blob: 603ae15f139b3286bba0bfe72c769901bed179e9 [file] [log] [blame]
/*
* Copyright (C) 2010 Bruno Randolf <br1@einfach.org>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "ath5k.h"
#include "base.h"
#include "reg.h"
#include "debug.h"
#include "ani.h"
/**
* DOC: Basic ANI Operation
*
* Adaptive Noise Immunity (ANI) controls five noise immunity parameters
* depending on the amount of interference in the environment, increasing
* or reducing sensitivity as necessary.
*
* The parameters are:
* - "noise immunity"
* - "spur immunity"
* - "firstep level"
* - "OFDM weak signal detection"
* - "CCK weak signal detection"
*
* Basically we look at the amount of ODFM and CCK timing errors we get and then
* raise or lower immunity accordingly by setting one or more of these
* parameters.
* Newer chipsets have PHY error counters in hardware which will generate a MIB
* interrupt when they overflow. Older hardware has too enable PHY error frames
* by setting a RX flag and then count every single PHY error. When a specified
* threshold of errors has been reached we will raise immunity.
* Also we regularly check the amount of errors and lower or raise immunity as
* necessary.
*/
/*** ANI parameter control ***/
/**
* ath5k_ani_set_noise_immunity_level() - Set noise immunity level
*
* @level: level between 0 and @ATH5K_ANI_MAX_NOISE_IMM_LVL
*/
void
ath5k_ani_set_noise_immunity_level(struct ath5k_hw *ah, int level)
{
/* TODO:
* ANI documents suggest the following five levels to use, but the HAL
* and ath9k use only the last two levels, making this
* essentially an on/off option. There *may* be a reason for this (???),
* so i stick with the HAL version for now...
*/
#if 0
static const s8 lo[] = { -52, -56, -60, -64, -70 };
static const s8 hi[] = { -18, -18, -16, -14, -12 };
static const s8 sz[] = { -34, -41, -48, -55, -62 };
static const s8 fr[] = { -70, -72, -75, -78, -80 };
#else
static const s8 lo[] = { -64, -70 };
static const s8 hi[] = { -14, -12 };
static const s8 sz[] = { -55, -62 };
static const s8 fr[] = { -78, -80 };
#endif
if (level < 0 || level >= ARRAY_SIZE(sz)) {
ATH5K_ERR(ah, "noise immunity level %d out of range",
level);
return;
}
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
AR5K_PHY_DESIRED_SIZE_TOT, sz[level]);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_AGCCOARSE,
AR5K_PHY_AGCCOARSE_LO, lo[level]);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_AGCCOARSE,
AR5K_PHY_AGCCOARSE_HI, hi[level]);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SIG,
AR5K_PHY_SIG_FIRPWR, fr[level]);
ah->ani_state.noise_imm_level = level;
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, "new level %d", level);
}
/**
* ath5k_ani_set_spur_immunity_level() - Set spur immunity level
*
* @level: level between 0 and @max_spur_level (the maximum level is dependent
* on the chip revision).
