blob: d998a67fa52114e77cf06f6922b7a44f0de1cbdf [file] [log] [blame]
Kinson Chika8fa74c2011-07-29 11:33:41 -07001/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
2 * project 2005.
3 */
4/* ====================================================================
5 * Copyright (c) 2005 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * licensing@OpenSSL.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ====================================================================
51 *
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com). This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com).
55 *
56 */
57
58/* Support for PVK format keys and related structures (such a PUBLICKEYBLOB
59 * and PRIVATEKEYBLOB).
60 */
61
62#include "cryptlib.h"
63#include <openssl/pem.h>
64#include <openssl/rand.h>
65#include <openssl/bn.h>
66#if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DSA)
67#include <openssl/dsa.h>
68#include <openssl/rsa.h>
69
70/* Utility function: read a DWORD (4 byte unsigned integer) in little endian
71 * format
72 */
73
74static unsigned int read_ledword(const unsigned char **in)
75 {
76 const unsigned char *p = *in;
77 unsigned int ret;
78 ret = *p++;
79 ret |= (*p++ << 8);
80 ret |= (*p++ << 16);
81 ret |= (*p++ << 24);
82 *in = p;
83 return ret;
84 }
85
86/* Read a BIGNUM in little endian format. The docs say that this should take up
87 * bitlen/8 bytes.
88 */
89
90static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r)
91 {
92 const unsigned char *p;
93 unsigned char *tmpbuf, *q;
94 unsigned int i;
95 p = *in + nbyte - 1;
96 tmpbuf = OPENSSL_malloc(nbyte);
97 if (!tmpbuf)
98 return 0;
99 q = tmpbuf;
100 for (i = 0; i < nbyte; i++)
101 *q++ = *p--;
102 *r = BN_bin2bn(tmpbuf, nbyte, NULL);
103 OPENSSL_free(tmpbuf);
104 if (*r)
105 {
106 *in += nbyte;
107 return 1;
108 }
109 else
110 return 0;
111 }
112
113
114/* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */
115
116#define MS_PUBLICKEYBLOB 0x6
117#define MS_PRIVATEKEYBLOB 0x7
118#define MS_RSA1MAGIC 0x31415352L
119#define MS_RSA2MAGIC 0x32415352L
120#define MS_DSS1MAGIC 0x31535344L
121#define MS_DSS2MAGIC 0x32535344L
122
123#define MS_KEYALG_RSA_KEYX 0xa400
124#define MS_KEYALG_DSS_SIGN 0x2200
125
126#define MS_KEYTYPE_KEYX 0x1
127#define MS_KEYTYPE_SIGN 0x2
128
129/* The PVK file magic number: seems to spell out "bobsfile", who is Bob? */
130#define MS_PVKMAGIC 0xb0b5f11eL
131/* Salt length for PVK files */
132#define PVK_SALTLEN 0x10
133
134static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length,
135 unsigned int bitlen, int ispub);
136static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length,
137 unsigned int bitlen, int ispub);
138
139static int do_blob_header(const unsigned char **in, unsigned int length,
140 unsigned int *pmagic, unsigned int *pbitlen,
141 int *pisdss, int *pispub)
142 {
143 const unsigned char *p = *in;
144 if (length < 16)
145 return 0;
146 /* bType */
147 if (*p == MS_PUBLICKEYBLOB)
148 {
149 if (*pispub == 0)
150 {
151 PEMerr(PEM_F_DO_BLOB_HEADER,
152 PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
153 return 0;
154 }
155 *pispub = 1;
156 }
157 else if (*p == MS_PRIVATEKEYBLOB)
158 {
159 if (*pispub == 1)
160 {
161 PEMerr(PEM_F_DO_BLOB_HEADER,
