blob: c046a514c873fb9e773384b635ac066883f5e565 [file] [log] [blame]
Kinson Chika8fa74c2011-07-29 11:33:41 -07001#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9#
10# Wrapper around 'rep montmul', VIA-specific instruction accessing
11# PadLock Montgomery Multiplier. The wrapper is designed as drop-in
12# replacement for OpenSSL bn_mul_mont [first implemented in 0.9.9].
13#
14# Below are interleaved outputs from 'openssl speed rsa dsa' for 4
15# different software configurations on 1.5GHz VIA Esther processor.
16# Lines marked with "software integer" denote performance of hand-
17# coded integer-only assembler found in OpenSSL 0.9.7. "Software SSE2"
18# refers to hand-coded SSE2 Montgomery multiplication procedure found
19# OpenSSL 0.9.9. "Hardware VIA SDK" refers to padlock_pmm routine from
20# Padlock SDK 2.0.1 available for download from VIA, which naturally
21# utilizes the magic 'repz montmul' instruction. And finally "hardware
22# this" refers to *this* implementation which also uses 'repz montmul'
23#
24# sign verify sign/s verify/s
25# rsa 512 bits 0.001720s 0.000140s 581.4 7149.7 software integer
26# rsa 512 bits 0.000690s 0.000086s 1450.3 11606.0 software SSE2
27# rsa 512 bits 0.006136s 0.000201s 163.0 4974.5 hardware VIA SDK
28# rsa 512 bits 0.000712s 0.000050s 1404.9 19858.5 hardware this
29#
30# rsa 1024 bits 0.008518s 0.000413s 117.4 2420.8 software integer
31# rsa 1024 bits 0.004275s 0.000277s 233.9 3609.7 software SSE2
32# rsa 1024 bits 0.012136s 0.000260s 82.4 3844.5 hardware VIA SDK
33# rsa 1024 bits 0.002522s 0.000116s 396.5 8650.9 hardware this
34#
35# rsa 2048 bits 0.050101s 0.001371s 20.0 729.6 software integer
36# rsa 2048 bits 0.030273s 0.001008s 33.0 991.9 software SSE2
37# rsa 2048 bits 0.030833s 0.000976s 32.4 1025.1 hardware VIA SDK
38# rsa 2048 bits 0.011879s 0.000342s 84.2 2921.7 hardware this
39#
40# rsa 4096 bits 0.327097s 0.004859s 3.1 205.8 software integer
41# rsa 4096 bits 0.229318s 0.003859s 4.4 259.2 software SSE2
42# rsa 4096 bits 0.233953s 0.003274s 4.3 305.4 hardware VIA SDK
43# rsa 4096 bits 0.070493s 0.001166s 14.2 857.6 hardware this
44#
45# dsa 512 bits 0.001342s 0.001651s 745.2 605.7 software integer
46# dsa 512 bits 0.000844s 0.000987s 1185.3 1013.1 software SSE2
47# dsa 512 bits 0.001902s 0.002247s 525.6 444.9 hardware VIA SDK
48# dsa 512 bits 0.000458s 0.000524s 2182.2 1909.1 hardware this
49#
50# dsa 1024 bits 0.003964s 0.004926s 252.3 203.0 software integer
51# dsa 1024 bits 0.002686s 0.003166s 372.3 315.8 software SSE2
52# dsa 1024 bits 0.002397s 0.002823s 417.1 354.3 hardware VIA SDK
53# dsa 1024 bits 0.000978s 0.001170s 1022.2 855.0 hardware this
54#
55# dsa 2048 bits 0.013280s 0.016518s 75.3 60.5 software integer
56# dsa 2048 bits 0.009911s 0.011522s 100.9 86.8 software SSE2
57# dsa 2048 bits 0.009542s 0.011763s 104.8 85.0 hardware VIA SDK
58# dsa 2048 bits 0.002884s 0.003352s 346.8 298.3 hardware this
59#
60# To give you some other reference point here is output for 2.4GHz P4
61# running hand-coded SSE2 bn_mul_mont found in 0.9.9, i.e. "software
62# SSE2" in above terms.