*/
void
ath5k_ani_set_spur_immunity_level(struct ath5k_hw *ah, int level)
{
static const int val[] = { 2, 4, 6, 8, 10, 12, 14, 16 };
if (level < 0 || level >= ARRAY_SIZE(val) ||
level > ah->ani_state.max_spur_level) {
ATH5K_ERR(ah, "spur immunity level %d out of range",
level);
return;
}
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1, val[level]);
ah->ani_state.spur_level = level;
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, "new level %d", level);
}
/**
* ath5k_ani_set_firstep_level() - Set "firstep" level
*
* @level: level between 0 and @ATH5K_ANI_MAX_FIRSTEP_LVL
*/
void
ath5k_ani_set_firstep_level(struct ath5k_hw *ah, int level)
{
static const int val[] = { 0, 4, 8 };
if (level < 0 || level >= ARRAY_SIZE(val)) {
ATH5K_ERR(ah, "firstep level %d out of range", level);
return;
}
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SIG,
AR5K_PHY_SIG_FIRSTEP, val[level]);
ah->ani_state.firstep_level = level;
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, "new level %d", level);
}
/**
* ath5k_ani_set_ofdm_weak_signal_detection() - Control OFDM weak signal
* detection
*
* @on: turn on or off
*/
void
ath5k_ani_set_ofdm_weak_signal_detection(struct ath5k_hw *ah, bool on)
{
static const int m1l[] = { 127, 50 };
static const int m2l[] = { 127, 40 };
static const int m1[] = { 127, 0x4d };
static const int m2[] = { 127, 0x40 };
static const int m2cnt[] = { 31, 16 };
static const int m2lcnt[] = { 63, 48 };
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_WEAK_OFDM_LOW_THR,
AR5K_PHY_WEAK_OFDM_LOW_THR_M1, m1l[on]);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_WEAK_OFDM_LOW_THR,
AR5K_PHY_WEAK_OFDM_LOW_THR_M2, m2l[on]);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_WEAK_OFDM_HIGH_THR,
AR5K_PHY_WEAK_OFDM_HIGH_THR_M1, m1[on]);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_WEAK_OFDM_HIGH_THR,
AR5K_PHY_WEAK_OFDM_HIGH_THR_M2, m2[on]);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_WEAK_OFDM_HIGH_THR,
AR5K_PHY_WEAK_OFDM_HIGH_THR_M2_COUNT, m2cnt[on]);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_WEAK_OFDM_LOW_THR,
AR5K_PHY_WEAK_OFDM_LOW_THR_M2_COUNT, m2lcnt[on]);
if (on)
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_WEAK_OFDM_LOW_THR,
AR5K_PHY_WEAK_OFDM_LOW_THR_SELFCOR_EN);
else
AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_WEAK_OFDM_LOW_THR,
AR5K_PHY_WEAK_OFDM_LOW_THR_SELFCOR_EN);
ah->ani_state.ofdm_weak_sig = on;
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, "turned %s",
on ? "on" : "off");
}
/**
* ath5k_ani_set_cck_weak_signal_detection() - control CCK weak signal detection
*
* @on: turn on or off
*/
void
ath5k_ani_set_cck_weak_signal_detection(struct ath5k_hw *ah, bool on)
{
static const int val[] = { 8, 6 };
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_CCK_CROSSCORR,
AR5K_PHY_CCK_CROSSCORR_WEAK_SIG_THR, val[on]);
ah->ani_state.cck_weak_sig = on;
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, "turned %s",
on ? "on" : "off");
}
/*** ANI algorithm ***/
/**
* ath5k_ani_raise_immunity() - Increase noise immunity
*
* @ofdm_trigger: If this is true we are called because of too many OFDM errors,
* the algorithm will tune more parameters then.
*
* Try to raise noise immunity (=decrease sensitivity) in several steps
* depending on the average RSSI of the beacons we received.