162 PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
163 return 0;
164 }
165 *pispub = 0;
166 }
167 else
168 return 0;
169 p++;
170 /* Version */
171 if (*p++ != 0x2)
172 {
173 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_VERSION_NUMBER);
174 return 0;
175 }
176 /* Ignore reserved, aiKeyAlg */
177 p+= 6;
178 *pmagic = read_ledword(&p);
179 *pbitlen = read_ledword(&p);
180 *pisdss = 0;
181 switch (*pmagic)
182 {
183
184 case MS_DSS1MAGIC:
185 *pisdss = 1;
186 case MS_RSA1MAGIC:
187 if (*pispub == 0)
188 {
189 PEMerr(PEM_F_DO_BLOB_HEADER,
190 PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
191 return 0;
192 }
193 break;
194
195 case MS_DSS2MAGIC:
196 *pisdss = 1;
197 case MS_RSA2MAGIC:
198 if (*pispub == 1)
199 {
200 PEMerr(PEM_F_DO_BLOB_HEADER,
201 PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
202 return 0;
203 }
204 break;
205
206 default:
207 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_MAGIC_NUMBER);
208 return -1;
209 }
210 *in = p;
211 return 1;
212 }
213
214static unsigned int blob_length(unsigned bitlen, int isdss, int ispub)
215 {
216 unsigned int nbyte, hnbyte;
217 nbyte = (bitlen + 7) >> 3;
218 hnbyte = (bitlen + 15) >> 4;
219 if (isdss)
220 {
221
222 /* Expected length: 20 for q + 3 components bitlen each + 24
223 * for seed structure.
224 */
225 if (ispub)
226 return 44 + 3 * nbyte;
227 /* Expected length: 20 for q, priv, 2 bitlen components + 24
228 * for seed structure.
229 */
230 else
231 return 64 + 2 * nbyte;
232 }
233 else
234 {
235 /* Expected length: 4 for 'e' + 'n' */
236 if (ispub)
237 return 4 + nbyte;
238 else
239 /* Expected length: 4 for 'e' and 7 other components.
240 * 2 components are bitlen size, 5 are bitlen/2
241 */
242 return 4 + 2*nbyte + 5*hnbyte;
243 }
244
245 }
246
247static EVP_PKEY *do_b2i(const unsigned char **in, unsigned int length,
248 int ispub)
249 {
250 const unsigned char *p = *in;
251 unsigned int bitlen, magic;
252 int isdss;
253 if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0)
254 {
255 PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_HEADER_PARSE_ERROR);
256 return NULL;
257 }
258 length -= 16;
259 if (length < blob_length(bitlen, isdss, ispub))
260 {
261 PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_TOO_SHORT);
262 return NULL;
263 }
264 if (isdss)
265 return b2i_dss(&p, length, bitlen, ispub);
266 else
267 return b2i_rsa(&p, length, bitlen, ispub);
268 }
269
270static EVP_PKEY *do_b2i_bio(BIO *in, int ispub)
271 {
272 const unsigned char *p;
273 unsigned char hdr_buf[16], *buf = NULL;
274 unsigned int bitlen, magic, length;
275 int isdss;
276 EVP_PKEY *ret = NULL;
277 if (BIO_read(in, hdr_buf, 16) != 16)
278 {
279 PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
280 return NULL;
281 }
282 p = hdr_buf;
283 if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0)
284 return NULL;
285
286 length = blob_length(bitlen, isdss, ispub);
287 buf = OPENSSL_malloc(length);
288 if (!buf)
289 {
290 PEMerr(PEM_F_DO_B2I_BIO, ERR_R_MALLOC_FAILURE);
291 goto err;
292 }
293 p = buf;
294 if (BIO_read(in, buf, length) != (int)length)
295 {
296 PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
297 goto err;
298 }
299
300 if (isdss)
301 ret = b2i_dss(&p, length, bitlen, ispub);
302 else
303 ret = b2i_rsa(&p, length, bitlen, ispub);
