blob: a1f876281a03a1e8aa00c2549c5cd24252bd6b8b [file] [log] [blame]
Kinson Chika8fa74c2011-07-29 11:33:41 -07001#!/usr/bin/env perl
2
3# ====================================================================
4# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9
10# "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
11# functions were re-implemented to address P4 performance issue [see
12# commentary below], and in 2006 the rest was rewritten in order to
13# gain freedom to liberate licensing terms.
14
15# It was noted that Intel IA-32 C compiler generates code which
16# performs ~30% *faster* on P4 CPU than original *hand-coded*
17# SHA1 assembler implementation. To address this problem (and
18# prove that humans are still better than machines:-), the
19# original code was overhauled, which resulted in following
20# performance changes:
21#
22# compared with original compared with Intel cc
23# assembler impl. generated code
24# Pentium -16% +48%
25# PIII/AMD +8% +16%
26# P4 +85%(!) +45%
27#
28# As you can see Pentium came out as looser:-( Yet I reckoned that
29# improvement on P4 outweights the loss and incorporate this
30# re-tuned code to 0.9.7 and later.
31# ----------------------------------------------------------------
32# <appro@fy.chalmers.se>
33
34$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
35push(@INC,"${dir}","${dir}../../perlasm");
36require "x86asm.pl";
37
38&asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386");
39
40$A="eax";
41$B="ebx";
42$C="ecx";
43$D="edx";
44$E="edi";
45$T="esi";
46$tmp1="ebp";
47
48@V=($A,$B,$C,$D,$E,$T);
49
50sub BODY_00_15
51 {
52 local($n,$a,$b,$c,$d,$e,$f)=@_;
53
54 &comment("00_15 $n");
55
56 &mov($f,$c); # f to hold F_00_19(b,c,d)
57 if ($n==0) { &mov($tmp1,$a); }
58 else { &mov($a,$tmp1); }
59 &rotl($tmp1,5); # tmp1=ROTATE(a,5)
60 &xor($f,$d);
61 &add($tmp1,$e); # tmp1+=e;
62 &and($f,$b);
63 &mov($e,&swtmp($n%16)); # e becomes volatile and is loaded
64 # with xi, also note that e becomes
65 # f in next round...
66 &xor($f,$d); # f holds F_00_19(b,c,d)
67 &rotr($b,2); # b=ROTATE(b,30)
68 &lea($tmp1,&DWP(0x5a827999,$tmp1,$e)); # tmp1+=K_00_19+xi
69
70 if ($n==15) { &add($f,$tmp1); } # f+=tmp1
71 else { &add($tmp1,$f); } # f becomes a in next round
72 }
73
74sub BODY_16_19
75 {
76 local($n,$a,$b,$c,$d,$e,$f)=@_;
77
78 &comment("16_19 $n");
79
80 &mov($f,&swtmp($n%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
81 &mov($tmp1,$c); # tmp1 to hold F_00_19(b,c,d)
82 &xor($f,&swtmp(($n+2)%16));
83 &xor($tmp1,$d);
84 &xor($f,&swtmp(($n+8)%16));
85 &and($tmp1,$b); # tmp1 holds F_00_19(b,c,d)
86 &rotr($b,2); # b=ROTATE(b,30)
87 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
88 &rotl($f,1); # f=ROTATE(f,1)
89 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
90 &mov(&swtmp($n%16),$f); # xi=f
91 &lea($f,&DWP(0x5a827999,$f,$e));# f+=K_00_19+e
92 &mov($e,$a); # e becomes volatile
93 &rotl($e,5); # e=ROTATE(a,5)
94 &add($f,$tmp1); # f+=F_00_19(b,c,d)
95 &add($f,$e); # f+=ROTATE(a,5)
96 }
97
98sub BODY_20_39
99 {
100 local($n,$a,$b,$c,$d,$e,$f)=@_;
101 local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
102
103 &comment("20_39 $n");
104
105 &mov($tmp1,$b); # tmp1 to hold F_20_39(b,c,d)
106 &mov($f,&swtmp($n%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
107 &rotr($b,2); # b=ROTATE(b,30)
108 &xor($f,&swtmp(($n+2)%16));
109 &xor($tmp1,$c);
110 &xor($f,&swtmp(($n+8)%16));