*/
static void
ath5k_ani_raise_immunity(struct ath5k_hw *ah, struct ath5k_ani_state *as,
bool ofdm_trigger)
{
int rssi = ewma_read(&ah->ah_beacon_rssi_avg);
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, "raise immunity (%s)",
ofdm_trigger ? "ODFM" : "CCK");
/* first: raise noise immunity */
if (as->noise_imm_level < ATH5K_ANI_MAX_NOISE_IMM_LVL) {
ath5k_ani_set_noise_immunity_level(ah, as->noise_imm_level + 1);
return;
}
/* only OFDM: raise spur immunity level */
if (ofdm_trigger &&
as->spur_level < ah->ani_state.max_spur_level) {
ath5k_ani_set_spur_immunity_level(ah, as->spur_level + 1);
return;
}
/* AP mode */
if (ah->opmode == NL80211_IFTYPE_AP) {
if (as->firstep_level < ATH5K_ANI_MAX_FIRSTEP_LVL)
ath5k_ani_set_firstep_level(ah, as->firstep_level + 1);
return;
}
/* STA and IBSS mode */
/* TODO: for IBSS mode it would be better to keep a beacon RSSI average
* per each neighbour node and use the minimum of these, to make sure we
* don't shut out a remote node by raising immunity too high. */
if (rssi > ATH5K_ANI_RSSI_THR_HIGH) {
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI,
"beacon RSSI high");
/* only OFDM: beacon RSSI is high, we can disable ODFM weak
* signal detection */
if (ofdm_trigger && as->ofdm_weak_sig == true) {
ath5k_ani_set_ofdm_weak_signal_detection(ah, false);
ath5k_ani_set_spur_immunity_level(ah, 0);
return;
}
/* as a last resort or CCK: raise firstep level */
if (as->firstep_level < ATH5K_ANI_MAX_FIRSTEP_LVL) {
ath5k_ani_set_firstep_level(ah, as->firstep_level + 1);
return;
}
} else if (rssi > ATH5K_ANI_RSSI_THR_LOW) {
/* beacon RSSI in mid range, we need OFDM weak signal detect,
* but can raise firstep level */
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI,
"beacon RSSI mid");
if (ofdm_trigger && as->ofdm_weak_sig == false)
ath5k_ani_set_ofdm_weak_signal_detection(ah, true);
if (as->firstep_level < ATH5K_ANI_MAX_FIRSTEP_LVL)
ath5k_ani_set_firstep_level(ah, as->firstep_level + 1);
return;
} else if (ah->ah_current_channel->band == IEEE80211_BAND_2GHZ) {
/* beacon RSSI is low. in B/G mode turn of OFDM weak signal
* detect and zero firstep level to maximize CCK sensitivity */
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI,
"beacon RSSI low, 2GHz");
if (ofdm_trigger && as->ofdm_weak_sig == true)
ath5k_ani_set_ofdm_weak_signal_detection(ah, false);
if (as->firstep_level > 0)
ath5k_ani_set_firstep_level(ah, 0);
return;
}
/* TODO: why not?:
if (as->cck_weak_sig == true) {
ath5k_ani_set_cck_weak_signal_detection(ah, false);
}
*/
}
/**
* ath5k_ani_lower_immunity() - Decrease noise immunity
*
* Try to lower noise immunity (=increase sensitivity) in several steps
* depending on the average RSSI of the beacons we received.
*/
static void
ath5k_ani_lower_immunity(struct ath5k_hw *ah, struct ath5k_ani_state *as)
{
int rssi = ewma_read(&ah->ah_beacon_rssi_avg);
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, "lower immunity");
if (ah->opmode == NL80211_IFTYPE_AP) {
/* AP mode */
if (as->firstep_level > 0) {
ath5k_ani_set_firstep_level(ah, as->firstep_level - 1);
return;
}
} else {
/* STA and IBSS mode (see TODO above) */
if (rssi > ATH5K_ANI_RSSI_THR_HIGH) {
/* beacon signal is high, leave OFDM weak signal
* detection off or it may oscillate
* TODO: who said it's off??? */
} else if (rssi > ATH5K_ANI_RSSI_THR_LOW) {
/* beacon RSSI is mid-range: turn on ODFM weak signal
* detection and next, lower firstep level */
if (as->ofdm_weak_sig == false) {
ath5k_ani_set_ofdm_weak_signal_detection(ah,
true);
return;
}
if (as->firstep_level > 0) {
ath5k_ani_set_firstep_level(ah,
as->firstep_level - 1);
return;
}
} else {
/* beacon signal is low: only reduce firstep level */
if (as->firstep_level > 0) {
ath5k_ani_set_firstep_level(ah,
as->firstep_level - 1);
return;
}
}
}
/* all modes */
if (as->spur_level > 0) {
ath5k_ani_set_spur_immunity_level(ah, as->spur_level - 1);
return;
}
/* finally, reduce noise immunity */
if (as->noise_imm_level > 0) {
ath5k_ani_set_noise_immunity_level(ah, as->noise_imm_level - 1);
return;
}
}
/**
* ath5k_hw_ani_get_listen_time() - Update counters and return listening time
*
* Return an approximation of the time spent "listening" in milliseconds (ms)
* since the last call of this function.
