| /* |
| * Front panel driver for Linux |
| * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad) |
| * connected to a parallel printer port. |
| * |
| * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit |
| * serial module compatible with Samsung's KS0074. The pins may be connected in |
| * any combination, everything is programmable. |
| * |
| * The keypad consists in a matrix of push buttons connecting input pins to |
| * data output pins or to the ground. The combinations have to be hard-coded |
| * in the driver, though several profiles exist and adding new ones is easy. |
| * |
| * Several profiles are provided for commonly found LCD+keypad modules on the |
| * market, such as those found in Nexcom's appliances. |
| * |
| * FIXME: |
| * - the initialization/deinitialization process is very dirty and should |
| * be rewritten. It may even be buggy. |
| * |
| * TODO: |
| * - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs) |
| * - make the LCD a part of a virtual screen of Vx*Vy |
| * - make the inputs list smp-safe |
| * - change the keyboard to a double mapping : signals -> key_id -> values |
| * so that applications can change values without knowing signals |
| * |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/module.h> |
| |
| #include <linux/types.h> |
| #include <linux/errno.h> |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/spinlock.h> |
| #include <linux/interrupt.h> |
| #include <linux/miscdevice.h> |
| #include <linux/slab.h> |
| #include <linux/ioport.h> |
| #include <linux/fcntl.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/kernel.h> |
| #include <linux/ctype.h> |
| #include <linux/parport.h> |
| #include <linux/list.h> |
| #include <linux/notifier.h> |
| #include <linux/reboot.h> |
| #include <linux/workqueue.h> |
| #include <generated/utsrelease.h> |
| |
| #include <linux/io.h> |
| #include <linux/uaccess.h> |
| |
| #define LCD_MINOR 156 |
| #define KEYPAD_MINOR 185 |
| |
| #define LCD_MAXBYTES 256 /* max burst write */ |
| |
| #define KEYPAD_BUFFER 64 |
| |
| /* poll the keyboard this every second */ |
| #define INPUT_POLL_TIME (HZ / 50) |
| /* a key starts to repeat after this times INPUT_POLL_TIME */ |
| #define KEYPAD_REP_START (10) |
| /* a key repeats this times INPUT_POLL_TIME */ |
| #define KEYPAD_REP_DELAY (2) |
| |
| /* keep the light on this many seconds for each flash */ |
| #define FLASH_LIGHT_TEMPO (4) |
| |
| /* converts an r_str() input to an active high, bits string : 000BAOSE */ |
| #define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3) |
| |
| #define PNL_PBUSY 0x80 /* inverted input, active low */ |
| #define PNL_PACK 0x40 /* direct input, active low */ |
| #define PNL_POUTPA 0x20 /* direct input, active high */ |
| #define PNL_PSELECD 0x10 /* direct input, active high */ |
| #define PNL_PERRORP 0x08 /* direct input, active low */ |
| |
| #define PNL_PBIDIR 0x20 /* bi-directional ports */ |
| /* high to read data in or-ed with data out */ |
| #define PNL_PINTEN 0x10 |
| #define PNL_PSELECP 0x08 /* inverted output, active low */ |
| #define PNL_PINITP 0x04 /* direct output, active low */ |
| #define PNL_PAUTOLF 0x02 /* inverted output, active low */ |
| #define PNL_PSTROBE 0x01 /* inverted output */ |
| |
| #define PNL_PD0 0x01 |
| #define PNL_PD1 0x02 |
| #define PNL_PD2 0x04 |
| #define PNL_PD3 0x08 |
| #define PNL_PD4 0x10 |
| #define PNL_PD5 0x20 |
| #define PNL_PD6 0x40 |
| #define PNL_PD7 0x80 |
| |
| #define PIN_NONE 0 |
| #define PIN_STROBE 1 |
| #define PIN_D0 2 |
| #define PIN_D1 3 |
| #define PIN_D2 4 |
| #define PIN_D3 5 |
| #define PIN_D4 6 |
| #define PIN_D5 7 |
| #define PIN_D6 8 |
| #define PIN_D7 9 |
| #define PIN_AUTOLF 14 |
| #define PIN_INITP 16 |
| #define PIN_SELECP 17 |
| #define PIN_NOT_SET 127 |
| |
| #define LCD_FLAG_B 0x0004 /* blink on */ |
| #define LCD_FLAG_C 0x0008 /* cursor on */ |
| #define LCD_FLAG_D 0x0010 /* display on */ |
| #define LCD_FLAG_F 0x0020 /* large font mode */ |
| #define LCD_FLAG_N 0x0040 /* 2-rows mode */ |
| #define LCD_FLAG_L 0x0080 /* backlight enabled */ |
| |
| /* LCD commands */ |
| #define LCD_CMD_DISPLAY_CLEAR 0x01 /* Clear entire display */ |
| |
| #define LCD_CMD_ENTRY_MODE 0x04 /* Set entry mode */ |
| #define LCD_CMD_CURSOR_INC 0x02 /* Increment cursor */ |
| |
| #define LCD_CMD_DISPLAY_CTRL 0x08 /* Display control */ |
| #define LCD_CMD_DISPLAY_ON 0x04 /* Set display on */ |
| #define LCD_CMD_CURSOR_ON 0x02 /* Set cursor on */ |
| #define LCD_CMD_BLINK_ON 0x01 /* Set blink on */ |
| |
| #define LCD_CMD_SHIFT 0x10 /* Shift cursor/display */ |
| #define LCD_CMD_DISPLAY_SHIFT 0x08 /* Shift display instead of cursor */ |
| #define LCD_CMD_SHIFT_RIGHT 0x04 /* Shift display/cursor to the right */ |
| |
| #define LCD_CMD_FUNCTION_SET 0x20 /* Set function */ |
| #define LCD_CMD_DATA_LEN_8BITS 0x10 /* Set data length to 8 bits */ |
| #define LCD_CMD_TWO_LINES 0x08 /* Set to two display lines */ |
| #define LCD_CMD_FONT_5X10_DOTS 0x04 /* Set char font to 5x10 dots */ |
| |
| #define LCD_CMD_SET_CGRAM_ADDR 0x40 /* Set char generator RAM address */ |
| |
| #define LCD_CMD_SET_DDRAM_ADDR 0x80 /* Set display data RAM address */ |
| |
| #define LCD_ESCAPE_LEN 24 /* max chars for LCD escape command */ |
| #define LCD_ESCAPE_CHAR 27 /* use char 27 for escape command */ |
| |
| #define NOT_SET -1 |
| |
| /* macros to simplify use of the parallel port */ |
| #define r_ctr(x) (parport_read_control((x)->port)) |
| #define r_dtr(x) (parport_read_data((x)->port)) |
| #define r_str(x) (parport_read_status((x)->port)) |
| #define w_ctr(x, y) (parport_write_control((x)->port, (y))) |
| #define w_dtr(x, y) (parport_write_data((x)->port, (y))) |
| |
| /* this defines which bits are to be used and which ones to be ignored */ |
| /* logical or of the output bits involved in the scan matrix */ |
| static __u8 scan_mask_o; |
| /* logical or of the input bits involved in the scan matrix */ |
| static __u8 scan_mask_i; |
| |
| enum input_type { |
| INPUT_TYPE_STD, |
| INPUT_TYPE_KBD, |
| }; |
| |
| enum input_state { |
| INPUT_ST_LOW, |
| INPUT_ST_RISING, |
| INPUT_ST_HIGH, |
| INPUT_ST_FALLING, |
| }; |
| |
| struct logical_input { |
| struct list_head list; |
| __u64 mask; |
| __u64 value; |
| enum input_type type; |
| enum input_state state; |
| __u8 rise_time, fall_time; |
| __u8 rise_timer, fall_timer, high_timer; |
| |
| union { |
| struct { /* valid when type == INPUT_TYPE_STD */ |
| void (*press_fct)(int); |
| void (*release_fct)(int); |
| int press_data; |
| int release_data; |
| } std; |
| struct { /* valid when type == INPUT_TYPE_KBD */ |
| /* strings can be non null-terminated */ |
| char press_str[sizeof(void *) + sizeof(int)]; |
| char repeat_str[sizeof(void *) + sizeof(int)]; |
| char release_str[sizeof(void *) + sizeof(int)]; |
| } kbd; |
| } u; |
| }; |
| |
| static LIST_HEAD(logical_inputs); /* list of all defined logical inputs */ |
| |
| /* physical contacts history |
| * Physical contacts are a 45 bits string of 9 groups of 5 bits each. |
| * The 8 lower groups correspond to output bits 0 to 7, and the 9th group |
| * corresponds to the ground. |
| * Within each group, bits are stored in the same order as read on the port : |
| * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0). |
| * So, each __u64 is represented like this : |
| * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE |
| * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00> |
| */ |
| |
| /* what has just been read from the I/O ports */ |
| static __u64 phys_read; |
| /* previous phys_read */ |
| static __u64 phys_read_prev; |
| /* stabilized phys_read (phys_read|phys_read_prev) */ |
| static __u64 phys_curr; |
| /* previous phys_curr */ |
| static __u64 phys_prev; |
| /* 0 means that at least one logical signal needs be computed */ |
| static char inputs_stable; |
| |
| /* these variables are specific to the keypad */ |
| static struct { |
| bool enabled; |
| } keypad; |
| |
| static char keypad_buffer[KEYPAD_BUFFER]; |
| static int keypad_buflen; |
| static int keypad_start; |
| static char keypressed; |
| static wait_queue_head_t keypad_read_wait; |
| |
| /* lcd-specific variables */ |
| static struct { |
| bool enabled; |
| bool initialized; |
| bool must_clear; |
| |
| int height; |
| int width; |
| int bwidth; |
| int hwidth; |
| int charset; |
| int proto; |
| |
| struct delayed_work bl_work; |
| struct mutex bl_tempo_lock; /* Protects access to bl_tempo */ |
