blob: 49cd5b5e6945a16fd3f67d343d028864174d06c8 [file] [log] [blame]
Kinson Chika8fa74c2011-07-29 11:33:41 -07001#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by David Mosberger <David.Mosberger@acm.org> based on the
5# Itanium optimized Crypto code which was released by HP Labs at
6# http://www.hpl.hp.com/research/linux/crypto/.
7#
8# Copyright (c) 2005 Hewlett-Packard Development Company, L.P.
9#
10# Permission is hereby granted, free of charge, to any person obtaining
11# a copy of this software and associated documentation files (the
12# "Software"), to deal in the Software without restriction, including
13# without limitation the rights to use, copy, modify, merge, publish,
14# distribute, sublicense, and/or sell copies of the Software, and to
15# permit persons to whom the Software is furnished to do so, subject to
16# the following conditions:
17#
18# The above copyright notice and this permission notice shall be
19# included in all copies or substantial portions of the Software.
20
21# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
22# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
23# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
24# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
25# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
26# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
27# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
28
29
30
31# This is a little helper program which generates a software-pipelined
32# for RC4 encryption. The basic algorithm looks like this:
33#
34# for (counter = 0; counter < len; ++counter)
35# {
36# in = inp[counter];
37# SI = S[I];
38# J = (SI + J) & 0xff;
39# SJ = S[J];
40# T = (SI + SJ) & 0xff;
41# S[I] = SJ, S[J] = SI;
42# ST = S[T];
43# outp[counter] = in ^ ST;
44# I = (I + 1) & 0xff;
45# }
46#
47# Pipelining this loop isn't easy, because the stores to the S[] array
48# need to be observed in the right order. The loop generated by the
49# code below has the following pipeline diagram:
50#
51# cycle
52# | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 |11 |12 |13 |14 |15 |16 |17 |
53# iter
54# 1: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx
55# 2: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx
56# 3: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx
57#
58# where:
59# LDI = load of S[I]
60# LDJ = load of S[J]
61# SWP = swap of S[I] and S[J]
62# LDT = load of S[T]
63#
64# Note that in the above diagram, the major trouble-spot is that LDI
65# of the 2nd iteration is performed BEFORE the SWP of the first
66# iteration. Fortunately, this is easy to detect (I of the 1st
67# iteration will be equal to J of the 2nd iteration) and when this
68# happens, we simply forward the proper value from the 1st iteration
69# to the 2nd one. The proper value in this case is simply the value
70# of S[I] from the first iteration (thanks to the fact that SWP
71# simply swaps the contents of S[I] and S[J]).
72#
73# Another potential trouble-spot is in cycle 7, where SWP of the 1st
74# iteration issues at the same time as the LDI of the 3rd iteration.
75# However, thanks to IA-64 execution semantics, this can be taken
76# care of simply by placing LDI later in the instruction-group than
77# SWP. IA-64 CPUs will automatically forward the value if they
78# detect that the SWP and LDI are accessing the same memory-location.
79
80# The core-loop that can be pipelined then looks like this (annotated
81# with McKinley/Madison issue port & latency numbers, assuming L1
82# cache hits for the most part):
83
84# operation: instruction: issue-ports: latency
85# ------------------ ----------------------------- ------------- -------
86
87# Data = *inp++ ld1 data = [inp], 1 M0-M1 1 cyc c0
88# shladd Iptr = I, KeyTable, 3 M0-M3, I0, I1 1 cyc
89# I = (I + 1) & 0xff padd1 nextI = I, one M0-M3, I0, I1 3 cyc
90# ;;
91# SI = S[I] ld8 SI = [Iptr] M0-M1 1 cyc c1 * after SWAP!
92# ;;
93# cmp.eq.unc pBypass = I, J * after J is valid!