* Save a snapshot of the counter values for debugging/statistics.
*/
static int
ath5k_hw_ani_get_listen_time(struct ath5k_hw *ah, struct ath5k_ani_state *as)
{
struct ath_common *common = ath5k_hw_common(ah);
int listen;
spin_lock_bh(&common->cc_lock);
ath_hw_cycle_counters_update(common);
memcpy(&as->last_cc, &common->cc_ani, sizeof(as->last_cc));
/* clears common->cc_ani */
listen = ath_hw_get_listen_time(common);
spin_unlock_bh(&common->cc_lock);
return listen;
}
/**
* ath5k_ani_save_and_clear_phy_errors() - Clear and save PHY error counters
*
* Clear the PHY error counters as soon as possible, since this might be called
* from a MIB interrupt and we want to make sure we don't get interrupted again.
* Add the count of CCK and OFDM errors to our internal state, so it can be used
* by the algorithm later.
*
* Will be called from interrupt and tasklet context.
* Returns 0 if both counters are zero.
*/
static int
ath5k_ani_save_and_clear_phy_errors(struct ath5k_hw *ah,
struct ath5k_ani_state *as)
{
unsigned int ofdm_err, cck_err;
if (!ah->ah_capabilities.cap_has_phyerr_counters)
return 0;
ofdm_err = ath5k_hw_reg_read(ah, AR5K_PHYERR_CNT1);
cck_err = ath5k_hw_reg_read(ah, AR5K_PHYERR_CNT2);
/* reset counters first, we might be in a hurry (interrupt) */
ath5k_hw_reg_write(ah, ATH5K_PHYERR_CNT_MAX - ATH5K_ANI_OFDM_TRIG_HIGH,
AR5K_PHYERR_CNT1);
ath5k_hw_reg_write(ah, ATH5K_PHYERR_CNT_MAX - ATH5K_ANI_CCK_TRIG_HIGH,
AR5K_PHYERR_CNT2);
ofdm_err = ATH5K_ANI_OFDM_TRIG_HIGH - (ATH5K_PHYERR_CNT_MAX - ofdm_err);
cck_err = ATH5K_ANI_CCK_TRIG_HIGH - (ATH5K_PHYERR_CNT_MAX - cck_err);
/* sometimes both can be zero, especially when there is a superfluous
* second interrupt. detect that here and return an error. */
if (ofdm_err <= 0 && cck_err <= 0)
return 0;
/* avoid negative values should one of the registers overflow */
if (ofdm_err > 0) {
as->ofdm_errors += ofdm_err;
as->sum_ofdm_errors += ofdm_err;
}
if (cck_err > 0) {
as->cck_errors += cck_err;
as->sum_cck_errors += cck_err;
}
return 1;
}
/**
* ath5k_ani_period_restart() - Restart ANI period
*
* Just reset counters, so they are clear for the next "ani period".
*/
static void
ath5k_ani_period_restart(struct ath5k_hw *ah, struct ath5k_ani_state *as)
{
/* keep last values for debugging */
as->last_ofdm_errors = as->ofdm_errors;
as->last_cck_errors = as->cck_errors;
as->last_listen = as->listen_time;
as->ofdm_errors = 0;
as->cck_errors = 0;
as->listen_time = 0;
}
/**
* ath5k_ani_calibration() - The main ANI calibration function
*
* We count OFDM and CCK errors relative to the time where we did not send or
* receive ("listen" time) and raise or lower immunity accordingly.
* This is called regularly (every second) from the calibration timer, but also
* when an error threshold has been reached.
*
* In order to synchronize access from different contexts, this should be
* called only indirectly by scheduling the ANI tasklet!
*/
void
ath5k_ani_calibration(struct ath5k_hw *ah)
{
struct ath5k_ani_state *as = &ah->ani_state;
int listen, ofdm_high, ofdm_low, cck_high, cck_low;
/* get listen time since last call and add it to the counter because we
* might not have restarted the "ani period" last time.