304
305 err:
306 if (buf)
307 OPENSSL_free(buf);
308 return ret;
309 }
310
311static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length,
312 unsigned int bitlen, int ispub)
313 {
314 const unsigned char *p = *in;
315 EVP_PKEY *ret = NULL;
316 DSA *dsa = NULL;
317 BN_CTX *ctx = NULL;
318 unsigned int nbyte;
319 nbyte = (bitlen + 7) >> 3;
320
321 dsa = DSA_new();
322 ret = EVP_PKEY_new();
323 if (!dsa || !ret)
324 goto memerr;
325 if (!read_lebn(&p, nbyte, &dsa->p))
326 goto memerr;
327 if (!read_lebn(&p, 20, &dsa->q))
328 goto memerr;
329 if (!read_lebn(&p, nbyte, &dsa->g))
330 goto memerr;
331 if (ispub)
332 {
333 if (!read_lebn(&p, nbyte, &dsa->pub_key))
334 goto memerr;
335 }
336 else
337 {
338 if (!read_lebn(&p, 20, &dsa->priv_key))
339 goto memerr;
340 /* Calculate public key */
341 if (!(dsa->pub_key = BN_new()))
342 goto memerr;
343 if (!(ctx = BN_CTX_new()))
344 goto memerr;
345
346 if (!BN_mod_exp(dsa->pub_key, dsa->g,
347 dsa->priv_key, dsa->p, ctx))
348
349 goto memerr;
350 BN_CTX_free(ctx);
351 }
352
353 EVP_PKEY_set1_DSA(ret, dsa);
354 DSA_free(dsa);
355 *in = p;
356 return ret;
357
358 memerr:
359 PEMerr(PEM_F_B2I_DSS, ERR_R_MALLOC_FAILURE);
360 if (dsa)
361 DSA_free(dsa);
362 if (ret)
363 EVP_PKEY_free(ret);
364 if (ctx)
365 BN_CTX_free(ctx);
366 return NULL;
367 }
368
369static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length,
370 unsigned int bitlen, int ispub)
371
372 {
373 const unsigned char *p = *in;
374 EVP_PKEY *ret = NULL;
375 RSA *rsa = NULL;
376 unsigned int nbyte, hnbyte;
377 nbyte = (bitlen + 7) >> 3;
378 hnbyte = (bitlen + 15) >> 4;
379 rsa = RSA_new();
380 ret = EVP_PKEY_new();
381 if (!rsa || !ret)
382 goto memerr;
383 rsa->e = BN_new();
384 if (!rsa->e)
385 goto memerr;
386 if (!BN_set_word(rsa->e, read_ledword(&p)))
387 goto memerr;
388 if (!read_lebn(&p, nbyte, &rsa->n))
389 goto memerr;
390 if (!ispub)
391 {
392 if (!read_lebn(&p, hnbyte, &rsa->p))
393 goto memerr;
394 if (!read_lebn(&p, hnbyte, &rsa->q))
395 goto memerr;
396 if (!read_lebn(&p, hnbyte, &rsa->dmp1))
397 goto memerr;
398 if (!read_lebn(&p, hnbyte, &rsa->dmq1))
399 goto memerr;
400 if (!read_lebn(&p, hnbyte, &rsa->iqmp))
401 goto memerr;
402 if (!read_lebn(&p, nbyte, &rsa->d))
403 goto memerr;
404 }
405
406 EVP_PKEY_set1_RSA(ret, rsa);
407 RSA_free(rsa);
408 *in = p;
409 return ret;
410 memerr:
411 PEMerr(PEM_F_B2I_RSA, ERR_R_MALLOC_FAILURE);
412 if (rsa)
413 RSA_free(rsa);
414 if (ret)
415 EVP_PKEY_free(ret);
416 return NULL;
417 }
418
419EVP_PKEY *b2i_PrivateKey(const unsigned char **in, long length)
420 {
421 return do_b2i(in, length, 0);
422 }
423
424EVP_PKEY *b2i_PublicKey(const unsigned char **in, long length)
425 {
426 return do_b2i(in, length, 1);
427 }
428
429
430EVP_PKEY *b2i_PrivateKey_bio(BIO *in)
431 {
432 return do_b2i_bio(in, 0);
433 }
434
435EVP_PKEY *b2i_PublicKey_bio(BIO *in)
436 {
437 return do_b2i_bio(in, 1);
438 }
439
440static void write_ledword(unsigned char **out, unsigned int dw)
441 {
442 unsigned char *p = *out;
443 *p++ = dw & 0xff;
444 *p++ = (dw>>8) & 0xff;
445 *p++ = (dw>>16) & 0xff;
446 *p++ = (dw>>24) & 0xff;
447 *out = p;
448 }
449
450static void write_lebn(unsigned char **out, const BIGNUM *bn, int len)
451 {
452 int nb, i;
453 unsigned char *p = *out, *q, c;