94# J = SI + J add J = J, SI M0-M3, I0, I1 1 cyc c2
95# (pBypass) br.cond.spnt Bypass
96# ;;
97# ---------------------------------------------------------------------------------------
98# J = J & 0xff zxt1 J = J I0, I1, 1 cyc c3
99# ;;
100# shladd Jptr = J, KeyTable, 3 M0-M3, I0, I1 1 cyc c4
101# ;;
102# SJ = S[J] ld8 SJ = [Jptr] M0-M1 1 cyc c5
103# ;;
104# ---------------------------------------------------------------------------------------
105# T = (SI + SJ) add T = SI, SJ M0-M3, I0, I1 1 cyc c6
106# ;;
107# T = T & 0xff zxt1 T = T I0, I1 1 cyc
108# S[I] = SJ st8 [Iptr] = SJ M2-M3 c7
109# S[J] = SI st8 [Jptr] = SI M2-M3
110# ;;
111# shladd Tptr = T, KeyTable, 3 M0-M3, I0, I1 1 cyc c8
112# ;;
113# ---------------------------------------------------------------------------------------
114# T = S[T] ld8 T = [Tptr] M0-M1 1 cyc c9
115# ;;
116# data ^= T xor data = data, T M0-M3, I0, I1 1 cyc c10
117# ;;
118# *out++ = Data ^ T dep word = word, data, 8, POS I0, I1 1 cyc c11
119# ;;
120# ---------------------------------------------------------------------------------------
121
122# There are several points worth making here:
123
124# - Note that due to the bypass/forwarding-path, the first two
125# phases of the loop are strangly mingled together. In
126# particular, note that the first stage of the pipeline is
127# using the value of "J", as calculated by the second stage.
128# - Each bundle-pair will have exactly 6 instructions.
129# - Pipelined, the loop can execute in 3 cycles/iteration and
130# 4 stages. However, McKinley/Madison can issue "st1" to
131# the same bank at a rate of at most one per 4 cycles. Thus,
132# instead of storing each byte, we accumulate them in a word
133# and then write them back at once with a single "st8" (this
134# implies that the setup code needs to ensure that the output
135# buffer is properly aligned, if need be, by encoding the
136# first few bytes separately).
137# - There is no space for a "br.ctop" instruction. For this
138# reason we can't use module-loop support in IA-64 and have
139# to do a traditional, purely software-pipelined loop.
140# - We can't replace any of the remaining "add/zxt1" pairs with
141# "padd1" because the latency for that instruction is too high
142# and would push the loop to the point where more bypasses
143# would be needed, which we don't have space for.
144# - The above loop runs at around 3.26 cycles/byte, or roughly
145# 440 MByte/sec on a 1.5GHz Madison. This is well below the
146# system bus bandwidth and hence with judicious use of
147# "lfetch" this loop can run at (almost) peak speed even when
148# the input and output data reside in memory. The
149# max. latency that can be tolerated is (PREFETCH_DISTANCE *
150# L2_LINE_SIZE * 3 cyc), or about 384 cycles assuming (at
151# least) 1-ahead prefetching of 128 byte cache-lines. Note
152# that we do NOT prefetch into L1, since that would only
153# interfere with the S[] table values stored there. This is
154# acceptable because there is a 10 cycle latency between
155# load and first use of the input data.
156# - We use a branch to out-of-line bypass-code of cycle-pressure:
157# we calculate the next J, check for the need to activate the
158# bypass path, and activate the bypass path ALL IN THE SAME
159# CYCLE. If we didn't have these constraints, we could do
160# the bypass with a simple conditional move instruction.
161# Fortunately, the bypass paths get activated relatively
162# infrequently, so the extra branches don't cost all that much
163# (about 0.04 cycles/byte, measured on a 16396 byte file with
164# random input data).
165#
166
167$phases = 4; # number of stages/phases in the pipelined-loop
168$unroll_count = 6; # number of times we unrolled it
169$pComI = (1 << 0);
170$pComJ = (1 << 1);
171$pComT = (1 << 2);
172$pOut = (1 << 3);
173
174$NData = 4;
175$NIP = 3;
176$NJP = 2;
177$NI = 2;
178$NSI = 3;
179$NSJ = 2;
180$NT = 2;
181$NOutWord = 2;
182
183#
184# $threshold is the minimum length before we attempt to use the
185# big software-pipelined loop. It MUST be greater-or-equal
186# to:
187# PHASES * (UNROLL_COUNT + 1) + 7
188#
189# The "+ 7" comes from the fact we may have to encode up to
190# 7 bytes separately before the output pointer is aligned.