* always do this to calculate the busy time also in manual mode */
listen = ath5k_hw_ani_get_listen_time(ah, as);
as->listen_time += listen;
if (as->ani_mode != ATH5K_ANI_MODE_AUTO)
return;
ath5k_ani_save_and_clear_phy_errors(ah, as);
ofdm_high = as->listen_time * ATH5K_ANI_OFDM_TRIG_HIGH / 1000;
cck_high = as->listen_time * ATH5K_ANI_CCK_TRIG_HIGH / 1000;
ofdm_low = as->listen_time * ATH5K_ANI_OFDM_TRIG_LOW / 1000;
cck_low = as->listen_time * ATH5K_ANI_CCK_TRIG_LOW / 1000;
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI,
"listen %d (now %d)", as->listen_time, listen);
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI,
"check high ofdm %d/%d cck %d/%d",
as->ofdm_errors, ofdm_high, as->cck_errors, cck_high);
if (as->ofdm_errors > ofdm_high || as->cck_errors > cck_high) {
/* too many PHY errors - we have to raise immunity */
bool ofdm_flag = as->ofdm_errors > ofdm_high ? true : false;
ath5k_ani_raise_immunity(ah, as, ofdm_flag);
ath5k_ani_period_restart(ah, as);
} else if (as->listen_time > 5 * ATH5K_ANI_LISTEN_PERIOD) {
/* If more than 5 (TODO: why 5?) periods have passed and we got
* relatively little errors we can try to lower immunity */
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI,
"check low ofdm %d/%d cck %d/%d",
as->ofdm_errors, ofdm_low, as->cck_errors, cck_low);
if (as->ofdm_errors <= ofdm_low && as->cck_errors <= cck_low)
ath5k_ani_lower_immunity(ah, as);
ath5k_ani_period_restart(ah, as);
}
}
/*** INTERRUPT HANDLER ***/
/**
* ath5k_ani_mib_intr() - Interrupt handler for ANI MIB counters
*
* Just read & reset the registers quickly, so they don't generate more
* interrupts, save the counters and schedule the tasklet to decide whether
* to raise immunity or not.
*
* We just need to handle PHY error counters, ath5k_hw_update_mib_counters()
* should take care of all "normal" MIB interrupts.
*/
void
ath5k_ani_mib_intr(struct ath5k_hw *ah)
{
struct ath5k_ani_state *as = &ah->ani_state;
/* nothing to do here if HW does not have PHY error counters - they
* can't be the reason for the MIB interrupt then */
if (!ah->ah_capabilities.cap_has_phyerr_counters)
return;
/* not in use but clear anyways */
ath5k_hw_reg_write(ah, 0, AR5K_OFDM_FIL_CNT);
ath5k_hw_reg_write(ah, 0, AR5K_CCK_FIL_CNT);
if (ah->ani_state.ani_mode != ATH5K_ANI_MODE_AUTO)
return;
/* If one of the errors triggered, we can get a superfluous second
* interrupt, even though we have already reset the register. The
* function detects that so we can return early. */
if (ath5k_ani_save_and_clear_phy_errors(ah, as) == 0)
return;
if (as->ofdm_errors > ATH5K_ANI_OFDM_TRIG_HIGH ||
as->cck_errors > ATH5K_ANI_CCK_TRIG_HIGH)
tasklet_schedule(&ah->ani_tasklet);
}
/**
* ath5k_ani_phy_error_report() - Used by older HW to report PHY errors
*
* This is used by hardware without PHY error counters to report PHY errors
* on a frame-by-frame basis, instead of the interrupt.