454 nb = BN_num_bytes(bn);
455 BN_bn2bin(bn, p);
456 q = p + nb - 1;
457 /* In place byte order reversal */
458 for (i = 0; i < nb/2; i++)
459 {
460 c = *p;
461 *p++ = *q;
462 *q-- = c;
463 }
464 *out += nb;
465 /* Pad with zeroes if we have to */
466 if (len > 0)
467 {
468 len -= nb;
469 if (len > 0)
470 {
471 memset(*out, 0, len);
472 *out += len;
473 }
474 }
475 }
476
477
478static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic);
479static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *magic);
480
481static void write_rsa(unsigned char **out, RSA *rsa, int ispub);
482static void write_dsa(unsigned char **out, DSA *dsa, int ispub);
483
484static int do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub)
485 {
486 unsigned char *p;
487 unsigned int bitlen, magic = 0, keyalg;
488 int outlen, noinc = 0;
489 if (pk->type == EVP_PKEY_DSA)
490 {
491 bitlen = check_bitlen_dsa(pk->pkey.dsa, ispub, &magic);
492 keyalg = MS_KEYALG_DSS_SIGN;
493 }
494 else if (pk->type == EVP_PKEY_RSA)
495 {
496 bitlen = check_bitlen_rsa(pk->pkey.rsa, ispub, &magic);
497 keyalg = MS_KEYALG_RSA_KEYX;
498 }
499 else
500 return -1;
501 if (bitlen == 0)
502 return -1;
503 outlen = 16 + blob_length(bitlen,
504 keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub);
505 if (out == NULL)
506 return outlen;
507 if (*out)
508 p = *out;
509 else
510 {
511 p = OPENSSL_malloc(outlen);
512 if (!p)
513 return -1;
514 *out = p;
515 noinc = 1;
516 }
517 if (ispub)
518 *p++ = MS_PUBLICKEYBLOB;
519 else
520 *p++ = MS_PRIVATEKEYBLOB;
521 *p++ = 0x2;
522 *p++ = 0;
523 *p++ = 0;
524 write_ledword(&p, keyalg);
525 write_ledword(&p, magic);
526 write_ledword(&p, bitlen);
527 if (keyalg == MS_KEYALG_DSS_SIGN)
528 write_dsa(&p, pk->pkey.dsa, ispub);
529 else
530 write_rsa(&p, pk->pkey.rsa, ispub);
531 if (!noinc)
532 *out += outlen;
533 return outlen;
534 }
535
536static int do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub)
537 {
538 unsigned char *tmp = NULL;
539 int outlen, wrlen;
540 outlen = do_i2b(&tmp, pk, ispub);
541 if (outlen < 0)
542 return -1;
543 wrlen = BIO_write(out, tmp, outlen);
544 OPENSSL_free(tmp);
545 if (wrlen == outlen)
546 return outlen;
547 return -1;
548 }
549
550static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic)
551 {
552 int bitlen;
553 bitlen = BN_num_bits(dsa->p);
554 if ((bitlen & 7) || (BN_num_bits(dsa->q) != 160)
555 || (BN_num_bits(dsa->g) > bitlen))
556 goto badkey;
557 if (ispub)
558 {
559 if (BN_num_bits(dsa->pub_key) > bitlen)
560 goto badkey;
561 *pmagic = MS_DSS1MAGIC;
562 }
563 else
564 {
565 if (BN_num_bits(dsa->priv_key) > 160)
566 goto badkey;
567 *pmagic = MS_DSS2MAGIC;
568 }
569
570 return bitlen;
571 badkey:
572 PEMerr(PEM_F_CHECK_BITLEN_DSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
573 return 0;
574 }
575
576static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic)
577 {
578 int nbyte, hnbyte, bitlen;
579 if (BN_num_bits(rsa->e) > 32)
580 goto badkey;
581 bitlen = BN_num_bits(rsa->n);
582 nbyte = BN_num_bytes(rsa->n);
583 hnbyte = (BN_num_bits(rsa->n) + 15) >> 4;
584 if (ispub)
585 {
586 *pmagic = MS_RSA1MAGIC;
587 return bitlen;
588 }
589 else
590 {
591 *pmagic = MS_RSA2MAGIC;
592 /* For private key each component must fit within nbyte or
593 * hnbyte.