| bool bl_tempo; |
| |
| /* TODO: use union here? */ |
| struct { |
| int e; |
| int rs; |
| int rw; |
| int cl; |
| int da; |
| int bl; |
| } pins; |
| |
| /* contains the LCD config state */ |
| unsigned long int flags; |
| |
| /* Contains the LCD X and Y offset */ |
| struct { |
| unsigned long int x; |
| unsigned long int y; |
| } addr; |
| |
| /* Current escape sequence and it's length or -1 if outside */ |
| struct { |
| char buf[LCD_ESCAPE_LEN + 1]; |
| int len; |
| } esc_seq; |
| } lcd; |
| |
| /* Needed only for init */ |
| static int selected_lcd_type = NOT_SET; |
| |
| /* |
| * Bit masks to convert LCD signals to parallel port outputs. |
| * _d_ are values for data port, _c_ are for control port. |
| * [0] = signal OFF, [1] = signal ON, [2] = mask |
| */ |
| #define BIT_CLR 0 |
| #define BIT_SET 1 |
| #define BIT_MSK 2 |
| #define BIT_STATES 3 |
| /* |
| * one entry for each bit on the LCD |
| */ |
| #define LCD_BIT_E 0 |
| #define LCD_BIT_RS 1 |
| #define LCD_BIT_RW 2 |
| #define LCD_BIT_BL 3 |
| #define LCD_BIT_CL 4 |
| #define LCD_BIT_DA 5 |
| #define LCD_BITS 6 |
| |
| /* |
| * each bit can be either connected to a DATA or CTRL port |
| */ |
| #define LCD_PORT_C 0 |
| #define LCD_PORT_D 1 |
| #define LCD_PORTS 2 |
| |
| static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES]; |
| |
| /* |
| * LCD protocols |
| */ |
| #define LCD_PROTO_PARALLEL 0 |
| #define LCD_PROTO_SERIAL 1 |
| #define LCD_PROTO_TI_DA8XX_LCD 2 |
| |
| /* |
| * LCD character sets |
| */ |
| #define LCD_CHARSET_NORMAL 0 |
| #define LCD_CHARSET_KS0074 1 |
| |
| /* |
| * LCD types |
| */ |
| #define LCD_TYPE_NONE 0 |
| #define LCD_TYPE_CUSTOM 1 |
| #define LCD_TYPE_OLD 2 |
| #define LCD_TYPE_KS0074 3 |
| #define LCD_TYPE_HANTRONIX 4 |
| #define LCD_TYPE_NEXCOM 5 |
| |
| /* |
| * keypad types |
| */ |
| #define KEYPAD_TYPE_NONE 0 |
| #define KEYPAD_TYPE_OLD 1 |
| #define KEYPAD_TYPE_NEW 2 |
| #define KEYPAD_TYPE_NEXCOM 3 |
| |
| /* |
| * panel profiles |
| */ |
| #define PANEL_PROFILE_CUSTOM 0 |
| #define PANEL_PROFILE_OLD 1 |
| #define PANEL_PROFILE_NEW 2 |
| #define PANEL_PROFILE_HANTRONIX 3 |
| #define PANEL_PROFILE_NEXCOM 4 |
| #define PANEL_PROFILE_LARGE 5 |
| |
| /* |
| * Construct custom config from the kernel's configuration |
| */ |
| #define DEFAULT_PARPORT 0 |
| #define DEFAULT_PROFILE PANEL_PROFILE_LARGE |
| #define DEFAULT_KEYPAD_TYPE KEYPAD_TYPE_OLD |
| #define DEFAULT_LCD_TYPE LCD_TYPE_OLD |
| #define DEFAULT_LCD_HEIGHT 2 |
| #define DEFAULT_LCD_WIDTH 40 |
| #define DEFAULT_LCD_BWIDTH 40 |
| #define DEFAULT_LCD_HWIDTH 64 |
| #define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL |
| #define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL |
| |
| #define DEFAULT_LCD_PIN_E PIN_AUTOLF |
| #define DEFAULT_LCD_PIN_RS PIN_SELECP |
| #define DEFAULT_LCD_PIN_RW PIN_INITP |
| #define DEFAULT_LCD_PIN_SCL PIN_STROBE |
| #define DEFAULT_LCD_PIN_SDA PIN_D0 |
| #define DEFAULT_LCD_PIN_BL PIN_NOT_SET |
| |
| #ifdef CONFIG_PANEL_PARPORT |
| #undef DEFAULT_PARPORT |
| #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT |
| #endif |
| |
| #ifdef CONFIG_PANEL_PROFILE |
| #undef DEFAULT_PROFILE |
| #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE |
| #endif |
| |
| #if DEFAULT_PROFILE == 0 /* custom */ |
| #ifdef CONFIG_PANEL_KEYPAD |
| #undef DEFAULT_KEYPAD_TYPE |
| #define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD |
| #endif |
| |
| #ifdef CONFIG_PANEL_LCD |
| #undef DEFAULT_LCD_TYPE |
| #define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD |
| #endif |
| |
| #ifdef CONFIG_PANEL_LCD_HEIGHT |
| #undef DEFAULT_LCD_HEIGHT |
| #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT |
| #endif |
| |
| #ifdef CONFIG_PANEL_LCD_WIDTH |
| #undef DEFAULT_LCD_WIDTH |
| #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH |
| #endif |
| |
| #ifdef CONFIG_PANEL_LCD_BWIDTH |
| #undef DEFAULT_LCD_BWIDTH |
| #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH |
| #endif |
| |
| #ifdef CONFIG_PANEL_LCD_HWIDTH |
| #undef DEFAULT_LCD_HWIDTH |
| #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH |
| #endif |
| |
| #ifdef CONFIG_PANEL_LCD_CHARSET |
| #undef DEFAULT_LCD_CHARSET |
| #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET |
| #endif |
| |
| #ifdef CONFIG_PANEL_LCD_PROTO |
| #undef DEFAULT_LCD_PROTO |
| #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO |
| #endif |
| |
| #ifdef CONFIG_PANEL_LCD_PIN_E |
| #undef DEFAULT_LCD_PIN_E |
| #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E |
| #endif |
| |
| #ifdef CONFIG_PANEL_LCD_PIN_RS |
| #undef DEFAULT_LCD_PIN_RS |
| #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS |
| #endif |
| |
| #ifdef CONFIG_PANEL_LCD_PIN_RW |
| #undef DEFAULT_LCD_PIN_RW |
| #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW |
| #endif |
| |
| #ifdef CONFIG_PANEL_LCD_PIN_SCL |
| #undef DEFAULT_LCD_PIN_SCL |
| #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL |
| #endif |
| |
| #ifdef CONFIG_PANEL_LCD_PIN_SDA |
| #undef DEFAULT_LCD_PIN_SDA |
| #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA |
| #endif |
| |
| #ifdef CONFIG_PANEL_LCD_PIN_BL |
| #undef DEFAULT_LCD_PIN_BL |
| #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL |
| #endif |
| |
| #endif /* DEFAULT_PROFILE == 0 */ |
| |
| /* global variables */ |
| |
| /* Device single-open policy control */ |
| static atomic_t lcd_available = ATOMIC_INIT(1); |
| static atomic_t keypad_available = ATOMIC_INIT(1); |
| |
| static struct pardevice *pprt; |
| |
| static int keypad_initialized; |
| |
| static void (*lcd_write_cmd)(int); |
| static void (*lcd_write_data)(int); |
| static void (*lcd_clear_fast)(void); |
| |
| static DEFINE_SPINLOCK(pprt_lock); |
| static struct timer_list scan_timer; |
| |
| MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver"); |
| |
| static int parport = DEFAULT_PARPORT; |
| module_param(parport, int, 0000); |
| MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)"); |
| |
| static int profile = DEFAULT_PROFILE; |
| module_param(profile, int, 0000); |
| MODULE_PARM_DESC(profile, |
| "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; " |
| "4=16x2 nexcom; default=40x2, old kp"); |
| |
| static int keypad_type = NOT_SET; |
| module_param(keypad_type, int, 0000); |
| MODULE_PARM_DESC(keypad_type, |
| "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys"); |
| |
| static int lcd_type = NOT_SET; |
| module_param(lcd_type, int, 0000); |
| MODULE_PARM_DESC(lcd_type, |
| "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom"); |
| |
| static int lcd_height = NOT_SET; |
| module_param(lcd_height, int, 0000); |
| MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD"); |
| |
| static int lcd_width = NOT_SET; |
| module_param(lcd_width, int, 0000); |
| MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD"); |
| |
| static int lcd_bwidth = NOT_SET; /* internal buffer width (usually 40) */ |
| module_param(lcd_bwidth, int, 0000); |
| MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)"); |
| |
| static int lcd_hwidth = NOT_SET; /* hardware buffer width (usually 64) */ |
| module_param(lcd_hwidth, int, 0000); |
| MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)"); |
| |
| static int lcd_charset = NOT_SET; |
| module_param(lcd_charset, int, 0000); |
| MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074"); |
| |
| static int lcd_proto = NOT_SET; |
| module_param(lcd_proto, int, 0000); |
| MODULE_PARM_DESC(lcd_proto, |
| "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface"); |
| |
| /* |
| * These are the parallel port pins the LCD control signals are connected to. |
| * Set this to 0 if the signal is not used. Set it to its opposite value |
| * (negative) if the signal is negated. -MAXINT is used to indicate that the |
| * pin has not been explicitly specified. |
| * |
| * WARNING! no check will be performed about collisions with keypad ! |
| */ |
| |
| static int lcd_e_pin = PIN_NOT_SET; |
| module_param(lcd_e_pin, int, 0000); |
| MODULE_PARM_DESC(lcd_e_pin, |
| "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)"); |
| |
| static int lcd_rs_pin = PIN_NOT_SET; |
| module_param(lcd_rs_pin, int, 0000); |
| MODULE_PARM_DESC(lcd_rs_pin, |
| "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)"); |
| |
| static int lcd_rw_pin = PIN_NOT_SET; |
| module_param(lcd_rw_pin, int, 0000); |
| MODULE_PARM_DESC(lcd_rw_pin, |
| "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)"); |