191#
192$threshold = (3 * ($phases * ($unroll_count + 1)) + 7);
193
194sub I {
195 local *code = shift;
196 local $format = shift;
197 $code .= sprintf ("\t\t".$format."\n", @_);
198}
199
200sub P {
201 local *code = shift;
202 local $format = shift;
203 $code .= sprintf ($format."\n", @_);
204}
205
206sub STOP {
207 local *code = shift;
208 $code .=<<___;
209 ;;
210___
211}
212
213sub emit_body {
214 local *c = shift;
215 local *bypass = shift;
216 local ($iteration, $p) = @_;
217
218 local $i0 = $iteration;
219 local $i1 = $iteration - 1;
220 local $i2 = $iteration - 2;
221 local $i3 = $iteration - 3;
222 local $iw0 = ($iteration - 3) / 8;
223 local $iw1 = ($iteration > 3) ? ($iteration - 4) / 8 : 1;
224 local $byte_num = ($iteration - 3) % 8;
225 local $label = $iteration + 1;
226 local $pAny = ($p & 0xf) == 0xf;
227 local $pByp = (($p & $pComI) && ($iteration > 0));
228
229 $c.=<<___;
230//////////////////////////////////////////////////
231___
232
233 if (($p & 0xf) == 0) {
234 $c.="#ifdef HOST_IS_BIG_ENDIAN\n";
235 &I(\$c,"shr.u OutWord[%u] = OutWord[%u], 32;;",
236 $iw1 % $NOutWord, $iw1 % $NOutWord);
237 $c.="#endif\n";
238 &I(\$c, "st4 [OutPtr] = OutWord[%u], 4", $iw1 % $NOutWord);
239 return;
240 }
241
242 # Cycle 0
243 &I(\$c, "{ .mmi") if ($pAny);
244 &I(\$c, "ld1 Data[%u] = [InPtr], 1", $i0 % $NData) if ($p & $pComI);
245 &I(\$c, "padd1 I[%u] = One, I[%u]", $i0 % $NI, $i1 % $NI)if ($p & $pComI);
246 &I(\$c, "zxt1 J = J") if ($p & $pComJ);
247 &I(\$c, "}") if ($pAny);
248 &I(\$c, "{ .mmi") if ($pAny);
249 &I(\$c, "LKEY T[%u] = [T[%u]]", $i1 % $NT, $i1 % $NT) if ($p & $pOut);
250 &I(\$c, "add T[%u] = SI[%u], SJ[%u]",
251 $i0 % $NT, $i2 % $NSI, $i1 % $NSJ) if ($p & $pComT);
252 &I(\$c, "KEYADDR(IPr[%u], I[%u])", $i0 % $NIP, $i1 % $NI) if ($p & $pComI);
253 &I(\$c, "}") if ($pAny);
254 &STOP(\$c);
255
256 # Cycle 1
257 &I(\$c, "{ .mmi") if ($pAny);
258 &I(\$c, "SKEY [IPr[%u]] = SJ[%u]", $i2 % $NIP, $i1%$NSJ)if ($p & $pComT);
259 &I(\$c, "SKEY [JP[%u]] = SI[%u]", $i1 % $NJP, $i2%$NSI) if ($p & $pComT);
260 &I(\$c, "zxt1 T[%u] = T[%u]", $i0 % $NT, $i0 % $NT) if ($p & $pComT);
261 &I(\$c, "}") if ($pAny);
262 &I(\$c, "{ .mmi") if ($pAny);
263 &I(\$c, "LKEY SI[%u] = [IPr[%u]]", $i0 % $NSI, $i0%$NIP)if ($p & $pComI);
264 &I(\$c, "KEYADDR(JP[%u], J)", $i0 % $NJP) if ($p & $pComJ);
265 &I(\$c, "xor Data[%u] = Data[%u], T[%u]",
266 $i3 % $NData, $i3 % $NData, $i1 % $NT) if ($p & $pOut);
267 &I(\$c, "}") if ($pAny);
268 &STOP(\$c);
269
270 # Cycle 2
271 &I(\$c, "{ .mmi") if ($pAny);
272 &I(\$c, "LKEY SJ[%u] = [JP[%u]]", $i0 % $NSJ, $i0%$NJP) if ($p & $pComJ);
273 &I(\$c, "cmp.eq pBypass, p0 = I[%u], J", $i1 % $NI) if ($pByp);
274 &I(\$c, "dep OutWord[%u] = Data[%u], OutWord[%u], BYTE_POS(%u), 8",
275 $iw0%$NOutWord, $i3%$NData, $iw1%$NOutWord, $byte_num) if ($p & $pOut);
276 &I(\$c, "}") if ($pAny);
277 &I(\$c, "{ .mmb") if ($pAny);
278 &I(\$c, "add J = J, SI[%u]", $i0 % $NSI) if ($p & $pComI);
279 &I(\$c, "KEYADDR(T[%u], T[%u])", $i0 % $NT, $i0 % $NT) if ($p & $pComT);
280 &P(\$c, "(pBypass)\tbr.cond.spnt.many .rc4Bypass%u",$label)if ($pByp);
281 &I(\$c, "}") if ($pAny);
282 &STOP(\$c);
283
