cmd = 0;
cmd->src = paddr(&data->sfexec);
cmd->dst = NAND_SFLASHC_EXEC_CMD;
cmd->len = 4;
cmd++;
/* Block on data ready, and read the status register */
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NAND_SFLASHC_STATUS;
cmd->dst = paddr(&data->sfstat[5]);
cmd->len = 4;
cmd++;
/*************************************************************/
/* Wait for the interrupt from the Onenand device controller */
/*************************************************************/
/* Block on cmd ready and write CMD register */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->sfcmd[6]);
cmd->dst = NAND_SFLASHC_CMD;
cmd->len = 4;
cmd++;
/* Kick the execute command */
cmd->cmd = 0;
cmd->src = paddr(&data->sfexec);
cmd->dst = NAND_SFLASHC_EXEC_CMD;
cmd->len = 4;
cmd++;
/* Block on data ready, and read the status register */
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NAND_SFLASHC_STATUS;
cmd->dst = paddr(&data->sfstat[6]);
cmd->len = 4;
cmd++;
/*************************************************************/
/* Read necessary status registers from the onenand device */
/*************************************************************/
/* Block on cmd ready and write CMD register */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->sfcmd[7]);
cmd->dst = NAND_SFLASHC_CMD;
cmd->len = 4;
cmd++;
/* Kick the execute command */
cmd->cmd = 0;
cmd->src = paddr(&data->sfexec);
cmd->dst = NAND_SFLASHC_EXEC_CMD;
cmd->len = 4;
cmd++;
/* Block on data ready, and read the status register */
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NAND_SFLASHC_STATUS;
cmd->dst = paddr(&data->sfstat[7]);
cmd->len = 4;
cmd++;
/* Read the GENP3 register */
cmd->cmd = 0;
cmd->src = NAND_GENP_REG3;
cmd->dst = paddr(&data->data3);
cmd->len = 4;
cmd++;
/* Read the DEVCMD4 register */
cmd->cmd = 0;
cmd->src = NAND_DEV_CMD4;
cmd->dst = paddr(&data->data4);
cmd->len = 4;
cmd++;
/*************************************************************/
/* Restore the necessary registers to proper values */
/*************************************************************/
/* Block on cmd ready and write CMD register */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->sfcmd[8]);
cmd->dst = NAND_SFLASHC_CMD;
cmd->len = 4;
cmd++;
/* Kick the execute command */
cmd->cmd = 0;
cmd->src = paddr(&data->sfexec);
cmd->dst = NAND_SFLASHC_EXEC_CMD;
cmd->len = 4;
cmd++;
/* Block on data ready, and read the status register */
cmd->cmd = SRC_CRCI_NAND_DATA | CMD_OCU | CMD_LC;
cmd->src = NAND_SFLASHC_STATUS;
cmd->dst = paddr(&data->sfstat[8]);
cmd->len = 4;
cmd++;
ptr[0] = (paddr(cmdlist) >> 3) | CMD_PTR_LP;
dmov_exec_cmdptr(DMOV_NAND_CHAN, ptr);
ecc_status = (data->data3 >> 16) & 0x0000FFFF;
interrupt_status = (data->data4 >> 0) & 0x0000FFFF;
controller_status = (data->data4 >> 16) & 0x0000FFFF;
#if VERBOSE
dprintf(INFO, "\n%s: sflash status %x %x %x %x %x %x %x %x %x\n",
__func__, data->sfstat[0], data->sfstat[1], data->sfstat[2],
data->sfstat[3], data->sfstat[4], data->sfstat[5],
data->sfstat[6], data->sfstat[7], data->sfstat[8]);
dprintf(INFO, "%s: controller_status = %x\n", __func__,
controller_status);
dprintf(INFO, "%s: interrupt_status = %x\n", __func__,
interrupt_status);
dprintf(INFO, "%s: ecc_status = %x\n", __func__, ecc_status);
#endif
/* Check for errors, protection violations etc */
if ((controller_status != 0)
|| (data->sfstat[5] & 0x110)
|| (data->sfstat[6] & 0x110)
|| (data->sfstat[7] & 0x110)
|| (data->sfstat[8] & 0x110)
|| ((data->sfstat[0] & 0x110) && (addr))
|| ((data->sfstat[1] & 0x110) && (addr))
|| ((data->sfstat[2] & 0x110) &&
(addr)) || ((data->sfstat[3] & 0x110) && (addr))) {
dprintf(CRITICAL, "%s: ECC/MPU/OP error\n", __func__);
return -1;
}
return 0;
}
static int