| |
| static int lcd_cl_pin = PIN_NOT_SET; |
| module_param(lcd_cl_pin, int, 0000); |
| MODULE_PARM_DESC(lcd_cl_pin, |
| "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)"); |
| |
| static int lcd_da_pin = PIN_NOT_SET; |
| module_param(lcd_da_pin, int, 0000); |
| MODULE_PARM_DESC(lcd_da_pin, |
| "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)"); |
| |
| static int lcd_bl_pin = PIN_NOT_SET; |
| module_param(lcd_bl_pin, int, 0000); |
| MODULE_PARM_DESC(lcd_bl_pin, |
| "# of the // port pin connected to LCD backlight, with polarity (-17..17)"); |
| |
| /* Deprecated module parameters - consider not using them anymore */ |
| |
| static int lcd_enabled = NOT_SET; |
| module_param(lcd_enabled, int, 0000); |
| MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead"); |
| |
| static int keypad_enabled = NOT_SET; |
| module_param(keypad_enabled, int, 0000); |
| MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead"); |
| |
| static const unsigned char *lcd_char_conv; |
| |
| /* for some LCD drivers (ks0074) we need a charset conversion table. */ |
| static const unsigned char lcd_char_conv_ks0074[256] = { |
| /* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */ |
| /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
| /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, |
| /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, |
| /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, |
| /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27, |
| /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, |
| /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, |
| /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, |
| /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, |
| /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, |
| /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, |
| /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4, |
| /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, |
| /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, |
| /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, |
| /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20, |
| /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, |
| /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, |
| /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, |
| /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, |
| /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f, |
| /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96, |
| /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd, |
| /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60, |
| /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9, |
| /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3, |
| /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78, |
| /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe, |
| /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8, |
| /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69, |
| /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25, |
| /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79, |
| }; |
| |
| static const char old_keypad_profile[][4][9] = { |
| {"S0", "Left\n", "Left\n", ""}, |
| {"S1", "Down\n", "Down\n", ""}, |
| {"S2", "Up\n", "Up\n", ""}, |
| {"S3", "Right\n", "Right\n", ""}, |
| {"S4", "Esc\n", "Esc\n", ""}, |
| {"S5", "Ret\n", "Ret\n", ""}, |
| {"", "", "", ""} |
| }; |
| |
| /* signals, press, repeat, release */ |
| static const char new_keypad_profile[][4][9] = { |
| {"S0", "Left\n", "Left\n", ""}, |
| {"S1", "Down\n", "Down\n", ""}, |
| {"S2", "Up\n", "Up\n", ""}, |
| {"S3", "Right\n", "Right\n", ""}, |
| {"S4s5", "", "Esc\n", "Esc\n"}, |
| {"s4S5", "", "Ret\n", "Ret\n"}, |
| {"S4S5", "Help\n", "", ""}, |
| /* add new signals above this line */ |
| {"", "", "", ""} |
| }; |
| |
| /* signals, press, repeat, release */ |
| static const char nexcom_keypad_profile[][4][9] = { |
| {"a-p-e-", "Down\n", "Down\n", ""}, |
| {"a-p-E-", "Ret\n", "Ret\n", ""}, |
| {"a-P-E-", "Esc\n", "Esc\n", ""}, |
| {"a-P-e-", "Up\n", "Up\n", ""}, |
| /* add new signals above this line */ |
| {"", "", "", ""} |
| }; |
| |
| static const char (*keypad_profile)[4][9] = old_keypad_profile; |
| |
| static DECLARE_BITMAP(bits, LCD_BITS); |
| |
| static void lcd_get_bits(unsigned int port, int *val) |
| { |
| unsigned int bit, state; |
| |
| for (bit = 0; bit < LCD_BITS; bit++) { |
| state = test_bit(bit, bits) ? BIT_SET : BIT_CLR; |
| *val &= lcd_bits[port][bit][BIT_MSK]; |
| *val |= lcd_bits[port][bit][state]; |
| } |
| } |
| |
| /* sets data port bits according to current signals values */ |
| static int set_data_bits(void) |
| { |
| int val; |
| |
| val = r_dtr(pprt); |
| lcd_get_bits(LCD_PORT_D, &val); |
| w_dtr(pprt, val); |
| return val; |
| } |
| |
| /* sets ctrl port bits according to current signals values */ |
| static int set_ctrl_bits(void) |
| { |
| int val; |
| |
| val = r_ctr(pprt); |
| lcd_get_bits(LCD_PORT_C, &val); |
| w_ctr(pprt, val); |
| return val; |
| } |
| |
| /* sets ctrl & data port bits according to current signals values */ |
| static void panel_set_bits(void) |
| { |
| set_data_bits(); |
| set_ctrl_bits(); |
| } |
| |
| /* |
| * Converts a parallel port pin (from -25 to 25) to data and control ports |
| * masks, and data and control port bits. The signal will be considered |
| * unconnected if it's on pin 0 or an invalid pin (<-25 or >25). |
| * |
| * Result will be used this way : |
| * out(dport, in(dport) & d_val[2] | d_val[signal_state]) |
| * out(cport, in(cport) & c_val[2] | c_val[signal_state]) |
| */ |
| static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val) |
| { |
| int d_bit, c_bit, inv; |
| |
| d_val[0] = 0; |
| c_val[0] = 0; |
| d_val[1] = 0; |
| c_val[1] = 0; |
| d_val[2] = 0xFF; |
| c_val[2] = 0xFF; |
| |
| if (pin == 0) |
| return; |
| |
| inv = (pin < 0); |
| if (inv) |
| pin = -pin; |
| |
| d_bit = 0; |
| c_bit = 0; |
| |
| switch (pin) { |
| case PIN_STROBE: /* strobe, inverted */ |
| c_bit = PNL_PSTROBE; |
| inv = !inv; |
| break; |
| case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */ |
| d_bit = 1 << (pin - 2); |
| break; |
| case PIN_AUTOLF: /* autofeed, inverted */ |
| c_bit = PNL_PAUTOLF; |
| inv = !inv; |
| break; |
| case PIN_INITP: /* init, direct */ |
| c_bit = PNL_PINITP; |
| break; |
| case PIN_SELECP: /* select_in, inverted */ |
| c_bit = PNL_PSELECP; |
| inv = !inv; |
| break; |
| default: /* unknown pin, ignore */ |
| break; |
| } |
| |
| if (c_bit) { |
| c_val[2] &= ~c_bit; |
| c_val[!inv] = c_bit; |
| } else if (d_bit) { |
| d_val[2] &= ~d_bit; |
| d_val[!inv] = d_bit; |
| } |
| } |
| |
| /* sleeps that many milliseconds with a reschedule */ |
| static void long_sleep(int ms) |
| { |
| if (in_interrupt()) |
| mdelay(ms); |
| else |
| schedule_timeout_interruptible(msecs_to_jiffies(ms)); |
| } |
| |
| /* |
| * send a serial byte to the LCD panel. The caller is responsible for locking |
| * if needed. |
| */ |
| static void lcd_send_serial(int byte) |
| { |
| int bit; |
| |
| /* |
| * the data bit is set on D0, and the clock on STROBE. |
| * LCD reads D0 on STROBE's rising edge. |
| */ |
| for (bit = 0; bit < 8; bit++) { |
| clear_bit(LCD_BIT_CL, bits); /* CLK low */ |
| panel_set_bits(); |
| if (byte & 1) { |
| set_bit(LCD_BIT_DA, bits); |
| } else { |
| clear_bit(LCD_BIT_DA, bits); |
| } |
| |
| panel_set_bits(); |
| udelay(2); /* maintain the data during 2 us before CLK up */ |
| set_bit(LCD_BIT_CL, bits); /* CLK high */ |
| panel_set_bits(); |
| udelay(1); /* maintain the strobe during 1 us */ |
| byte >>= 1; |
| } |
| } |
| |
| /* turn the backlight on or off */ |
| static void __lcd_backlight(int on) |
| { |
| /* The backlight is activated by setting the AUTOFEED line to +5V */ |
| spin_lock_irq(&pprt_lock); |
| if (on) |
| set_bit(LCD_BIT_BL, bits); |
| else |
| clear_bit(LCD_BIT_BL, bits); |
| panel_set_bits(); |
| spin_unlock_irq(&pprt_lock); |
| } |
| |
| static void lcd_backlight(int on) |
| { |
| if (lcd.pins.bl == PIN_NONE) |
| return; |
| |
| mutex_lock(&lcd.bl_tempo_lock); |
| if (!lcd.bl_tempo) |
| __lcd_backlight(on); |
| mutex_unlock(&lcd.bl_tempo_lock); |
| } |
| |
| static void lcd_bl_off(struct work_struct *work) |
| { |
| mutex_lock(&lcd.bl_tempo_lock); |
| if (lcd.bl_tempo) { |
| lcd.bl_tempo = false; |
| if (!(lcd.flags & LCD_FLAG_L)) |
| __lcd_backlight(0); |
| } |