284 &P(\$c, ".rc4Resume%u:", $label) if ($pByp);
285 if ($byte_num == 0 && $iteration >= $phases) {
286 &I(\$c, "st8 [OutPtr] = OutWord[%u], 8",
287 $iw1 % $NOutWord) if ($p & $pOut);
288 if ($iteration == (1 + $unroll_count) * $phases - 1) {
289 if ($unroll_count == 6) {
290 &I(\$c, "mov OutWord[%u] = OutWord[%u]",
291 $iw1 % $NOutWord, $iw0 % $NOutWord);
292 }
293 &I(\$c, "lfetch.nt1 [InPrefetch], %u",
294 $unroll_count * $phases);
295 &I(\$c, "lfetch.excl.nt1 [OutPrefetch], %u",
296 $unroll_count * $phases);
297 &I(\$c, "br.cloop.sptk.few .rc4Loop");
298 }
299 }
300
301 if ($pByp) {
302 &P(\$bypass, ".rc4Bypass%u:", $label);
303 &I(\$bypass, "sub J = J, SI[%u]", $i0 % $NSI);
304 &I(\$bypass, "nop 0");
305 &I(\$bypass, "nop 0");
306 &I(\$bypass, ";;");
307 &I(\$bypass, "add J = J, SI[%u]", $i1 % $NSI);
308 &I(\$bypass, "mov SI[%u] = SI[%u]", $i0 % $NSI, $i1 % $NSI);
309 &I(\$bypass, "br.sptk.many .rc4Resume%u\n", $label);
310 &I(\$bypass, ";;");
311 }
312}
313
314$code=<<___;
315.ident \"rc4-ia64.s, version 3.0\"
316.ident \"Copyright (c) 2005 Hewlett-Packard Development Company, L.P.\"
317
318#define LCSave r8
319#define PRSave r9
320
321/* Inputs become invalid once rotation begins! */
322
323#define StateTable in0
324#define DataLen in1
325#define InputBuffer in2
326#define OutputBuffer in3
327
328#define KTable r14
329#define J r15
330#define InPtr r16
331#define OutPtr r17
332#define InPrefetch r18
333#define OutPrefetch r19
334#define One r20
335#define LoopCount r21
336#define Remainder r22
337#define IFinal r23
338#define EndPtr r24
339
340#define tmp0 r25
341#define tmp1 r26
342
343#define pBypass p6
344#define pDone p7
345#define pSmall p8
346#define pAligned p9
347#define pUnaligned p10
348
349#define pComputeI pPhase[0]
350#define pComputeJ pPhase[1]
351#define pComputeT pPhase[2]
352#define pOutput pPhase[3]
353
354#define RetVal r8
355#define L_OK p7
356#define L_NOK p8
357
358#define _NINPUTS 4
359#define _NOUTPUT 0
360
361#define _NROTATE 24
362#define _NLOCALS (_NROTATE - _NINPUTS - _NOUTPUT)
363
364#ifndef SZ
365# define SZ 4 // this must be set to sizeof(RC4_INT)
366#endif
367
368#if SZ == 1
369# define LKEY ld1
370# define SKEY st1
371# define KEYADDR(dst, i) add dst = i, KTable
372#elif SZ == 2
373# define LKEY ld2
374# define SKEY st2
375# define KEYADDR(dst, i) shladd dst = i, 1, KTable
376#elif SZ == 4
377# define LKEY ld4
378# define SKEY st4
379# define KEYADDR(dst, i) shladd dst = i, 2, KTable
380#else
381# define LKEY ld8
382# define SKEY st8
383# define KEYADDR(dst, i) shladd dst = i, 3, KTable
384#endif
385
386#if defined(_HPUX_SOURCE) && !defined(_LP64)
387# define ADDP addp4
388#else
389# define ADDP add
390#endif
391
392/* Define a macro for the bit number of the n-th byte: */
393
394#if defined(_HPUX_SOURCE) || defined(B_ENDIAN)
395# define HOST_IS_BIG_ENDIAN
396# define BYTE_POS(n) (56 - (8 * (n)))
397#else
398# define BYTE_POS(n) (8 * (n))
399#endif
400
401/*
402 We must perform the first phase of the pipeline explicitly since
403 we will always load from the stable the first time. The br.cexit
404 will never be taken since regardless of the number of bytes because
405 the epilogue count is 4.