flash_onenand_mark_badblock(dmov_s * cmdlist, unsigned *ptrlist, unsigned page)
{
memset(empty_buf, 0, 528);
/* Going to first page of the block */
if (page & num_pages_per_blk_mask)
page = page - (page & num_pages_per_blk_mask);
return _flash_onenand_write_page(cmdlist, ptrlist, page, empty_buf, 0,
1);
}
static int
flash_mark_badblock(dmov_s * cmdlist, unsigned *ptrlist, unsigned page)
{
switch (flash_info.type) {
case FLASH_8BIT_NAND_DEVICE:
case FLASH_16BIT_NAND_DEVICE:
return flash_nand_mark_badblock(cmdlist, ptrlist, page);
case FLASH_ONENAND_DEVICE:
return flash_onenand_mark_badblock(cmdlist, ptrlist, page);
default:
return -1;
}
}
unsigned flash_ctrl_hwinfo(dmov_s * cmdlist, unsigned *ptrlist)
{
dmov_s *cmd = cmdlist;
unsigned *ptr = ptrlist;
unsigned *data = ptrlist + 4;
unsigned rv;
data[0] = 0xeeeeeeee;
cmd[0].cmd = CMD_LC | CMD_OCB | CMD_OCU;
cmd[0].src = NAND_HW_INFO;
cmd[0].dst = paddr(&data[0]);
cmd[0].len = 4;
ptr[0] = (paddr(cmd) >> 3) | CMD_PTR_LP;
dmov_exec_cmdptr(DMOV_NAND_CHAN, ptr);
rv = data[0];
return rv;
}
/* Wrapper functions */
static void flash_read_id(dmov_s * cmdlist, unsigned *ptrlist)
{
int dev_found = 0;
unsigned index;
uint32_t hwinfo;
// Try to read id
flash_nand_read_id(cmdlist, ptrlist);
// Check if we support the device
for (index = 1;
index <
(sizeof(supported_flash) / sizeof(struct flash_identification));
index++) {
if ((flash_info.id & supported_flash[index].mask) ==
(supported_flash[index].
flash_id & (supported_flash[index].mask))) {
dev_found = 1;
break;
}
}
if (!dev_found) {
flash_onenand_read_id(cmdlist, ptrlist);
for (index = 1;
index <
(sizeof(supported_flash) /
sizeof(struct flash_identification)); index++) {
if ((flash_info.id & supported_flash[index].mask) ==
(supported_flash[index].
flash_id & (supported_flash[index].mask))) {
dev_found = 1;
break;
}
}
}
if (dev_found) {
if (supported_flash[index].widebus)
flash_info.type = FLASH_16BIT_NAND_DEVICE;
else
flash_info.type = FLASH_8BIT_NAND_DEVICE;
if (supported_flash[index].onenand)
flash_info.type = FLASH_ONENAND_DEVICE;
flash_info.page_size = supported_flash[index].pagesize;
flash_pagesize = flash_info.page_size;
flash_info.block_size = supported_flash[index].blksize;
flash_info.spare_size = supported_flash[index].oobsize;
if (flash_info.block_size && flash_info.page_size) {
flash_info.num_blocks = supported_flash[index].density;
flash_info.num_blocks /= (flash_info.block_size);
} else {
flash_info.num_blocks = 0;
}
ASSERT(flash_info.num_blocks);
// Use this for getting the next/current blocks
num_pages_per_blk = flash_info.block_size / flash_pagesize;
num_pages_per_blk_mask = num_pages_per_blk - 1;
hwinfo = flash_ctrl_hwinfo(cmdlist, ptrlist);
//Look for 8bit BCH ECC Nand, TODO: ECC Correctability >= 8
if (((hwinfo == 0x307) || (hwinfo == 0x4030))
&& flash_info.id == 0x2600482c) {
enable_bch_ecc = 1;
}
return;
}
// Flash device is not supported, print flash device info and halt
if (dev_found == 0) {
dprintf(CRITICAL, "NAND device is not supported: nandid: 0x%x \
maker=0x%02x device=0x%02x\n", flash_info.id,
flash_info.vendor, flash_info.device);
ASSERT(0);
}
dprintf(INFO, "nandid: 0x%x maker=0x%02x device=0x%02x page_size=%d\n",
flash_info.id, flash_info.vendor, flash_info.device,
flash_info.page_size);
dprintf(INFO, " spare_size=%d block_size=%d num_blocks=%d\n",
flash_info.spare_size, flash_info.block_size,
flash_info.num_blocks);
}
static int flash_erase_block(dmov_s * cmdlist, unsigned *ptrlist, unsigned page)
{
switch (flash_info.type) {
case FLASH_8BIT_NAND_DEVICE:
case FLASH_16BIT_NAND_DEVICE:
return flash_nand_erase_block(cmdlist, ptrlist, page);
case FLASH_ONENAND_DEVICE:
return flash_onenand_erase_block(cmdlist, ptrlist, page);