| mutex_unlock(&lcd.bl_tempo_lock); |
| } |
| |
| /* turn the backlight on for a little while */ |
| static void lcd_poke(void) |
| { |
| if (lcd.pins.bl == PIN_NONE) |
| return; |
| |
| cancel_delayed_work_sync(&lcd.bl_work); |
| |
| mutex_lock(&lcd.bl_tempo_lock); |
| if (!lcd.bl_tempo && !(lcd.flags & LCD_FLAG_L)) |
| __lcd_backlight(1); |
| lcd.bl_tempo = true; |
| schedule_delayed_work(&lcd.bl_work, FLASH_LIGHT_TEMPO * HZ); |
| mutex_unlock(&lcd.bl_tempo_lock); |
| } |
| |
| /* send a command to the LCD panel in serial mode */ |
| static void lcd_write_cmd_s(int cmd) |
| { |
| spin_lock_irq(&pprt_lock); |
| lcd_send_serial(0x1F); /* R/W=W, RS=0 */ |
| lcd_send_serial(cmd & 0x0F); |
| lcd_send_serial((cmd >> 4) & 0x0F); |
| udelay(40); /* the shortest command takes at least 40 us */ |
| spin_unlock_irq(&pprt_lock); |
| } |
| |
| /* send data to the LCD panel in serial mode */ |
| static void lcd_write_data_s(int data) |
| { |
| spin_lock_irq(&pprt_lock); |
| lcd_send_serial(0x5F); /* R/W=W, RS=1 */ |
| lcd_send_serial(data & 0x0F); |
| lcd_send_serial((data >> 4) & 0x0F); |
| udelay(40); /* the shortest data takes at least 40 us */ |
| spin_unlock_irq(&pprt_lock); |
| } |
| |
| /* send a command to the LCD panel in 8 bits parallel mode */ |
| static void lcd_write_cmd_p8(int cmd) |
| { |
| spin_lock_irq(&pprt_lock); |
| /* present the data to the data port */ |
| w_dtr(pprt, cmd); |
| udelay(20); /* maintain the data during 20 us before the strobe */ |
| |
| set_bit(LCD_BIT_E, bits); |
| clear_bit(LCD_BIT_RS, bits); |
| clear_bit(LCD_BIT_RW, bits); |
| set_ctrl_bits(); |
| |
| udelay(40); /* maintain the strobe during 40 us */ |
| |
| clear_bit(LCD_BIT_E, bits); |
| set_ctrl_bits(); |
| |
| udelay(120); /* the shortest command takes at least 120 us */ |
| spin_unlock_irq(&pprt_lock); |
| } |
| |
| /* send data to the LCD panel in 8 bits parallel mode */ |
| static void lcd_write_data_p8(int data) |
| { |
| spin_lock_irq(&pprt_lock); |
| /* present the data to the data port */ |
| w_dtr(pprt, data); |
| udelay(20); /* maintain the data during 20 us before the strobe */ |
| |
| set_bit(LCD_BIT_E, bits); |
| set_bit(LCD_BIT_RS, bits); |
| clear_bit(LCD_BIT_RW, bits); |
| set_ctrl_bits(); |
| |
| udelay(40); /* maintain the strobe during 40 us */ |
| |
| clear_bit(LCD_BIT_E, bits); |
| set_ctrl_bits(); |
| |
| udelay(45); /* the shortest data takes at least 45 us */ |
| spin_unlock_irq(&pprt_lock); |
| } |
| |
| /* send a command to the TI LCD panel */ |
| static void lcd_write_cmd_tilcd(int cmd) |
| { |
| spin_lock_irq(&pprt_lock); |
| /* present the data to the control port */ |
| w_ctr(pprt, cmd); |
| udelay(60); |
| spin_unlock_irq(&pprt_lock); |
| } |
| |
| /* send data to the TI LCD panel */ |
| static void lcd_write_data_tilcd(int data) |
| { |
| spin_lock_irq(&pprt_lock); |
| /* present the data to the data port */ |
| w_dtr(pprt, data); |
| udelay(60); |
| spin_unlock_irq(&pprt_lock); |
| } |
| |
| static void lcd_gotoxy(void) |
| { |
| lcd_write_cmd(LCD_CMD_SET_DDRAM_ADDR |
| | (lcd.addr.y ? lcd.hwidth : 0) |
| /* |
| * we force the cursor to stay at the end of the |
| * line if it wants to go farther |
| */ |
| | ((lcd.addr.x < lcd.bwidth) ? lcd.addr.x & |
| (lcd.hwidth - 1) : lcd.bwidth - 1)); |
| } |
| |
| static void lcd_home(void) |
| { |
| lcd.addr.x = 0; |
| lcd.addr.y = 0; |
| lcd_gotoxy(); |
| } |
| |
| static void lcd_print(char c) |
| { |
| if (lcd.addr.x < lcd.bwidth) { |
| if (lcd_char_conv) |
| c = lcd_char_conv[(unsigned char)c]; |
| lcd_write_data(c); |
| lcd.addr.x++; |
| } |
| /* prevents the cursor from wrapping onto the next line */ |
| if (lcd.addr.x == lcd.bwidth) |
| lcd_gotoxy(); |
| } |
| |
| /* fills the display with spaces and resets X/Y */ |
| static void lcd_clear_fast_s(void) |
| { |
| int pos; |
| |
| lcd_home(); |
| |
| spin_lock_irq(&pprt_lock); |
| for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) { |
| lcd_send_serial(0x5F); /* R/W=W, RS=1 */ |
| lcd_send_serial(' ' & 0x0F); |
| lcd_send_serial((' ' >> 4) & 0x0F); |
| /* the shortest data takes at least 40 us */ |
| udelay(40); |
| } |
| spin_unlock_irq(&pprt_lock); |
| |
| lcd_home(); |
| } |
| |
| /* fills the display with spaces and resets X/Y */ |
| static void lcd_clear_fast_p8(void) |
| { |
| int pos; |
| |
| lcd_home(); |
| |
| spin_lock_irq(&pprt_lock); |
| for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) { |
| /* present the data to the data port */ |
| w_dtr(pprt, ' '); |
| |
| /* maintain the data during 20 us before the strobe */ |
| udelay(20); |
| |
| set_bit(LCD_BIT_E, bits); |
| set_bit(LCD_BIT_RS, bits); |
| clear_bit(LCD_BIT_RW, bits); |
| set_ctrl_bits(); |
| |
| /* maintain the strobe during 40 us */ |
| udelay(40); |
| |
| clear_bit(LCD_BIT_E, bits); |
| set_ctrl_bits(); |
| |
| /* the shortest data takes at least 45 us */ |
| udelay(45); |
| } |
| spin_unlock_irq(&pprt_lock); |
| |
| lcd_home(); |
| } |
| |
| /* fills the display with spaces and resets X/Y */ |
| static void lcd_clear_fast_tilcd(void) |
| { |
| int pos; |
| |
| lcd_home(); |
| |
| spin_lock_irq(&pprt_lock); |
| for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) { |
| /* present the data to the data port */ |
| w_dtr(pprt, ' '); |
| udelay(60); |
| } |
| |
| spin_unlock_irq(&pprt_lock); |
| |
| lcd_home(); |
| } |
| |
| /* clears the display and resets X/Y */ |
| static void lcd_clear_display(void) |
| { |
| lcd_write_cmd(LCD_CMD_DISPLAY_CLEAR); |
| lcd.addr.x = 0; |
| lcd.addr.y = 0; |
| /* we must wait a few milliseconds (15) */ |
| long_sleep(15); |
| } |
| |
| static void lcd_init_display(void) |
| { |
| lcd.flags = ((lcd.height > 1) ? LCD_FLAG_N : 0) |
| | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B; |
| |
| long_sleep(20); /* wait 20 ms after power-up for the paranoid */ |
| |
| /* 8bits, 1 line, small fonts; let's do it 3 times */ |
| lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS); |
| long_sleep(10); |
| lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS); |
| long_sleep(10); |
| lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS); |
| long_sleep(10); |
| |
| /* set font height and lines number */ |
| lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS |
| | ((lcd.flags & LCD_FLAG_F) ? LCD_CMD_FONT_5X10_DOTS : 0) |
| | ((lcd.flags & LCD_FLAG_N) ? LCD_CMD_TWO_LINES : 0) |
| ); |
| long_sleep(10); |
| |
| /* display off, cursor off, blink off */ |
| lcd_write_cmd(LCD_CMD_DISPLAY_CTRL); |
| long_sleep(10); |
| |
| lcd_write_cmd(LCD_CMD_DISPLAY_CTRL /* set display mode */ |
| | ((lcd.flags & LCD_FLAG_D) ? LCD_CMD_DISPLAY_ON : 0) |
| | ((lcd.flags & LCD_FLAG_C) ? LCD_CMD_CURSOR_ON : 0) |
| | ((lcd.flags & LCD_FLAG_B) ? LCD_CMD_BLINK_ON : 0) |
| ); |
| |
| lcd_backlight((lcd.flags & LCD_FLAG_L) ? 1 : 0); |
| |
| long_sleep(10); |
| |
| /* entry mode set : increment, cursor shifting */ |
| lcd_write_cmd(LCD_CMD_ENTRY_MODE | LCD_CMD_CURSOR_INC); |
| |
| lcd_clear_display(); |
| } |
| |
| /* |
| * These are the file operation function for user access to /dev/lcd |
| * This function can also be called from inside the kernel, by |
| * setting file and ppos to NULL. |
| * |
| */ |
| |
| static inline int handle_lcd_special_code(void) |
| { |
| /* LCD special codes */ |
| |
| int processed = 0; |
| |
| char *esc = lcd.esc_seq.buf + 2; |
| int oldflags = lcd.flags; |
| |
| /* check for display mode flags */ |
| switch (*esc) { |
| case 'D': /* Display ON */ |
| lcd.flags |= LCD_FLAG_D; |
| processed = 1; |
| break; |
| case 'd': /* Display OFF */ |
| lcd.flags &= ~LCD_FLAG_D; |
| processed = 1; |
| break; |
| case 'C': /* Cursor ON */ |
| lcd.flags |= LCD_FLAG_C; |
| processed = 1; |
| break; |
| case 'c': /* Cursor OFF */ |
| lcd.flags &= ~LCD_FLAG_C; |
| processed = 1; |
| break; |
| case 'B': /* Blink ON */ |
| lcd.flags |= LCD_FLAG_B; |
| processed = 1; |
| break; |
| case 'b': /* Blink OFF */ |
| lcd.flags &= ~LCD_FLAG_B; |
| processed = 1; |
| break; |
| case '+': /* Back light ON */ |
| lcd.flags |= LCD_FLAG_L; |
| processed = 1; |
| break; |
| case '-': /* Back light OFF */ |
| lcd.flags &= ~LCD_FLAG_L; |
| processed = 1; |
| break; |
| case '*': |
| /* flash back light */ |
| lcd_poke(); |
| processed = 1; |
| break; |
| case 'f': /* Small Font */ |
| lcd.flags &= ~LCD_FLAG_F; |
| processed = 1; |
| break; |
| case 'F': /* Large Font */ |
| lcd.flags |= LCD_FLAG_F; |
| processed = 1; |
| break; |
| case 'n': /* One Line */ |
| lcd.flags &= ~LCD_FLAG_N; |