*/
void
ath5k_ani_phy_error_report(struct ath5k_hw *ah,
enum ath5k_phy_error_code phyerr)
{
struct ath5k_ani_state *as = &ah->ani_state;
if (phyerr == AR5K_RX_PHY_ERROR_OFDM_TIMING) {
as->ofdm_errors++;
if (as->ofdm_errors > ATH5K_ANI_OFDM_TRIG_HIGH)
tasklet_schedule(&ah->ani_tasklet);
} else if (phyerr == AR5K_RX_PHY_ERROR_CCK_TIMING) {
as->cck_errors++;
if (as->cck_errors > ATH5K_ANI_CCK_TRIG_HIGH)
tasklet_schedule(&ah->ani_tasklet);
}
}
/*** INIT ***/
/**
* ath5k_enable_phy_err_counters() - Enable PHY error counters
*
* Enable PHY error counters for OFDM and CCK timing errors.
*/
static void
ath5k_enable_phy_err_counters(struct ath5k_hw *ah)
{
ath5k_hw_reg_write(ah, ATH5K_PHYERR_CNT_MAX - ATH5K_ANI_OFDM_TRIG_HIGH,
AR5K_PHYERR_CNT1);
ath5k_hw_reg_write(ah, ATH5K_PHYERR_CNT_MAX - ATH5K_ANI_CCK_TRIG_HIGH,
AR5K_PHYERR_CNT2);
ath5k_hw_reg_write(ah, AR5K_PHY_ERR_FIL_OFDM, AR5K_PHYERR_CNT1_MASK);
ath5k_hw_reg_write(ah, AR5K_PHY_ERR_FIL_CCK, AR5K_PHYERR_CNT2_MASK);
/* not in use */
ath5k_hw_reg_write(ah, 0, AR5K_OFDM_FIL_CNT);
ath5k_hw_reg_write(ah, 0, AR5K_CCK_FIL_CNT);
}
/**
* ath5k_disable_phy_err_counters() - Disable PHY error counters
*
* Disable PHY error counters for OFDM and CCK timing errors.
*/
static void
ath5k_disable_phy_err_counters(struct ath5k_hw *ah)
{
ath5k_hw_reg_write(ah, 0, AR5K_PHYERR_CNT1);
ath5k_hw_reg_write(ah, 0, AR5K_PHYERR_CNT2);
ath5k_hw_reg_write(ah, 0, AR5K_PHYERR_CNT1_MASK);
ath5k_hw_reg_write(ah, 0, AR5K_PHYERR_CNT2_MASK);
/* not in use */
ath5k_hw_reg_write(ah, 0, AR5K_OFDM_FIL_CNT);
ath5k_hw_reg_write(ah, 0, AR5K_CCK_FIL_CNT);
}
/**
* ath5k_ani_init() - Initialize ANI
* @mode: Which mode to use (auto, manual high, manual low, off)
*
* Initialize ANI according to mode.
*/
void
ath5k_ani_init(struct ath5k_hw *ah, enum ath5k_ani_mode mode)
{
/* ANI is only possible on 5212 and newer */
if (ah->ah_version < AR5K_AR5212)
return;
if (mode < ATH5K_ANI_MODE_OFF || mode > ATH5K_ANI_MODE_AUTO) {
ATH5K_ERR(ah, "ANI mode %d out of range", mode);
return;
}
/* clear old state information */
memset(&ah->ani_state, 0, sizeof(ah->ani_state));
/* older hardware has more spur levels than newer */
if (ah->ah_mac_srev < AR5K_SREV_AR2414)
ah->ani_state.max_spur_level = 7;
else
ah->ani_state.max_spur_level = 2;
/* initial values for our ani parameters */
if (mode == ATH5K_ANI_MODE_OFF) {
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, "ANI off\n");
} else if (mode == ATH5K_ANI_MODE_MANUAL_LOW) {
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI,
"ANI manual low -> high sensitivity\n");
ath5k_ani_set_noise_immunity_level(ah, 0);
ath5k_ani_set_spur_immunity_level(ah, 0);