594 */
595 if (BN_num_bytes(rsa->d) > nbyte)
596 goto badkey;
597 if ((BN_num_bytes(rsa->iqmp) > hnbyte)
598 || (BN_num_bytes(rsa->p) > hnbyte)
599 || (BN_num_bytes(rsa->q) > hnbyte)
600 || (BN_num_bytes(rsa->dmp1) > hnbyte)
601 || (BN_num_bytes(rsa->dmq1) > hnbyte))
602 goto badkey;
603 }
604 return bitlen;
605 badkey:
606 PEMerr(PEM_F_CHECK_BITLEN_RSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
607 return 0;
608 }
609
610
611static void write_rsa(unsigned char **out, RSA *rsa, int ispub)
612 {
613 int nbyte, hnbyte;
614 nbyte = BN_num_bytes(rsa->n);
615 hnbyte = (BN_num_bits(rsa->n) + 15) >> 4;
616 write_lebn(out, rsa->e, 4);
617 write_lebn(out, rsa->n, -1);
618 if (ispub)
619 return;
620 write_lebn(out, rsa->p, hnbyte);
621 write_lebn(out, rsa->q, hnbyte);
622 write_lebn(out, rsa->dmp1, hnbyte);
623 write_lebn(out, rsa->dmq1, hnbyte);
624 write_lebn(out, rsa->iqmp, hnbyte);
625 write_lebn(out, rsa->d, nbyte);
626 }
627
628
629static void write_dsa(unsigned char **out, DSA *dsa, int ispub)
630 {
631 int nbyte;
632 nbyte = BN_num_bytes(dsa->p);
633 write_lebn(out, dsa->p, nbyte);
634 write_lebn(out, dsa->q, 20);
635 write_lebn(out, dsa->g, nbyte);
636 if (ispub)
637 write_lebn(out, dsa->pub_key, nbyte);
638 else
639 write_lebn(out, dsa->priv_key, 20);
640 /* Set "invalid" for seed structure values */
641 memset(*out, 0xff, 24);
642 *out += 24;
643 return;
644 }
645
646
647int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk)
648 {
649 return do_i2b_bio(out, pk, 0);
650 }
651
652int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk)
653 {
654 return do_i2b_bio(out, pk, 1);
655 }
656
657#ifndef OPENSSL_NO_RC4
658
659static int do_PVK_header(const unsigned char **in, unsigned int length,
660 int skip_magic,
661 unsigned int *psaltlen, unsigned int *pkeylen)
662
663 {
664 const unsigned char *p = *in;
665 unsigned int pvk_magic, keytype, is_encrypted;
666 if (skip_magic)
667 {
668 if (length < 20)
669 {
670 PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
671 return 0;
672 }
673 length -= 20;
674 }
675 else
676 {
677 if (length < 24)
678 {
679 PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
680 return 0;
681 }
682 length -= 24;
683 pvk_magic = read_ledword(&p);
684 if (pvk_magic != MS_PVKMAGIC)
685 {
686 PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_BAD_MAGIC_NUMBER);
687 return 0;
688 }
689 }
690 /* Skip reserved */
691 p += 4;
692 keytype = read_ledword(&p);
693 is_encrypted = read_ledword(&p);
694 *psaltlen = read_ledword(&p);
695 *pkeylen = read_ledword(&p);
696
697 if (is_encrypted && !*psaltlen)
698 {
699 PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_INCONSISTENT_HEADER);
700 return 0;
701 }
702
703 *in = p;
704 return 1;
705 }
706
707static int derive_pvk_key(unsigned char *key,
708 const unsigned char *salt, unsigned int saltlen,
709 const unsigned char *pass, int passlen)