63#
64# rsa 512 bits 0.000407s 0.000047s 2454.2 21137.0
65# rsa 1024 bits 0.002426s 0.000141s 412.1 7100.0
66# rsa 2048 bits 0.015046s 0.000491s 66.5 2034.9
67# rsa 4096 bits 0.109770s 0.002379s 9.1 420.3
68# dsa 512 bits 0.000438s 0.000525s 2281.1 1904.1
69# dsa 1024 bits 0.001346s 0.001595s 742.7 627.0
70# dsa 2048 bits 0.004745s 0.005582s 210.7 179.1
71#
72# Conclusions:
73# - VIA SDK leaves a *lot* of room for improvement (which this
74# implementation successfully fills:-);
75# - 'rep montmul' gives up to >3x performance improvement depending on
76# key length;
77# - in terms of absolute performance it delivers approximately as much
78# as modern out-of-order 32-bit cores [again, for longer keys].
79
80$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
81push(@INC,"${dir}","${dir}../../perlasm");
82require "x86asm.pl";
83
84&asm_init($ARGV[0],"via-mont.pl");
85
86# int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num);
87$func="bn_mul_mont_padlock";
88
89$pad=16*1; # amount of reserved bytes on top of every vector
90
91# stack layout
92$mZeroPrime=&DWP(0,"esp"); # these are specified by VIA
93$A=&DWP(4,"esp");
94$B=&DWP(8,"esp");
95$T=&DWP(12,"esp");
96$M=&DWP(16,"esp");
97$scratch=&DWP(20,"esp");
98$rp=&DWP(24,"esp"); # these are mine
99$sp=&DWP(28,"esp");
100# &DWP(32,"esp") # 32 byte scratch area
101# &DWP(64+(4*$num+$pad)*0,"esp") # padded tp[num]
102# &DWP(64+(4*$num+$pad)*1,"esp") # padded copy of ap[num]
103# &DWP(64+(4*$num+$pad)*2,"esp") # padded copy of bp[num]
104# &DWP(64+(4*$num+$pad)*3,"esp") # padded copy of np[num]
105# Note that SDK suggests to unconditionally allocate 2K per vector. This
106# has quite an impact on performance. It naturally depends on key length,
107# but to give an example 1024 bit private RSA key operations suffer >30%
108# penalty. I allocate only as much as actually required...
109
110&function_begin($func);
111 &xor ("eax","eax");
112 &mov ("ecx",&wparam(5)); # num
113 # meet VIA's limitations for num [note that the specification
114 # expresses them in bits, while we work with amount of 32-bit words]
115 &test ("ecx",3);
116 &jnz (&label("leave")); # num % 4 != 0
117 &cmp ("ecx",8);
118 &jb (&label("leave")); # num < 8
119 &cmp ("ecx",1024);
120 &ja (&label("leave")); # num > 1024
121
122 &pushf ();
123 &cld ();
124
125 &mov ("edi",&wparam(0)); # rp
126 &mov ("eax",&wparam(1)); # ap
127 &mov ("ebx",&wparam(2)); # bp
128 &mov ("edx",&wparam(3)); # np
129 &mov ("esi",&wparam(4)); # n0
130 &mov ("esi",&DWP(0,"esi")); # *n0
131
132 &lea ("ecx",&DWP($pad,"","ecx",4)); # ecx becomes vector size in bytes
133 &lea ("ebp",&DWP(64,"","ecx",4)); # allocate 4 vectors + 64 bytes
134 &neg ("ebp");
135 &add ("ebp","esp");
136 &and ("ebp",-64); # align to cache-line
137 &xchg ("ebp","esp"); # alloca
138
139 &mov ($rp,"edi"); # save rp
140 &mov ($sp,"ebp"); # save esp
141
142 &mov ($mZeroPrime,"esi");
143 &lea ("esi",&DWP(64,"esp")); # tp
144 &mov ($T,"esi");
145 &lea ("edi",&DWP(32,"esp")); # scratch area
146 &mov ($scratch,"edi");
147 &mov ("esi","eax");
148
149 &lea ("ebp",&DWP(-$pad,"ecx"));
150 &shr ("ebp",2); # restore original num value in ebp
151
152 &xor ("eax","eax");
153
154 &mov ("ecx","ebp");
155 &lea ("ecx",&DWP((32+$pad)/4,"ecx"));# padded tp + scratch
156 &data_byte(0xf3,0xab); # rep stosl, bzero
157
158 &mov ("ecx","ebp");
159 &lea ("edi",&DWP(64+$pad,"esp","ecx",4));# pointer to ap copy
160 &mov ($A,"edi");
161 &data_byte(0xf3,0xa5); # rep movsl, memcpy
162 &mov ("ecx",$pad/4);
163 &data_byte(0xf3,0xab); # rep stosl, bzero pad
164 # edi points at the end of padded ap copy...