406*/
407/* MODSCHED_RC4 macro was split to _PROLOGUE and _LOOP, because HP-UX
408 assembler failed on original macro with syntax error. <appro> */
409#define MODSCHED_RC4_PROLOGUE \\
410 { \\
411 ld1 Data[0] = [InPtr], 1; \\
412 add IFinal = 1, I[1]; \\
413 KEYADDR(IPr[0], I[1]); \\
414 } ;; \\
415 { \\
416 LKEY SI[0] = [IPr[0]]; \\
417 mov pr.rot = 0x10000; \\
418 mov ar.ec = 4; \\
419 } ;; \\
420 { \\
421 add J = J, SI[0]; \\
422 zxt1 I[0] = IFinal; \\
423 br.cexit.spnt.few .+16; /* never taken */ \\
424 } ;;
425#define MODSCHED_RC4_LOOP(label) \\
426label: \\
427 { .mmi; \\
428 (pComputeI) ld1 Data[0] = [InPtr], 1; \\
429 (pComputeI) add IFinal = 1, I[1]; \\
430 (pComputeJ) zxt1 J = J; \\
431 }{ .mmi; \\
432 (pOutput) LKEY T[1] = [T[1]]; \\
433 (pComputeT) add T[0] = SI[2], SJ[1]; \\
434 (pComputeI) KEYADDR(IPr[0], I[1]); \\
435 } ;; \\
436 { .mmi; \\
437 (pComputeT) SKEY [IPr[2]] = SJ[1]; \\
438 (pComputeT) SKEY [JP[1]] = SI[2]; \\
439 (pComputeT) zxt1 T[0] = T[0]; \\
440 }{ .mmi; \\
441 (pComputeI) LKEY SI[0] = [IPr[0]]; \\
442 (pComputeJ) KEYADDR(JP[0], J); \\
443 (pComputeI) cmp.eq.unc pBypass, p0 = I[1], J; \\
444 } ;; \\
445 { .mmi; \\
446 (pComputeJ) LKEY SJ[0] = [JP[0]]; \\
447 (pOutput) xor Data[3] = Data[3], T[1]; \\
448 nop 0x0; \\
449 }{ .mmi; \\
450 (pComputeT) KEYADDR(T[0], T[0]); \\
451 (pBypass) mov SI[0] = SI[1]; \\
452 (pComputeI) zxt1 I[0] = IFinal; \\
453 } ;; \\
454 { .mmb; \\
455 (pOutput) st1 [OutPtr] = Data[3], 1; \\
456 (pComputeI) add J = J, SI[0]; \\
457 br.ctop.sptk.few label; \\
458 } ;;
459
460 .text
461
462 .align 32
463
464 .type RC4, \@function
465 .global RC4
466
467 .proc RC4
468 .prologue
469
470RC4:
471 {
472 .mmi
473 alloc r2 = ar.pfs, _NINPUTS, _NLOCALS, _NOUTPUT, _NROTATE
474
475 .rotr Data[4], I[2], IPr[3], SI[3], JP[2], SJ[2], T[2], \\
476 OutWord[2]
477 .rotp pPhase[4]
478
479 ADDP InPrefetch = 0, InputBuffer
480 ADDP KTable = 0, StateTable
481 }
482 {
483 .mmi
484 ADDP InPtr = 0, InputBuffer
485 ADDP OutPtr = 0, OutputBuffer
486 mov RetVal = r0
487 }
488 ;;
489 {
490 .mmi
491 lfetch.nt1 [InPrefetch], 0x80
492 ADDP OutPrefetch = 0, OutputBuffer
493 }