default:
return -1;
}
}
static int
_flash_read_page(dmov_s * cmdlist, unsigned *ptrlist,
unsigned page, void *_addr, void *_spareaddr)
{
switch (flash_info.type) {
case FLASH_8BIT_NAND_DEVICE:
case FLASH_16BIT_NAND_DEVICE:
if (interleaved_mode)
return flash_nand_read_page_interleave(cmdlist, ptrlist,
page, _addr,
_spareaddr);
else
return _flash_nand_read_page(cmdlist, ptrlist, page,
_addr, _spareaddr);
case FLASH_ONENAND_DEVICE:
return _flash_onenand_read_page(cmdlist, ptrlist, page, _addr,
_spareaddr, 0);
default:
return -1;
}
}
static int
_flash_block_isbad(dmov_s * cmdlist, unsigned *ptrlist, unsigned page)
{
switch (flash_info.type) {
case FLASH_8BIT_NAND_DEVICE:
case FLASH_16BIT_NAND_DEVICE:
return flash_nand_block_isbad(cmdlist, ptrlist, page);
case FLASH_ONENAND_DEVICE:
return flash_onenand_block_isbad(cmdlist, ptrlist, page);
default:
return -1;
}
}
static int
_flash_write_page(dmov_s * cmdlist, unsigned *ptrlist,
unsigned page, const void *_addr, const void *_spareaddr)
{
switch (flash_info.type) {
case FLASH_8BIT_NAND_DEVICE:
case FLASH_16BIT_NAND_DEVICE:
if (interleaved_mode)
return flash_nand_write_page_interleave(cmdlist,
ptrlist, page,
_addr,
_spareaddr, 0);
else
return _flash_nand_write_page(cmdlist, ptrlist, page,
_addr, _spareaddr, 0);
case FLASH_ONENAND_DEVICE:
return _flash_onenand_write_page(cmdlist, ptrlist, page, _addr,
_spareaddr, 0);
default:
return -1;
}
}
static unsigned *flash_ptrlist;
static dmov_s *flash_cmdlist;
static struct ptable *flash_ptable = NULL;
void flash_init(void)
{
int i = 0;
ASSERT(flash_ptable == NULL);
flash_ptrlist = memalign(32, 1024);
flash_cmdlist = memalign(32, 1024);
flash_data = memalign(32, 4096 + 128);
flash_spare = memalign(32, 128);
if (flash_ptrlist == NULL || flash_cmdlist == NULL
|| flash_data == NULL || flash_spare == NULL)
ASSERT(0);
flash_read_id(flash_cmdlist, flash_ptrlist);
if ((FLASH_8BIT_NAND_DEVICE == flash_info.type)
|| (FLASH_16BIT_NAND_DEVICE == flash_info.type)) {
if (flash_nand_read_config(flash_cmdlist, flash_ptrlist)) {
dprintf(CRITICAL,
"ERROR: could not read CFG0/CFG1 state\n");
ASSERT(0);
}
}
/* Create a bad block table */
bbtbl =
(unsigned int *)malloc(sizeof(unsigned int) *
flash_info.num_blocks);
for (i = 0; i < flash_info.num_blocks; i++)
bbtbl[i] = -1;
}
struct ptable *flash_get_ptable(void)
{
return flash_ptable;
}
void flash_set_ptable(struct ptable *new_ptable)
{
ASSERT(flash_ptable == NULL && new_ptable != NULL);
flash_ptable = new_ptable;
}
struct flash_info *flash_get_info(void)
{
return &flash_info;
}
int flash_erase(struct ptentry *ptn)
{
unsigned block = ptn->start;
unsigned count = ptn->length;
set_nand_configuration(ptn->type);
while (count-- > 0) {
if (flash_erase_block
(flash_cmdlist, flash_ptrlist, block * num_pages_per_blk)) {
dprintf(INFO, "cannot erase @ %d (bad block?)\n",
block);
}
block++;
}
return 0;
}
int
flash_read_ext(struct ptentry *ptn, unsigned extra_per_page,
unsigned offset, void *data, unsigned bytes)
{
unsigned page =
(ptn->start * num_pages_per_blk) + (offset / flash_pagesize);
unsigned lastpage = (ptn->start + ptn->length) * num_pages_per_blk;
unsigned count =
(bytes + flash_pagesize - 1 + extra_per_page) / (flash_pagesize +
extra_per_page);
unsigned *spare = (unsigned *)flash_spare;
unsigned errors = 0;
unsigned char *image = data;
unsigned current_block =
(page - (page & num_pages_per_blk_mask)) / num_pages_per_blk;
unsigned start_block = ptn->start;
int result = 0;
int isbad = 0;
int start_block_count = 0;
set_nand_configuration(TYPE_APPS_PARTITION);
if (offset & (flash_pagesize - 1))
return -1;
// Adjust page offset based on number of bad blocks from start to current page
if (start_block < current_block) {