165
166 &mov ("ecx","ebp");
167 &mov ("esi","ebx");
168 &mov ($B,"edi");
169 &data_byte(0xf3,0xa5); # rep movsl, memcpy
170 &mov ("ecx",$pad/4);
171 &data_byte(0xf3,0xab); # rep stosl, bzero pad
172 # edi points at the end of padded bp copy...
173
174 &mov ("ecx","ebp");
175 &mov ("esi","edx");
176 &mov ($M,"edi");
177 &data_byte(0xf3,0xa5); # rep movsl, memcpy
178 &mov ("ecx",$pad/4);
179 &data_byte(0xf3,0xab); # rep stosl, bzero pad
180 # edi points at the end of padded np copy...
181
182 # let magic happen...
183 &mov ("ecx","ebp");
184 &mov ("esi","esp");
185 &shl ("ecx",5); # convert word counter to bit counter
186 &align (4);
187 &data_byte(0xf3,0x0f,0xa6,0xc0);# rep montmul
188
189 &mov ("ecx","ebp");
190 &lea ("esi",&DWP(64,"esp")); # tp
191 # edi still points at the end of padded np copy...
192 &neg ("ebp");
193 &lea ("ebp",&DWP(-$pad,"edi","ebp",4)); # so just "rewind"
194 &mov ("edi",$rp); # restore rp
195 &xor ("edx","edx"); # i=0 and clear CF
196
197&set_label("sub",8);
198 &mov ("eax",&DWP(0,"esi","edx",4));
199 &sbb ("eax",&DWP(0,"ebp","edx",4));
200 &mov (&DWP(0,"edi","edx",4),"eax"); # rp[i]=tp[i]-np[i]
201 &lea ("edx",&DWP(1,"edx")); # i++
202 &loop (&label("sub")); # doesn't affect CF!
203
204 &mov ("eax",&DWP(0,"esi","edx",4)); # upmost overflow bit
205 &sbb ("eax",0);
206 &and ("esi","eax");
207 &not ("eax");
208 &mov ("ebp","edi");
209 &and ("ebp","eax");
210 &or ("esi","ebp"); # tp=carry?tp:rp
211
212 &mov ("ecx","edx"); # num
213 &xor ("edx","edx"); # i=0
214
215&set_label("copy",8);
216 &mov ("eax",&DWP(0,"esi","edx",4));
217 &mov (&DWP(64,"esp","edx",4),"ecx"); # zap tp
218 &mov (&DWP(0,"edi","edx",4),"eax");
219 &lea ("edx",&DWP(1,"edx")); # i++
220 &loop (&label("copy"));
221
222 &mov ("ebp",$sp);
223 &xor ("eax","eax");
224
225 &mov ("ecx",64/4);
226 &mov ("edi","esp"); # zap frame including scratch area
227 &data_byte(0xf3,0xab); # rep stosl, bzero
228
229 # zap copies of ap, bp and np
230 &lea ("edi",&DWP(64+$pad,"esp","edx",4));# pointer to ap
231 &lea ("ecx",&DWP(3*$pad/4,"edx","edx",2));
232 &data_byte(0xf3,0xab); # rep stosl, bzero
233
234 &mov ("esp","ebp");
235 &inc ("eax"); # signal "done"
236 &popf ();
237&set_label("leave");
238&function_end($func);
239
240&asciz("Padlock Montgomery Multiplication, CRYPTOGAMS by <appro\@openssl.org>");
241
242&asm_finish();