710 {
711 EVP_MD_CTX mctx;
712 EVP_MD_CTX_init(&mctx);
713 EVP_DigestInit_ex(&mctx, EVP_sha1(), NULL);
714 EVP_DigestUpdate(&mctx, salt, saltlen);
715 EVP_DigestUpdate(&mctx, pass, passlen);
716 EVP_DigestFinal_ex(&mctx, key, NULL);
717 EVP_MD_CTX_cleanup(&mctx);
718 return 1;
719 }
720
721
722static EVP_PKEY *do_PVK_body(const unsigned char **in,
723 unsigned int saltlen, unsigned int keylen,
724 pem_password_cb *cb, void *u)
725 {
726 EVP_PKEY *ret = NULL;
727 const unsigned char *p = *in;
728 unsigned int magic;
729 unsigned char *enctmp = NULL, *q;
730 if (saltlen)
731 {
732 char psbuf[PEM_BUFSIZE];
733 unsigned char keybuf[20];
734 EVP_CIPHER_CTX cctx;
735 int enctmplen, inlen;
736 if (cb)
737 inlen=cb(psbuf,PEM_BUFSIZE,0,u);
738 else
739 inlen=PEM_def_callback(psbuf,PEM_BUFSIZE,0,u);
740 if (inlen <= 0)
741 {
742 PEMerr(PEM_F_DO_PVK_BODY,PEM_R_BAD_PASSWORD_READ);
743 return NULL;
744 }
745 enctmp = OPENSSL_malloc(keylen + 8);
746 if (!enctmp)
747 {
748 PEMerr(PEM_F_DO_PVK_BODY, ERR_R_MALLOC_FAILURE);
749 return NULL;
750 }
751 if (!derive_pvk_key(keybuf, p, saltlen,
752 (unsigned char *)psbuf, inlen))
753 return NULL;
754 p += saltlen;
755 /* Copy BLOBHEADER across, decrypt rest */
756 memcpy(enctmp, p, 8);
757 p += 8;
758 inlen = keylen - 8;
759 q = enctmp + 8;
760 EVP_CIPHER_CTX_init(&cctx);
761 EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL);
762 EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen);
763 EVP_DecryptFinal_ex(&cctx, q + enctmplen, &enctmplen);
764 magic = read_ledword((const unsigned char **)&q);
765 if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC)
766 {
767 q = enctmp + 8;
768 memset(keybuf + 5, 0, 11);
769 EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf,
770 NULL);
771 OPENSSL_cleanse(keybuf, 20);
772 EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen);
773 EVP_DecryptFinal_ex(&cctx, q + enctmplen,
774 &enctmplen);
775 magic = read_ledword((const unsigned char **)&q);
776 if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC)
777 {
778 EVP_CIPHER_CTX_cleanup(&cctx);
779 PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_DECRYPT);
780 goto err;
781 }
782 }
783 else
784 OPENSSL_cleanse(keybuf, 20);
785 EVP_CIPHER_CTX_cleanup(&cctx);
786 p = enctmp;
787 }
788
789 ret = b2i_PrivateKey(&p, keylen);
790 err:
791 if (enctmp && saltlen)
792 OPENSSL_free(enctmp);
793 return ret;
794 }
795
796
797EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u)
798 {
799 unsigned char pvk_hdr[24], *buf = NULL;
800 const unsigned char *p;
801 int buflen;
802 EVP_PKEY *ret = NULL;
803 unsigned int saltlen, keylen;
804 if (BIO_read(in, pvk_hdr, 24) != 24)
805 {
806 PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT);
807 return NULL;
808 }
809 p = pvk_hdr;
810
811 if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen))
812 return 0;
813 buflen = (int) keylen + saltlen;