494 { // Return 0 if the input length is nonsensical
495 .mib
496 ADDP StateTable = 0, StateTable
497 cmp.ge.unc L_NOK, L_OK = r0, DataLen
498 (L_NOK) br.ret.sptk.few rp
499 }
500 ;;
501 {
502 .mib
503 cmp.eq.or L_NOK, L_OK = r0, InPtr
504 cmp.eq.or L_NOK, L_OK = r0, OutPtr
505 nop 0x0
506 }
507 {
508 .mib
509 cmp.eq.or L_NOK, L_OK = r0, StateTable
510 nop 0x0
511 (L_NOK) br.ret.sptk.few rp
512 }
513 ;;
514 LKEY I[1] = [KTable], SZ
515/* Prefetch the state-table. It contains 256 elements of size SZ */
516
517#if SZ == 1
518 ADDP tmp0 = 1*128, StateTable
519#elif SZ == 2
520 ADDP tmp0 = 3*128, StateTable
521 ADDP tmp1 = 2*128, StateTable
522#elif SZ == 4
523 ADDP tmp0 = 7*128, StateTable
524 ADDP tmp1 = 6*128, StateTable
525#elif SZ == 8
526 ADDP tmp0 = 15*128, StateTable
527 ADDP tmp1 = 14*128, StateTable
528#endif
529 ;;
530#if SZ >= 8
531 lfetch.fault.nt1 [tmp0], -256 // 15
532 lfetch.fault.nt1 [tmp1], -256;;
533 lfetch.fault.nt1 [tmp0], -256 // 13
534 lfetch.fault.nt1 [tmp1], -256;;
535 lfetch.fault.nt1 [tmp0], -256 // 11
536 lfetch.fault.nt1 [tmp1], -256;;
537 lfetch.fault.nt1 [tmp0], -256 // 9
538 lfetch.fault.nt1 [tmp1], -256;;
539#endif
540#if SZ >= 4
541 lfetch.fault.nt1 [tmp0], -256 // 7
542 lfetch.fault.nt1 [tmp1], -256;;
543 lfetch.fault.nt1 [tmp0], -256 // 5
544 lfetch.fault.nt1 [tmp1], -256;;
545#endif
546#if SZ >= 2
547 lfetch.fault.nt1 [tmp0], -256 // 3
548 lfetch.fault.nt1 [tmp1], -256;;
549#endif
550 {
551 .mii
552 lfetch.fault.nt1 [tmp0] // 1
553 add I[1]=1,I[1];;
554 zxt1 I[1]=I[1]
555 }
556 {
557 .mmi
558 lfetch.nt1 [InPrefetch], 0x80
559 lfetch.excl.nt1 [OutPrefetch], 0x80
560 .save pr, PRSave
561 mov PRSave = pr
562 } ;;
563 {
564 .mmi
565 lfetch.excl.nt1 [OutPrefetch], 0x80
566 LKEY J = [KTable], SZ
567 ADDP EndPtr = DataLen, InPtr
568 } ;;
569 {
570 .mmi
571 ADDP EndPtr = -1, EndPtr // Make it point to
572 // last data byte.
573 mov One = 1
574 .save ar.lc, LCSave
575 mov LCSave = ar.lc
576 .body
577 } ;;
578 {
579 .mmb
580 sub Remainder = 0, OutPtr
581 cmp.gtu pSmall, p0 = $threshold, DataLen
582(pSmall) br.cond.dpnt .rc4Remainder // Data too small for
583 // big loop.