111 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
112 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
113 &rotl($f,1); # f=ROTATE(f,1)
114 &add($tmp1,$e);
115 &mov(&swtmp($n%16),$f); # xi=f
116 &mov($e,$a); # e becomes volatile
117 &rotl($e,5); # e=ROTATE(a,5)
118 &lea($f,&DWP($K,$f,$tmp1)); # f+=K_20_39+e
119 &add($f,$e); # f+=ROTATE(a,5)
120 }
121
122sub BODY_40_59
123 {
124 local($n,$a,$b,$c,$d,$e,$f)=@_;
125
126 &comment("40_59 $n");
127
128 &mov($f,&swtmp($n%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
129 &mov($tmp1,&swtmp(($n+2)%16));
130 &xor($f,$tmp1);
131 &mov($tmp1,&swtmp(($n+8)%16));
132 &xor($f,$tmp1);
133 &mov($tmp1,&swtmp(($n+13)%16));
134 &xor($f,$tmp1); # f holds xa^xb^xc^xd
135 &mov($tmp1,$b); # tmp1 to hold F_40_59(b,c,d)
136 &rotl($f,1); # f=ROTATE(f,1)
137 &or($tmp1,$c);
138 &mov(&swtmp($n%16),$f); # xi=f
139 &and($tmp1,$d);
140 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e
141 &mov($e,$b); # e becomes volatile and is used
142 # to calculate F_40_59(b,c,d)
143 &rotr($b,2); # b=ROTATE(b,30)
144 &and($e,$c);
145 &or($tmp1,$e); # tmp1 holds F_40_59(b,c,d)
146 &mov($e,$a);
147 &rotl($e,5); # e=ROTATE(a,5)
148 &add($f,$tmp1); # f+=tmp1;
149 &add($f,$e); # f+=ROTATE(a,5)
150 }
151
152&function_begin("sha1_block_data_order");
153 &mov($tmp1,&wparam(0)); # SHA_CTX *c
154 &mov($T,&wparam(1)); # const void *input
155 &mov($A,&wparam(2)); # size_t num
156 &stack_push(16); # allocate X[16]
157 &shl($A,6);
158 &add($A,$T);
159 &mov(&wparam(2),$A); # pointer beyond the end of input
160 &mov($E,&DWP(16,$tmp1));# pre-load E
161
162 &set_label("loop",16);
163
164 # copy input chunk to X, but reversing byte order!
165 for ($i=0; $i<16; $i+=4)
166 {
167 &mov($A,&DWP(4*($i+0),$T));
168 &mov($B,&DWP(4*($i+1),$T));
169 &mov($C,&DWP(4*($i+2),$T));
170 &mov($D,&DWP(4*($i+3),$T));
171 &bswap($A);
172 &bswap($B);
173 &bswap($C);
174 &bswap($D);
175 &mov(&swtmp($i+0),$A);
176 &mov(&swtmp($i+1),$B);
177 &mov(&swtmp($i+2),$C);
178 &mov(&swtmp($i+3),$D);
179 }
180 &mov(&wparam(1),$T); # redundant in 1st spin
181
182 &mov($A,&DWP(0,$tmp1)); # load SHA_CTX
183 &mov($B,&DWP(4,$tmp1));
184 &mov($C,&DWP(8,$tmp1));
185 &mov($D,&DWP(12,$tmp1));
186 # E is pre-loaded
187
188 for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
189 for(;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
190 for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
191 for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
192 for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
193
194 (($V[5] eq $D) and ($V[0] eq $E)) or die; # double-check
195
196 &mov($tmp1,&wparam(0)); # re-load SHA_CTX*
197 &mov($D,&wparam(1)); # D is last "T" and is discarded
198
199 &add($E,&DWP(0,$tmp1)); # E is last "A"...
200 &add($T,&DWP(4,$tmp1));
201 &add($A,&DWP(8,$tmp1));
202 &add($B,&DWP(12,$tmp1));
203 &add($C,&DWP(16,$tmp1));
204
205 &mov(&DWP(0,$tmp1),$E); # update SHA_CTX
206 &add($D,64); # advance input pointer
207 &mov(&DWP(4,$tmp1),$T);
208 &cmp($D,&wparam(2)); # have we reached the end yet?
209 &mov(&DWP(8,$tmp1),$A);
210 &mov($E,$C); # C is last "E" which needs to be "pre-loaded"
211 &mov(&DWP(12,$tmp1),$B);
212 &mov($T,$D); # input pointer
213 &mov(&DWP(16,$tmp1),$C);
214 &jb(&label("loop"));
215
216 &stack_pop(16);
217&function_end("sha1_block_data_order");
218&asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");
219
220&asm_finish();