start_block_count = (current_block - start_block);
while (start_block_count
&& (start_block < (ptn->start + ptn->length))) {
isbad =
_flash_block_isbad(flash_cmdlist, flash_ptrlist,
start_block * num_pages_per_blk);
if (isbad)
page += num_pages_per_blk;
else
start_block_count--;
start_block++;
}
}
while ((page < lastpage) && !start_block_count) {
if (count == 0) {
dprintf(INFO, "flash_read_image: success (%d errors)\n",
errors);
return 0;
}
result =
_flash_read_page(flash_cmdlist, flash_ptrlist, page, image,
spare);
if (result == -1) {
// bad page, go to next page
page++;
errors++;
continue;
} else if (result == -2) {
// bad block, go to next block same offset
page += num_pages_per_blk;
errors++;
continue;
}
page++;
image += flash_pagesize;
memcpy(image, spare, extra_per_page);
image += extra_per_page;
count -= 1;
}
/* could not find enough valid pages before we hit the end */
dprintf(INFO, "flash_read_image: failed (%d errors)\n", errors);
return 0xffffffff;
}
int
flash_write(struct ptentry *ptn, unsigned extra_per_page, const void *data,
unsigned bytes)
{
unsigned page = ptn->start * num_pages_per_blk;
unsigned lastpage = (ptn->start + ptn->length) * num_pages_per_blk;
unsigned *spare = (unsigned *)flash_spare;
const unsigned char *image = data;
unsigned wsize = flash_pagesize + extra_per_page;
unsigned n;
int r;
if ((flash_info.type == FLASH_ONENAND_DEVICE)
&& (ptn->type == TYPE_MODEM_PARTITION)) {
dprintf(CRITICAL, "flash_write_image: feature not supported\n");
return -1;
}
set_nand_configuration(ptn->type);
for (n = 0; n < 16; n++)
spare[n] = 0xffffffff;
while (bytes > 0) {
if (bytes < wsize) {
dprintf(CRITICAL,
"flash_write_image: image undersized (%d < %d)\n",
bytes, wsize);
return -1;
}
if (page >= lastpage) {
dprintf(CRITICAL, "flash_write_image: out of space\n");
return -1;
}
if ((page & num_pages_per_blk_mask) == 0) {
if (flash_erase_block
(flash_cmdlist, flash_ptrlist, page)) {
dprintf(INFO,
"flash_write_image: bad block @ %d\n",
page / num_pages_per_blk);
page += num_pages_per_blk;
continue;
}
}
if (extra_per_page) {
r = _flash_write_page(flash_cmdlist, flash_ptrlist,
page, image,
image + flash_pagesize);
} else {
r = _flash_write_page(flash_cmdlist, flash_ptrlist,
page, image, spare);
}
if (r) {
dprintf(INFO,
"flash_write_image: write failure @ page %d (src %d)\n",
page, image - (const unsigned char *)data);
image -= (page & num_pages_per_blk_mask) * wsize;
bytes += (page & num_pages_per_blk_mask) * wsize;
page &= ~num_pages_per_blk_mask;
if (flash_erase_block
(flash_cmdlist, flash_ptrlist, page)) {
dprintf(INFO,
"flash_write_image: erase failure @ page %d\n",
page);
}
if (ptn->type != TYPE_MODEM_PARTITION) {
flash_mark_badblock(flash_cmdlist,
flash_ptrlist, page);
}
dprintf(INFO,
"flash_write_image: restart write @ page %d (src %d)\n",
page, image - (const unsigned char *)data);
page += num_pages_per_blk;
continue;
}
page++;
image += wsize;
bytes -= wsize;
}
/* erase any remaining pages in the partition */
page = (page + num_pages_per_blk_mask) & (~num_pages_per_blk_mask);
while (page < lastpage) {
if (flash_erase_block(flash_cmdlist, flash_ptrlist, page)) {
dprintf(INFO, "flash_write_image: bad block @ %d\n",
page / num_pages_per_blk);
}
page += num_pages_per_blk;
}
dprintf(INFO, "flash_write_image: success\n");
return 0;
}
#if 0
static int flash_read_page(unsigned page, void *data, void *extra)
{
return _flash_read_page(flash_cmdlist, flash_ptrlist, page, data,
extra);
}
#endif
unsigned flash_page_size(void)
{
return flash_pagesize;
}
void enable_interleave_mode(int status)
{
interleaved_mode = status;
if (status) {
flash_pagesize *= 2;
platform_config_interleaved_mode_gpios();
}
return;
}
int flash_ecc_bch_enabled()
{
return enable_bch_ecc;
}