| processed = 1; |
| break; |
| case 'N': /* Two Lines */ |
| lcd.flags |= LCD_FLAG_N; |
| break; |
| case 'l': /* Shift Cursor Left */ |
| if (lcd.addr.x > 0) { |
| /* back one char if not at end of line */ |
| if (lcd.addr.x < lcd.bwidth) |
| lcd_write_cmd(LCD_CMD_SHIFT); |
| lcd.addr.x--; |
| } |
| processed = 1; |
| break; |
| case 'r': /* shift cursor right */ |
| if (lcd.addr.x < lcd.width) { |
| /* allow the cursor to pass the end of the line */ |
| if (lcd.addr.x < (lcd.bwidth - 1)) |
| lcd_write_cmd(LCD_CMD_SHIFT | |
| LCD_CMD_SHIFT_RIGHT); |
| lcd.addr.x++; |
| } |
| processed = 1; |
| break; |
| case 'L': /* shift display left */ |
| lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT); |
| processed = 1; |
| break; |
| case 'R': /* shift display right */ |
| lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT | |
| LCD_CMD_SHIFT_RIGHT); |
| processed = 1; |
| break; |
| case 'k': { /* kill end of line */ |
| int x; |
| |
| for (x = lcd.addr.x; x < lcd.bwidth; x++) |
| lcd_write_data(' '); |
| |
| /* restore cursor position */ |
| lcd_gotoxy(); |
| processed = 1; |
| break; |
| } |
| case 'I': /* reinitialize display */ |
| lcd_init_display(); |
| processed = 1; |
| break; |
| case 'G': { |
| /* Generator : LGcxxxxx...xx; must have <c> between '0' |
| * and '7', representing the numerical ASCII code of the |
| * redefined character, and <xx...xx> a sequence of 16 |
| * hex digits representing 8 bytes for each character. |
| * Most LCDs will only use 5 lower bits of the 7 first |
| * bytes. |
| */ |
| |
| unsigned char cgbytes[8]; |
| unsigned char cgaddr; |
| int cgoffset; |
| int shift; |
| char value; |
| int addr; |
| |
| if (!strchr(esc, ';')) |
| break; |
| |
| esc++; |
| |
| cgaddr = *(esc++) - '0'; |
| if (cgaddr > 7) { |
| processed = 1; |
| break; |
| } |
| |
| cgoffset = 0; |
| shift = 0; |
| value = 0; |
| while (*esc && cgoffset < 8) { |
| shift ^= 4; |
| if (*esc >= '0' && *esc <= '9') { |
| value |= (*esc - '0') << shift; |
| } else if (*esc >= 'A' && *esc <= 'Z') { |
| value |= (*esc - 'A' + 10) << shift; |
| } else if (*esc >= 'a' && *esc <= 'z') { |
| value |= (*esc - 'a' + 10) << shift; |
| } else { |
| esc++; |
| continue; |
| } |
| |
| if (shift == 0) { |
| cgbytes[cgoffset++] = value; |
| value = 0; |
| } |
| |
| esc++; |
| } |
| |
| lcd_write_cmd(LCD_CMD_SET_CGRAM_ADDR | (cgaddr * 8)); |
| for (addr = 0; addr < cgoffset; addr++) |
| lcd_write_data(cgbytes[addr]); |
| |
| /* ensures that we stop writing to CGRAM */ |
| lcd_gotoxy(); |
| processed = 1; |
| break; |
| } |
| case 'x': /* gotoxy : LxXXX[yYYY]; */ |
| case 'y': /* gotoxy : LyYYY[xXXX]; */ |
| if (!strchr(esc, ';')) |
| break; |
| |
| while (*esc) { |
| if (*esc == 'x') { |
| esc++; |
| if (kstrtoul(esc, 10, &lcd.addr.x) < 0) |
| break; |
| } else if (*esc == 'y') { |
| esc++; |
| if (kstrtoul(esc, 10, &lcd.addr.y) < 0) |
| break; |
| } else { |
| break; |
| } |
| } |
| |
| lcd_gotoxy(); |
| processed = 1; |
| break; |
| } |
| |
| /* TODO: This indent party here got ugly, clean it! */ |
| /* Check whether one flag was changed */ |
| if (oldflags != lcd.flags) { |
| /* check whether one of B,C,D flags were changed */ |
| if ((oldflags ^ lcd.flags) & |
| (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D)) |
| /* set display mode */ |
| lcd_write_cmd(LCD_CMD_DISPLAY_CTRL |
| | ((lcd.flags & LCD_FLAG_D) |
| ? LCD_CMD_DISPLAY_ON : 0) |
| | ((lcd.flags & LCD_FLAG_C) |
| ? LCD_CMD_CURSOR_ON : 0) |
| | ((lcd.flags & LCD_FLAG_B) |
| ? LCD_CMD_BLINK_ON : 0)); |
| /* check whether one of F,N flags was changed */ |
| else if ((oldflags ^ lcd.flags) & (LCD_FLAG_F | LCD_FLAG_N)) |
| lcd_write_cmd(LCD_CMD_FUNCTION_SET |
| | LCD_CMD_DATA_LEN_8BITS |
| | ((lcd.flags & LCD_FLAG_F) |
| ? LCD_CMD_FONT_5X10_DOTS |
| : 0) |
| | ((lcd.flags & LCD_FLAG_N) |
| ? LCD_CMD_TWO_LINES |
| : 0)); |
| /* check whether L flag was changed */ |
| else if ((oldflags ^ lcd.flags) & (LCD_FLAG_L)) |
| lcd_backlight(!!(lcd.flags & LCD_FLAG_L)); |
| } |
| |
| return processed; |
| } |
| |
| static void lcd_write_char(char c) |
| { |
| /* first, we'll test if we're in escape mode */ |
| if ((c != '\n') && lcd.esc_seq.len >= 0) { |
| /* yes, let's add this char to the buffer */ |
| lcd.esc_seq.buf[lcd.esc_seq.len++] = c; |
| lcd.esc_seq.buf[lcd.esc_seq.len] = 0; |
| } else { |
| /* aborts any previous escape sequence */ |
| lcd.esc_seq.len = -1; |
| |
| switch (c) { |
| case LCD_ESCAPE_CHAR: |
| /* start of an escape sequence */ |
| lcd.esc_seq.len = 0; |
| lcd.esc_seq.buf[lcd.esc_seq.len] = 0; |
| break; |
| case '\b': |
| /* go back one char and clear it */ |
| if (lcd.addr.x > 0) { |
| /* |
| * check if we're not at the |
| * end of the line |
| */ |
| if (lcd.addr.x < lcd.bwidth) |
| /* back one char */ |
| lcd_write_cmd(LCD_CMD_SHIFT); |
| lcd.addr.x--; |
| } |
| /* replace with a space */ |
| lcd_write_data(' '); |
| /* back one char again */ |
| lcd_write_cmd(LCD_CMD_SHIFT); |
| break; |
| case '\014': |
| /* quickly clear the display */ |
| lcd_clear_fast(); |
| break; |
| case '\n': |
| /* |
| * flush the remainder of the current line and |
| * go to the beginning of the next line |
| */ |
| for (; lcd.addr.x < lcd.bwidth; lcd.addr.x++) |
| lcd_write_data(' '); |
| lcd.addr.x = 0; |
| lcd.addr.y = (lcd.addr.y + 1) % lcd.height; |
| lcd_gotoxy(); |
| break; |
| case '\r': |
| /* go to the beginning of the same line */ |
| lcd.addr.x = 0; |
| lcd_gotoxy(); |
| break; |
| case '\t': |
| /* print a space instead of the tab */ |
| lcd_print(' '); |
| break; |
| default: |
| /* simply print this char */ |
| lcd_print(c); |
| break; |
| } |
| } |
| |
| /* |
| * now we'll see if we're in an escape mode and if the current |
| * escape sequence can be understood. |
| */ |
| if (lcd.esc_seq.len >= 2) { |
| int processed = 0; |
| |
| if (!strcmp(lcd.esc_seq.buf, "[2J")) { |
| /* clear the display */ |
| lcd_clear_fast(); |
| processed = 1; |
| } else if (!strcmp(lcd.esc_seq.buf, "[H")) { |
| /* cursor to home */ |
| lcd_home(); |
| processed = 1; |
| } |
| /* codes starting with ^[[L */ |
| else if ((lcd.esc_seq.len >= 3) && |
| (lcd.esc_seq.buf[0] == '[') && |
| (lcd.esc_seq.buf[1] == 'L')) { |
| processed = handle_lcd_special_code(); |
| } |
| |
| /* LCD special escape codes */ |
| /* |
| * flush the escape sequence if it's been processed |
| * or if it is getting too long. |
| */ |
| if (processed || (lcd.esc_seq.len >= LCD_ESCAPE_LEN)) |
| lcd.esc_seq.len = -1; |
| } /* escape codes */ |
| } |
| |
| static ssize_t lcd_write(struct file *file, |
| const char __user *buf, size_t count, loff_t *ppos) |
| { |
| const char __user *tmp = buf; |
| char c; |
| |
| for (; count-- > 0; (*ppos)++, tmp++) { |
| if (!in_interrupt() && (((count + 1) & 0x1f) == 0)) |
| /* |
| * let's be a little nice with other processes |
| * that need some CPU |
| */ |
| schedule(); |
| |
| if (get_user(c, tmp)) |
| return -EFAULT; |
| |
| lcd_write_char(c); |
| } |
| |
| return tmp - buf; |
| } |
| |
| static int lcd_open(struct inode *inode, struct file *file) |
| { |
| if (!atomic_dec_and_test(&lcd_available)) |
| return -EBUSY; /* open only once at a time */ |
| |
| if (file->f_mode & FMODE_READ) /* device is write-only */ |
| return -EPERM; |
| |
| if (lcd.must_clear) { |
| lcd_clear_display(); |
| lcd.must_clear = false; |
| } |
| return nonseekable_open(inode, file); |
| } |
| |
| static int lcd_release(struct inode *inode, struct file *file) |
| { |
| atomic_inc(&lcd_available); |
| return 0; |
| } |
| |
| static const struct file_operations lcd_fops = { |
| .write = lcd_write, |
| .open = lcd_open, |
| .release = lcd_release, |
| .llseek = no_llseek, |
| }; |
| |
| static struct miscdevice lcd_dev = { |
| .minor = LCD_MINOR, |
| .name = "lcd", |
| .fops = &lcd_fops, |
| }; |
| |
| /* public function usable from the kernel for any purpose */ |
| static void panel_lcd_print(const char *s) |
| { |
| const char *tmp = s; |
| int count = strlen(s); |
| |
| if (lcd.enabled && lcd.initialized) { |
| for (; count-- > 0; tmp++) { |
| if (!in_interrupt() && (((count + 1) & 0x1f) == 0)) |
| /* |
| * let's be a little nice with other processes |
| * that need some CPU |
| */ |
| schedule(); |
| |
| lcd_write_char(*tmp); |
| } |
| } |
| } |
| |
| /* initialize the LCD driver */ |
| static void lcd_init(void) |
| { |
| switch (selected_lcd_type) { |
| case LCD_TYPE_OLD: |
| /* parallel mode, 8 bits */ |
| lcd.proto = LCD_PROTO_PARALLEL; |