584 } ;;
585 {
586 .mmi
587 and Remainder = 0x7, Remainder
588 ;;
589 cmp.eq pAligned, pUnaligned = Remainder, r0
590 nop 0x0
591 } ;;
592 {
593 .mmb
594.pred.rel "mutex",pUnaligned,pAligned
595(pUnaligned) add Remainder = -1, Remainder
596(pAligned) sub Remainder = EndPtr, InPtr
597(pAligned) br.cond.dptk.many .rc4Aligned
598 } ;;
599 {
600 .mmi
601 nop 0x0
602 nop 0x0
603 mov.i ar.lc = Remainder
604 }
605
606/* Do the initial few bytes via the compact, modulo-scheduled loop
607 until the output pointer is 8-byte-aligned. */
608
609 MODSCHED_RC4_PROLOGUE
610 MODSCHED_RC4_LOOP(.RC4AlignLoop)
611
612 {
613 .mib
614 sub Remainder = EndPtr, InPtr
615 zxt1 IFinal = IFinal
616 clrrrb // Clear CFM.rrb.pr so
617 ;; // next "mov pr.rot = N"
618 // does the right thing.
619 }
620 {
621 .mmi
622 mov I[1] = IFinal
623 nop 0x0
624 nop 0x0
625 } ;;
626
627
628.rc4Aligned:
629
630/*
631 Unrolled loop count = (Remainder - ($unroll_count+1)*$phases)/($unroll_count*$phases)
632 */
633
634 {
635 .mlx
636 add LoopCount = 1 - ($unroll_count + 1)*$phases, Remainder
637 movl Remainder = 0xaaaaaaaaaaaaaaab
638 } ;;
639 {
640 .mmi
641 setf.sig f6 = LoopCount // M2, M3 6 cyc
642 setf.sig f7 = Remainder // M2, M3 6 cyc
643 nop 0x0
644 } ;;
645 {
646 .mfb
647 nop 0x0
648 xmpy.hu f6 = f6, f7
649 nop 0x0
650 } ;;
651 {
652 .mmi
653 getf.sig LoopCount = f6;; // M2 5 cyc
654 nop 0x0
655 shr.u LoopCount = LoopCount, 4
656 } ;;
657 {
658 .mmi
659 nop 0x0
660 nop 0x0
661 mov.i ar.lc = LoopCount
662 } ;;
663
664/* Now comes the unrolled loop: */
665
666.rc4Prologue:
667___
668
669$iteration = 0;
670
671# Generate the prologue:
672$predicates = 1;
673for ($i = 0; $i < $phases; ++$i) {
674 &emit_body (\$code, \$bypass, $iteration++, $predicates);
675 $predicates = ($predicates << 1) | 1;
676}
677
678$code.=<<___;
679.rc4Loop:
680___
681
682# Generate the body:
683for ($i = 0; $i < $unroll_count*$phases; ++$i) {
684 &emit_body (\$code, \$bypass, $iteration++, $predicates);
685}
686
687$code.=<<___;
688.rc4Epilogue:
689___
690
691# Generate the epilogue:
692for ($i = 0; $i < $phases; ++$i) {
693 $predicates <<= 1;
694 &emit_body (\$code, \$bypass, $iteration++, $predicates);
695}
696
697$code.=<<___;
698 {
699 .mmi
700 lfetch.nt1 [EndPtr] // fetch line with last byte
701 mov IFinal = I[1]
702 nop 0x0
703 }
704
705.rc4Remainder:
706 {
707 .mmi
708 sub Remainder = EndPtr, InPtr // Calculate
709 // # of bytes
710 // left - 1
711 nop 0x0
712 nop 0x0
713 } ;;
714 {
715 .mib
716 cmp.eq pDone, p0 = -1, Remainder // done already?
717 mov.i ar.lc = Remainder
718(pDone) br.cond.dptk.few .rc4Complete
719 }
720
721/* Do the remaining bytes via the compact, modulo-scheduled loop */
722
723 MODSCHED_RC4_PROLOGUE
724 MODSCHED_RC4_LOOP(.RC4RestLoop)
725
726.rc4Complete:
727 {
728 .mmi
729 add KTable = -SZ, KTable
730 add IFinal = -1, IFinal
731 mov ar.lc = LCSave
732 } ;;
733 {
734 .mii
735 SKEY [KTable] = J,-SZ
736 zxt1 IFinal = IFinal
737 mov pr = PRSave, 0x1FFFF
738 } ;;
739 {
740 .mib
741 SKEY [KTable] = IFinal
742 add RetVal = 1, r0
743 br.ret.sptk.few rp
744 } ;;
745___
746
747# Last but not least, emit the code for the bypass-code of the unrolled loop:
748
749$code.=$bypass;
750
751$code.=<<___;
752 .endp RC4
753___
754
755print $code;