ath5k_ani_set_firstep_level(ah, 0);
ath5k_ani_set_ofdm_weak_signal_detection(ah, true);
ath5k_ani_set_cck_weak_signal_detection(ah, true);
} else if (mode == ATH5K_ANI_MODE_MANUAL_HIGH) {
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI,
"ANI manual high -> low sensitivity\n");
ath5k_ani_set_noise_immunity_level(ah,
ATH5K_ANI_MAX_NOISE_IMM_LVL);
ath5k_ani_set_spur_immunity_level(ah,
ah->ani_state.max_spur_level);
ath5k_ani_set_firstep_level(ah, ATH5K_ANI_MAX_FIRSTEP_LVL);
ath5k_ani_set_ofdm_weak_signal_detection(ah, false);
ath5k_ani_set_cck_weak_signal_detection(ah, false);
} else if (mode == ATH5K_ANI_MODE_AUTO) {
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, "ANI auto\n");
ath5k_ani_set_noise_immunity_level(ah, 0);
ath5k_ani_set_spur_immunity_level(ah, 0);
ath5k_ani_set_firstep_level(ah, 0);
ath5k_ani_set_ofdm_weak_signal_detection(ah, true);
ath5k_ani_set_cck_weak_signal_detection(ah, false);
}
/* newer hardware has PHY error counter registers which we can use to
* get OFDM and CCK error counts. older hardware has to set rxfilter and
* report every single PHY error by calling ath5k_ani_phy_error_report()
*/
if (mode == ATH5K_ANI_MODE_AUTO) {
if (ah->ah_capabilities.cap_has_phyerr_counters)
ath5k_enable_phy_err_counters(ah);
else
ath5k_hw_set_rx_filter(ah, ath5k_hw_get_rx_filter(ah) |
AR5K_RX_FILTER_PHYERR);
} else {
if (ah->ah_capabilities.cap_has_phyerr_counters)
ath5k_disable_phy_err_counters(ah);
else
ath5k_hw_set_rx_filter(ah, ath5k_hw_get_rx_filter(ah) &
~AR5K_RX_FILTER_PHYERR);
}
ah->ani_state.ani_mode = mode;
}
/*** DEBUG ***/
#ifdef CONFIG_ATH5K_DEBUG
void
ath5k_ani_print_counters(struct ath5k_hw *ah)
{
/* clears too */
printk(KERN_NOTICE "ACK fail\t%d\n",
ath5k_hw_reg_read(ah, AR5K_ACK_FAIL));
printk(KERN_NOTICE "RTS fail\t%d\n",
ath5k_hw_reg_read(ah, AR5K_RTS_FAIL));
printk(KERN_NOTICE "RTS success\t%d\n",
ath5k_hw_reg_read(ah, AR5K_RTS_OK));
printk(KERN_NOTICE "FCS error\t%d\n",
ath5k_hw_reg_read(ah, AR5K_FCS_FAIL));
/* no clear */
printk(KERN_NOTICE "tx\t%d\n",
ath5k_hw_reg_read(ah, AR5K_PROFCNT_TX));
printk(KERN_NOTICE "rx\t%d\n",
ath5k_hw_reg_read(ah, AR5K_PROFCNT_RX));
printk(KERN_NOTICE "busy\t%d\n",
ath5k_hw_reg_read(ah, AR5K_PROFCNT_RXCLR));
printk(KERN_NOTICE "cycles\t%d\n",
ath5k_hw_reg_read(ah, AR5K_PROFCNT_CYCLE));
printk(KERN_NOTICE "AR5K_PHYERR_CNT1\t%d\n",
ath5k_hw_reg_read(ah, AR5K_PHYERR_CNT1));
printk(KERN_NOTICE "AR5K_PHYERR_CNT2\t%d\n",
ath5k_hw_reg_read(ah, AR5K_PHYERR_CNT2));
printk(KERN_NOTICE "AR5K_OFDM_FIL_CNT\t%d\n",
ath5k_hw_reg_read(ah, AR5K_OFDM_FIL_CNT));
printk(KERN_NOTICE "AR5K_CCK_FIL_CNT\t%d\n",
ath5k_hw_reg_read(ah, AR5K_CCK_FIL_CNT));
}
#endif