| lcd.charset = LCD_CHARSET_NORMAL; |
| lcd.pins.e = PIN_STROBE; |
| lcd.pins.rs = PIN_AUTOLF; |
| |
| lcd.width = 40; |
| lcd.bwidth = 40; |
| lcd.hwidth = 64; |
| lcd.height = 2; |
| break; |
| case LCD_TYPE_KS0074: |
| /* serial mode, ks0074 */ |
| lcd.proto = LCD_PROTO_SERIAL; |
| lcd.charset = LCD_CHARSET_KS0074; |
| lcd.pins.bl = PIN_AUTOLF; |
| lcd.pins.cl = PIN_STROBE; |
| lcd.pins.da = PIN_D0; |
| |
| lcd.width = 16; |
| lcd.bwidth = 40; |
| lcd.hwidth = 16; |
| lcd.height = 2; |
| break; |
| case LCD_TYPE_NEXCOM: |
| /* parallel mode, 8 bits, generic */ |
| lcd.proto = LCD_PROTO_PARALLEL; |
| lcd.charset = LCD_CHARSET_NORMAL; |
| lcd.pins.e = PIN_AUTOLF; |
| lcd.pins.rs = PIN_SELECP; |
| lcd.pins.rw = PIN_INITP; |
| |
| lcd.width = 16; |
| lcd.bwidth = 40; |
| lcd.hwidth = 64; |
| lcd.height = 2; |
| break; |
| case LCD_TYPE_CUSTOM: |
| /* customer-defined */ |
| lcd.proto = DEFAULT_LCD_PROTO; |
| lcd.charset = DEFAULT_LCD_CHARSET; |
| /* default geometry will be set later */ |
| break; |
| case LCD_TYPE_HANTRONIX: |
| /* parallel mode, 8 bits, hantronix-like */ |
| default: |
| lcd.proto = LCD_PROTO_PARALLEL; |
| lcd.charset = LCD_CHARSET_NORMAL; |
| lcd.pins.e = PIN_STROBE; |
| lcd.pins.rs = PIN_SELECP; |
| |
| lcd.width = 16; |
| lcd.bwidth = 40; |
| lcd.hwidth = 64; |
| lcd.height = 2; |
| break; |
| } |
| |
| /* Overwrite with module params set on loading */ |
| if (lcd_height != NOT_SET) |
| lcd.height = lcd_height; |
| if (lcd_width != NOT_SET) |
| lcd.width = lcd_width; |
| if (lcd_bwidth != NOT_SET) |
| lcd.bwidth = lcd_bwidth; |
| if (lcd_hwidth != NOT_SET) |
| lcd.hwidth = lcd_hwidth; |
| if (lcd_charset != NOT_SET) |
| lcd.charset = lcd_charset; |
| if (lcd_proto != NOT_SET) |
| lcd.proto = lcd_proto; |
| if (lcd_e_pin != PIN_NOT_SET) |
| lcd.pins.e = lcd_e_pin; |
| if (lcd_rs_pin != PIN_NOT_SET) |
| lcd.pins.rs = lcd_rs_pin; |
| if (lcd_rw_pin != PIN_NOT_SET) |
| lcd.pins.rw = lcd_rw_pin; |
| if (lcd_cl_pin != PIN_NOT_SET) |
| lcd.pins.cl = lcd_cl_pin; |
| if (lcd_da_pin != PIN_NOT_SET) |
| lcd.pins.da = lcd_da_pin; |
| if (lcd_bl_pin != PIN_NOT_SET) |
| lcd.pins.bl = lcd_bl_pin; |
| |
| /* this is used to catch wrong and default values */ |
| if (lcd.width <= 0) |
| lcd.width = DEFAULT_LCD_WIDTH; |
| if (lcd.bwidth <= 0) |
| lcd.bwidth = DEFAULT_LCD_BWIDTH; |
| if (lcd.hwidth <= 0) |
| lcd.hwidth = DEFAULT_LCD_HWIDTH; |
| if (lcd.height <= 0) |
| lcd.height = DEFAULT_LCD_HEIGHT; |
| |
| if (lcd.proto == LCD_PROTO_SERIAL) { /* SERIAL */ |
| lcd_write_cmd = lcd_write_cmd_s; |
| lcd_write_data = lcd_write_data_s; |
| lcd_clear_fast = lcd_clear_fast_s; |
| |
| if (lcd.pins.cl == PIN_NOT_SET) |
| lcd.pins.cl = DEFAULT_LCD_PIN_SCL; |
| if (lcd.pins.da == PIN_NOT_SET) |
| lcd.pins.da = DEFAULT_LCD_PIN_SDA; |
| |
| } else if (lcd.proto == LCD_PROTO_PARALLEL) { /* PARALLEL */ |
| lcd_write_cmd = lcd_write_cmd_p8; |
| lcd_write_data = lcd_write_data_p8; |
| lcd_clear_fast = lcd_clear_fast_p8; |
| |
| if (lcd.pins.e == PIN_NOT_SET) |
| lcd.pins.e = DEFAULT_LCD_PIN_E; |
| if (lcd.pins.rs == PIN_NOT_SET) |
| lcd.pins.rs = DEFAULT_LCD_PIN_RS; |
| if (lcd.pins.rw == PIN_NOT_SET) |
| lcd.pins.rw = DEFAULT_LCD_PIN_RW; |
| } else { |
| lcd_write_cmd = lcd_write_cmd_tilcd; |
| lcd_write_data = lcd_write_data_tilcd; |
| lcd_clear_fast = lcd_clear_fast_tilcd; |
| } |
| |
| if (lcd.pins.bl == PIN_NOT_SET) |
| lcd.pins.bl = DEFAULT_LCD_PIN_BL; |
| |
| if (lcd.pins.e == PIN_NOT_SET) |
| lcd.pins.e = PIN_NONE; |
| if (lcd.pins.rs == PIN_NOT_SET) |
| lcd.pins.rs = PIN_NONE; |
| if (lcd.pins.rw == PIN_NOT_SET) |
| lcd.pins.rw = PIN_NONE; |
| if (lcd.pins.bl == PIN_NOT_SET) |
| lcd.pins.bl = PIN_NONE; |
| if (lcd.pins.cl == PIN_NOT_SET) |
| lcd.pins.cl = PIN_NONE; |
| if (lcd.pins.da == PIN_NOT_SET) |
| lcd.pins.da = PIN_NONE; |
| |
| if (lcd.charset == NOT_SET) |
| lcd.charset = DEFAULT_LCD_CHARSET; |
| |
| if (lcd.charset == LCD_CHARSET_KS0074) |
| lcd_char_conv = lcd_char_conv_ks0074; |
| else |
| lcd_char_conv = NULL; |
| |
| if (lcd.pins.bl != PIN_NONE) { |
| mutex_init(&lcd.bl_tempo_lock); |
| INIT_DELAYED_WORK(&lcd.bl_work, lcd_bl_off); |
| } |
| |
| pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E], |
| lcd_bits[LCD_PORT_C][LCD_BIT_E]); |
| pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS], |
| lcd_bits[LCD_PORT_C][LCD_BIT_RS]); |
| pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW], |
| lcd_bits[LCD_PORT_C][LCD_BIT_RW]); |
| pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL], |
| lcd_bits[LCD_PORT_C][LCD_BIT_BL]); |
| pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL], |
| lcd_bits[LCD_PORT_C][LCD_BIT_CL]); |
| pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA], |
| lcd_bits[LCD_PORT_C][LCD_BIT_DA]); |
| |
| /* |
| * before this line, we must NOT send anything to the display. |
| * Since lcd_init_display() needs to write data, we have to |
| * enable mark the LCD initialized just before. |
| */ |
| lcd.initialized = true; |
| lcd_init_display(); |
| |
| /* display a short message */ |
| #ifdef CONFIG_PANEL_CHANGE_MESSAGE |
| #ifdef CONFIG_PANEL_BOOT_MESSAGE |
| panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE); |
| #endif |
| #else |
| panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE); |
| #endif |
| /* clear the display on the next device opening */ |
| lcd.must_clear = true; |
| lcd_home(); |
| } |
| |
| /* |
| * These are the file operation function for user access to /dev/keypad |
| */ |
| |
| static ssize_t keypad_read(struct file *file, |
| char __user *buf, size_t count, loff_t *ppos) |
| { |
| unsigned i = *ppos; |
| char __user *tmp = buf; |
| |
| if (keypad_buflen == 0) { |
| if (file->f_flags & O_NONBLOCK) |
| return -EAGAIN; |
| |
| if (wait_event_interruptible(keypad_read_wait, |
| keypad_buflen != 0)) |
| return -EINTR; |
| } |
| |
| for (; count-- > 0 && (keypad_buflen > 0); |
| ++i, ++tmp, --keypad_buflen) { |
| put_user(keypad_buffer[keypad_start], tmp); |
| keypad_start = (keypad_start + 1) % KEYPAD_BUFFER; |
| } |
| *ppos = i; |
| |
| return tmp - buf; |
| } |
| |
| static int keypad_open(struct inode *inode, struct file *file) |
| { |
| if (!atomic_dec_and_test(&keypad_available)) |
| return -EBUSY; /* open only once at a time */ |
| |
| if (file->f_mode & FMODE_WRITE) /* device is read-only */ |
| return -EPERM; |
| |
| keypad_buflen = 0; /* flush the buffer on opening */ |
| return 0; |
| } |
| |
| static int keypad_release(struct inode *inode, struct file *file) |
| { |
| atomic_inc(&keypad_available); |
| return 0; |
| } |
| |
| static const struct file_operations keypad_fops = { |
| .read = keypad_read, /* read */ |
| .open = keypad_open, /* open */ |
| .release = keypad_release, /* close */ |
| .llseek = default_llseek, |
| }; |
| |
| static struct miscdevice keypad_dev = { |
| .minor = KEYPAD_MINOR, |
| .name = "keypad", |
| .fops = &keypad_fops, |
| }; |
| |
| static void keypad_send_key(const char *string, int max_len) |
| { |
| /* send the key to the device only if a process is attached to it. */ |
| if (!atomic_read(&keypad_available)) { |
| while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) { |
| keypad_buffer[(keypad_start + keypad_buflen++) % |
| KEYPAD_BUFFER] = *string++; |
| } |
| wake_up_interruptible(&keypad_read_wait); |
| } |
| } |
| |
| /* this function scans all the bits involving at least one logical signal, |
| * and puts the results in the bitfield "phys_read" (one bit per established |
| * contact), and sets "phys_read_prev" to "phys_read". |
| * |
| * Note: to debounce input signals, we will only consider as switched a signal |
| * which is stable across 2 measures. Signals which are different between two |
| * reads will be kept as they previously were in their logical form (phys_prev). |
| * A signal which has just switched will have a 1 in |
| * (phys_read ^ phys_read_prev). |
| */ |
| static void phys_scan_contacts(void) |
| { |
| int bit, bitval; |
| char oldval; |
| char bitmask; |
| char gndmask; |
| |
| phys_prev = phys_curr; |
| phys_read_prev = phys_read; |
| phys_read = 0; /* flush all signals */ |
| |
| /* keep track of old value, with all outputs disabled */ |
| oldval = r_dtr(pprt) | scan_mask_o; |
| /* activate all keyboard outputs (active low) */ |
| w_dtr(pprt, oldval & ~scan_mask_o); |
| |
| /* will have a 1 for each bit set to gnd */ |
| bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i; |
| /* disable all matrix signals */ |