814 buf = OPENSSL_malloc(buflen);
815 if (!buf)
816 {
817 PEMerr(PEM_F_B2I_PVK_BIO, ERR_R_MALLOC_FAILURE);
818 return 0;
819 }
820 p = buf;
821 if (BIO_read(in, buf, buflen) != buflen)
822 {
823 PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT);
824 goto err;
825 }
826 ret = do_PVK_body(&p, saltlen, keylen, cb, u);
827
828 err:
829 if (buf)
830 {
831 OPENSSL_cleanse(buf, buflen);
832 OPENSSL_free(buf);
833 }
834 return ret;
835 }
836
837
838
839static int i2b_PVK(unsigned char **out, EVP_PKEY*pk, int enclevel,
840 pem_password_cb *cb, void *u)
841 {
842 int outlen = 24, noinc, pklen;
843 unsigned char *p, *salt = NULL;
844 if (enclevel)
845 outlen += PVK_SALTLEN;
846 pklen = do_i2b(NULL, pk, 0);
847 if (pklen < 0)
848 return -1;
849 outlen += pklen;
850 if (!out)
851 return outlen;
852 if (*out)
853 {
854 p = *out;
855 noinc = 0;
856 }
857 else
858 {
859 p = OPENSSL_malloc(outlen);
860 if (!p)
861 {
862 PEMerr(PEM_F_I2B_PVK,ERR_R_MALLOC_FAILURE);
863 return -1;
864 }
865 *out = p;
866 noinc = 1;
867 }
868
869 write_ledword(&p, MS_PVKMAGIC);
870 write_ledword(&p, 0);
871 if (pk->type == EVP_PKEY_DSA)
872 write_ledword(&p, MS_KEYTYPE_SIGN);
873 else
874 write_ledword(&p, MS_KEYTYPE_KEYX);
875 write_ledword(&p, enclevel ? 1 : 0);
876 write_ledword(&p, enclevel ? PVK_SALTLEN: 0);
877 write_ledword(&p, pklen);
878 if (enclevel)
879 {
880 if (RAND_bytes(p, PVK_SALTLEN) <= 0)
881 goto error;
882 salt = p;
883 p += PVK_SALTLEN;
884 }
885 do_i2b(&p, pk, 0);
886 if (enclevel == 0)
887 return outlen;
888 else
889 {
890 char psbuf[PEM_BUFSIZE];
891 unsigned char keybuf[20];
892 EVP_CIPHER_CTX cctx;
893 int enctmplen, inlen;
894 if (cb)
895 inlen=cb(psbuf,PEM_BUFSIZE,1,u);
896 else
897 inlen=PEM_def_callback(psbuf,PEM_BUFSIZE,1,u);
898 if (inlen <= 0)
899 {
900 PEMerr(PEM_F_I2B_PVK,PEM_R_BAD_PASSWORD_READ);
901 goto error;
902 }
903 if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN,
904 (unsigned char *)psbuf, inlen))
905 goto error;
906 if (enclevel == 1)
907 memset(keybuf + 5, 0, 11);
908 p = salt + PVK_SALTLEN + 8;
909 EVP_CIPHER_CTX_init(&cctx);
910 EVP_EncryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL);
911 OPENSSL_cleanse(keybuf, 20);
912 EVP_DecryptUpdate(&cctx, p, &enctmplen, p, pklen - 8);
913 EVP_DecryptFinal_ex(&cctx, p + enctmplen, &enctmplen);
914 EVP_CIPHER_CTX_cleanup(&cctx);
915 }
916 return outlen;
917
918 error:
919 return -1;
920 }
921
922int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel,
923 pem_password_cb *cb, void *u)
924 {
925 unsigned char *tmp = NULL;
926 int outlen, wrlen;
927 outlen = i2b_PVK(&tmp, pk, enclevel, cb, u);
928 if (outlen < 0)
929 return -1;
930 wrlen = BIO_write(out, tmp, outlen);
931 OPENSSL_free(tmp);
932 if (wrlen == outlen)
933 {
934 PEMerr(PEM_F_I2B_PVK_BIO, PEM_R_BIO_WRITE_FAILURE);
935 return outlen;
936 }
937 return -1;
938 }
939
940#endif
941
942#endif