| w_dtr(pprt, oldval); |
| |
| /* now that all outputs are cleared, the only active input bits are |
| * directly connected to the ground |
| */ |
| |
| /* 1 for each grounded input */ |
| gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i; |
| |
| /* grounded inputs are signals 40-44 */ |
| phys_read |= (__u64)gndmask << 40; |
| |
| if (bitmask != gndmask) { |
| /* |
| * since clearing the outputs changed some inputs, we know |
| * that some input signals are currently tied to some outputs. |
| * So we'll scan them. |
| */ |
| for (bit = 0; bit < 8; bit++) { |
| bitval = BIT(bit); |
| |
| if (!(scan_mask_o & bitval)) /* skip unused bits */ |
| continue; |
| |
| w_dtr(pprt, oldval & ~bitval); /* enable this output */ |
| bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask; |
| phys_read |= (__u64)bitmask << (5 * bit); |
| } |
| w_dtr(pprt, oldval); /* disable all outputs */ |
| } |
| /* |
| * this is easy: use old bits when they are flapping, |
| * use new ones when stable |
| */ |
| phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) | |
| (phys_read & ~(phys_read ^ phys_read_prev)); |
| } |
| |
| static inline int input_state_high(struct logical_input *input) |
| { |
| #if 0 |
| /* FIXME: |
| * this is an invalid test. It tries to catch |
| * transitions from single-key to multiple-key, but |
| * doesn't take into account the contacts polarity. |
| * The only solution to the problem is to parse keys |
| * from the most complex to the simplest combinations, |
| * and mark them as 'caught' once a combination |
| * matches, then unmatch it for all other ones. |
| */ |
| |
| /* try to catch dangerous transitions cases : |
| * someone adds a bit, so this signal was a false |
| * positive resulting from a transition. We should |
| * invalidate the signal immediately and not call the |
| * release function. |
| * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release. |
| */ |
| if (((phys_prev & input->mask) == input->value) && |
| ((phys_curr & input->mask) > input->value)) { |
| input->state = INPUT_ST_LOW; /* invalidate */ |
| return 1; |
| } |
| #endif |
| |
| if ((phys_curr & input->mask) == input->value) { |
| if ((input->type == INPUT_TYPE_STD) && |
| (input->high_timer == 0)) { |
| input->high_timer++; |
| if (input->u.std.press_fct) |
| input->u.std.press_fct(input->u.std.press_data); |
| } else if (input->type == INPUT_TYPE_KBD) { |
| /* will turn on the light */ |
| keypressed = 1; |
| |
| if (input->high_timer == 0) { |
| char *press_str = input->u.kbd.press_str; |
| |
| if (press_str[0]) { |
| int s = sizeof(input->u.kbd.press_str); |
| |
| keypad_send_key(press_str, s); |
| } |
| } |
| |
| if (input->u.kbd.repeat_str[0]) { |
| char *repeat_str = input->u.kbd.repeat_str; |
| |
| if (input->high_timer >= KEYPAD_REP_START) { |
| int s = sizeof(input->u.kbd.repeat_str); |
| |
| input->high_timer -= KEYPAD_REP_DELAY; |
| keypad_send_key(repeat_str, s); |
| } |
| /* we will need to come back here soon */ |
| inputs_stable = 0; |
| } |
| |
| if (input->high_timer < 255) |
| input->high_timer++; |
| } |
| return 1; |
| } |
| |
| /* else signal falling down. Let's fall through. */ |
| input->state = INPUT_ST_FALLING; |
| input->fall_timer = 0; |
| |
| return 0; |
| } |
| |
| static inline void input_state_falling(struct logical_input *input) |
| { |
| #if 0 |
| /* FIXME !!! same comment as in input_state_high */ |
| if (((phys_prev & input->mask) == input->value) && |
| ((phys_curr & input->mask) > input->value)) { |
| input->state = INPUT_ST_LOW; /* invalidate */ |
| return; |
| } |
| #endif |
| |
| if ((phys_curr & input->mask) == input->value) { |
| if (input->type == INPUT_TYPE_KBD) { |
| /* will turn on the light */ |
| keypressed = 1; |
| |
| if (input->u.kbd.repeat_str[0]) { |
| char *repeat_str = input->u.kbd.repeat_str; |
| |
| if (input->high_timer >= KEYPAD_REP_START) { |
| int s = sizeof(input->u.kbd.repeat_str); |
| |
| input->high_timer -= KEYPAD_REP_DELAY; |
| keypad_send_key(repeat_str, s); |
| } |
| /* we will need to come back here soon */ |
| inputs_stable = 0; |
| } |
| |
| if (input->high_timer < 255) |
| input->high_timer++; |
| } |
| input->state = INPUT_ST_HIGH; |
| } else if (input->fall_timer >= input->fall_time) { |
| /* call release event */ |
| if (input->type == INPUT_TYPE_STD) { |
| void (*release_fct)(int) = input->u.std.release_fct; |
| |
| if (release_fct) |
| release_fct(input->u.std.release_data); |
| } else if (input->type == INPUT_TYPE_KBD) { |
| char *release_str = input->u.kbd.release_str; |
| |
| if (release_str[0]) { |
| int s = sizeof(input->u.kbd.release_str); |
| |
| keypad_send_key(release_str, s); |
| } |
| } |
| |
| input->state = INPUT_ST_LOW; |
| } else { |
| input->fall_timer++; |
| inputs_stable = 0; |
| } |
| } |
| |
| static void panel_process_inputs(void) |
| { |
| struct list_head *item; |
| struct logical_input *input; |
| |
| keypressed = 0; |
| inputs_stable = 1; |
| list_for_each(item, &logical_inputs) { |
| input = list_entry(item, struct logical_input, list); |
| |
| switch (input->state) { |
| case INPUT_ST_LOW: |
| if ((phys_curr & input->mask) != input->value) |
| break; |
| /* if all needed ones were already set previously, |
| * this means that this logical signal has been |
| * activated by the releasing of another combined |
| * signal, so we don't want to match. |
| * eg: AB -(release B)-> A -(release A)-> 0 : |
| * don't match A. |
| */ |
| if ((phys_prev & input->mask) == input->value) |
| break; |
| input->rise_timer = 0; |
| input->state = INPUT_ST_RISING; |
| /* no break here, fall through */ |
| case INPUT_ST_RISING: |
| if ((phys_curr & input->mask) != input->value) { |
| input->state = INPUT_ST_LOW; |
| break; |
| } |
| if (input->rise_timer < input->rise_time) { |
| inputs_stable = 0; |
| input->rise_timer++; |
| break; |
| } |
| input->high_timer = 0; |
| input->state = INPUT_ST_HIGH; |
| /* no break here, fall through */ |
| case INPUT_ST_HIGH: |
| if (input_state_high(input)) |
| break; |
| /* no break here, fall through */ |
| case INPUT_ST_FALLING: |
| input_state_falling(input); |
| } |
| } |
| } |
| |
| static void panel_scan_timer(void) |
| { |
| if (keypad.enabled && keypad_initialized) { |
| if (spin_trylock_irq(&pprt_lock)) { |
| phys_scan_contacts(); |
| |
| /* no need for the parport anymore */ |
| spin_unlock_irq(&pprt_lock); |
| } |
| |
| if (!inputs_stable || phys_curr != phys_prev) |
| panel_process_inputs(); |
| } |
| |
| if (keypressed && lcd.enabled && lcd.initialized) |
| lcd_poke(); |
| |
| mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME); |
| } |
| |
| static void init_scan_timer(void) |
| { |
| if (scan_timer.function) |
| return; /* already started */ |
| |
| setup_timer(&scan_timer, (void *)&panel_scan_timer, 0); |
| scan_timer.expires = jiffies + INPUT_POLL_TIME; |
| add_timer(&scan_timer); |
| } |
| |
| /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits. |
| * if <omask> or <imask> are non-null, they will be or'ed with the bits |
| * corresponding to out and in bits respectively. |
| * returns 1 if ok, 0 if error (in which case, nothing is written). |
| */ |
| static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value, |
| u8 *imask, u8 *omask) |
| { |
| const char sigtab[] = "EeSsPpAaBb"; |
| u8 im, om; |
| __u64 m, v; |
| |
| om = 0; |
| im = 0; |
| m = 0ULL; |
| v = 0ULL; |
| while (*name) { |
| int in, out, bit, neg; |
| const char *idx; |
| |
| idx = strchr(sigtab, *name); |
| if (!idx) |
| return 0; /* input name not found */ |
| |
| in = idx - sigtab; |
| neg = (in & 1); /* odd (lower) names are negated */ |
| in >>= 1; |
| im |= BIT(in); |
| |
| name++; |
| if (*name >= '0' && *name <= '7') { |
| out = *name - '0'; |
| om |= BIT(out); |
| } else if (*name == '-') { |
| out = 8; |
| } else { |
| return 0; /* unknown bit name */ |
| } |
| |
| bit = (out * 5) + in; |
| |
| m |= 1ULL << bit; |
| if (!neg) |
| v |= 1ULL << bit; |
| name++; |
| } |
| *mask = m; |
| *value = v; |
| if (imask) |
| *imask |= im; |
| if (omask) |
| *omask |= om; |
| return 1; |
| } |
| |
| /* tries to bind a key to the signal name <name>. The key will send the |
| * strings <press>, <repeat>, <release> for these respective events. |
| * Returns the pointer to the new key if ok, NULL if the key could not be bound. |
| */ |
| static struct logical_input *panel_bind_key(const char *name, const char *press, |
| const char *repeat, |
| const char *release) |
| { |
| struct logical_input *key; |
| |
| key = kzalloc(sizeof(*key), GFP_KERNEL); |
| if (!key) |
| return NULL; |
| |
| if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i, |
| &scan_mask_o)) { |
| kfree(key); |
| return NULL; |
| } |
| |
| key->type = INPUT_TYPE_KBD; |
| key->state = INPUT_ST_LOW; |
| key->rise_time = 1; |
| key->fall_time = 1; |
| |
| strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str)); |
| strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str)); |
| strncpy(key->u.kbd.release_str, release, |
| sizeof(key->u.kbd.release_str)); |
| list_add(&key->list, &logical_inputs); |
| return key; |
| } |
| |
| #if 0 |
| /* tries to bind a callback function to the signal name <name>. The function |
| * <press_fct> will be called with the <press_data> arg when the signal is |
| * activated, and so on for <release_fct>/<release_data> |
| * Returns the pointer to the new signal if ok, NULL if the signal could not |
| * be bound. |
| */ |
| static struct logical_input *panel_bind_callback(char *name, |
| void (*press_fct)(int), |
| int press_data, |
| void (*release_fct)(int), |
| int release_data) |
| { |
| struct logical_input *callback; |
| |
| callback = kmalloc(sizeof(*callback), GFP_KERNEL); |
| if (!callback) |
| return NULL; |
| |
| memset(callback, 0, sizeof(struct logical_input)); |
| if (!input_name2mask(name, &callback->mask, &callback->value, |
| &scan_mask_i, &scan_mask_o)) |
| return NULL; |
| |
| callback->type = INPUT_TYPE_STD; |
| callback->state = INPUT_ST_LOW; |
| callback->rise_time = 1; |
| callback->fall_time = 1; |
| callback->u.std.press_fct = press_fct; |
| callback->u.std.press_data = press_data; |
| callback->u.std.release_fct = release_fct; |
| callback->u.std.release_data = release_data; |
| list_add(&callback->list, &logical_inputs); |
| return callback; |
| } |
| #endif |
| |
| static void keypad_init(void) |
| { |
| int keynum; |
| |
| init_waitqueue_head(&keypad_read_wait); |
| keypad_buflen = 0; /* flushes any eventual noisy keystroke */ |
| |
| /* Let's create all known keys */ |
| |
| for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) { |
| panel_bind_key(keypad_profile[keynum][0], |
| keypad_profile[keynum][1], |
| keypad_profile[keynum][2], |
| keypad_profile[keynum][3]); |
| } |
| |
| init_scan_timer(); |
| keypad_initialized = 1; |
| } |
| |
| /**************************************************/ |
| /* device initialization */ |
| /**************************************************/ |
| |
| static int panel_notify_sys(struct notifier_block *this, unsigned long code, |
| void *unused) |
| { |
| if (lcd.enabled && lcd.initialized) { |
| switch (code) { |
| case SYS_DOWN: |
| panel_lcd_print |
| ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+"); |
| break; |
| case SYS_HALT: |
| panel_lcd_print |
| ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+"); |
| break; |
| case SYS_POWER_OFF: |
| panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+"); |
| break; |
| default: |
| break; |
| } |
| } |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block panel_notifier = { |
| panel_notify_sys, |
| NULL, |
| 0 |
| }; |
| |
| static void panel_attach(struct parport *port) |
| { |
| struct pardev_cb panel_cb; |
| |
| if (port->number != parport) |
| return; |
| |
| if (pprt) { |
| pr_err("%s: port->number=%d parport=%d, already registered!\n", |
| __func__, port->number, parport); |
| return; |
| } |
| |
| memset(&panel_cb, 0, sizeof(panel_cb)); |
| panel_cb.private = &pprt; |
| /* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */ |
| |
| pprt = parport_register_dev_model(port, "panel", &panel_cb, 0); |
| if (!pprt) { |
| pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n", |
| __func__, port->number, parport); |
| return; |
| } |
| |
| if (parport_claim(pprt)) { |
| pr_err("could not claim access to parport%d. Aborting.\n", |
| parport); |
| goto err_unreg_device; |
| } |
| |
| /* must init LCD first, just in case an IRQ from the keypad is |
| * generated at keypad init |
| */ |
| if (lcd.enabled) { |
| lcd_init(); |
| if (misc_register(&lcd_dev)) |
| goto err_unreg_device; |
| } |
| |
| if (keypad.enabled) { |
| keypad_init(); |
| if (misc_register(&keypad_dev)) |
| goto err_lcd_unreg; |
| } |
| register_reboot_notifier(&panel_notifier); |
| return; |
| |
| err_lcd_unreg: |
| if (lcd.enabled) |
| misc_deregister(&lcd_dev); |
| err_unreg_device: |
| parport_unregister_device(pprt); |
| pprt = NULL; |
| } |
| |
| static void panel_detach(struct parport *port) |
| { |
| if (port->number != parport) |
| return; |
| |
| if (!pprt) { |
| pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n", |
| __func__, port->number, parport); |
| return; |
| } |
| if (scan_timer.function) |
| del_timer_sync(&scan_timer); |
| |
| if (keypad.enabled) { |
| misc_deregister(&keypad_dev); |
| keypad_initialized = 0; |
| } |
| |
| if (lcd.enabled) { |
| panel_lcd_print("\x0cLCD driver unloaded.\x1b[Lc\x1b[Lb\x1b[L-"); |
| misc_deregister(&lcd_dev); |
| if (lcd.pins.bl != PIN_NONE) { |
| cancel_delayed_work_sync(&lcd.bl_work); |
| __lcd_backlight(0); |
| } |
| lcd.initialized = false; |
| } |
| |
| /* TODO: free all input signals */ |
| parport_release(pprt); |
| parport_unregister_device(pprt); |
| pprt = NULL; |
| unregister_reboot_notifier(&panel_notifier); |
| } |
| |
| static struct parport_driver panel_driver = { |
| .name = "panel", |
| .match_port = panel_attach, |
| .detach = panel_detach, |
| .devmodel = true, |
| }; |
| |
| /* init function */ |
| static int __init panel_init_module(void) |
| { |
| int selected_keypad_type = NOT_SET, err; |
| |
| /* take care of an eventual profile */ |
| switch (profile) { |
| case PANEL_PROFILE_CUSTOM: |
| /* custom profile */ |
| selected_keypad_type = DEFAULT_KEYPAD_TYPE; |
| selected_lcd_type = DEFAULT_LCD_TYPE; |
| break; |
| case PANEL_PROFILE_OLD: |
| /* 8 bits, 2*16, old keypad */ |
| selected_keypad_type = KEYPAD_TYPE_OLD; |
| selected_lcd_type = LCD_TYPE_OLD; |
| |
| /* TODO: This two are a little hacky, sort it out later */ |
| if (lcd_width == NOT_SET) |
| lcd_width = 16; |
| if (lcd_hwidth == NOT_SET) |
| lcd_hwidth = 16; |
| break; |
| case PANEL_PROFILE_NEW: |
| /* serial, 2*16, new keypad */ |
| selected_keypad_type = KEYPAD_TYPE_NEW; |
| selected_lcd_type = LCD_TYPE_KS0074; |
| break; |
| case PANEL_PROFILE_HANTRONIX: |
| /* 8 bits, 2*16 hantronix-like, no keypad */ |
| selected_keypad_type = KEYPAD_TYPE_NONE; |
| selected_lcd_type = LCD_TYPE_HANTRONIX; |
| break; |
| case PANEL_PROFILE_NEXCOM: |
| /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */ |
| selected_keypad_type = KEYPAD_TYPE_NEXCOM; |
| selected_lcd_type = LCD_TYPE_NEXCOM; |
| break; |
| case PANEL_PROFILE_LARGE: |
| /* 8 bits, 2*40, old keypad */ |
| selected_keypad_type = KEYPAD_TYPE_OLD; |
| selected_lcd_type = LCD_TYPE_OLD; |
| break; |
| } |
| |
| /* |
| * Overwrite selection with module param values (both keypad and lcd), |
| * where the deprecated params have lower prio. |
| */ |
| if (keypad_enabled != NOT_SET) |
| selected_keypad_type = keypad_enabled; |
| if (keypad_type != NOT_SET) |
| selected_keypad_type = keypad_type; |
| |
| keypad.enabled = (selected_keypad_type > 0); |
| |
| if (lcd_enabled != NOT_SET) |
| selected_lcd_type = lcd_enabled; |
| if (lcd_type != NOT_SET) |
| selected_lcd_type = lcd_type; |
| |
| lcd.enabled = (selected_lcd_type > 0); |
| |
| if (lcd.enabled) { |
| /* |
| * Init lcd struct with load-time values to preserve exact |
| * current functionality (at least for now). |
| */ |
| lcd.height = lcd_height; |
| lcd.width = lcd_width; |
| lcd.bwidth = lcd_bwidth; |
| lcd.hwidth = lcd_hwidth; |
| lcd.charset = lcd_charset; |
| lcd.proto = lcd_proto; |
| lcd.pins.e = lcd_e_pin; |
| lcd.pins.rs = lcd_rs_pin; |
| lcd.pins.rw = lcd_rw_pin; |
| lcd.pins.cl = lcd_cl_pin; |
| lcd.pins.da = lcd_da_pin; |
| lcd.pins.bl = lcd_bl_pin; |
| |
| /* Leave it for now, just in case */ |
| lcd.esc_seq.len = -1; |
| } |
| |
| switch (selected_keypad_type) { |
| case KEYPAD_TYPE_OLD: |
| keypad_profile = old_keypad_profile; |
| break; |
| case KEYPAD_TYPE_NEW: |
| keypad_profile = new_keypad_profile; |
| break; |
| case KEYPAD_TYPE_NEXCOM: |
| keypad_profile = nexcom_keypad_profile; |
| break; |
| default: |
| keypad_profile = NULL; |
| break; |
| } |
| |
| if (!lcd.enabled && !keypad.enabled) { |
| /* no device enabled, let's exit */ |
| pr_err("panel driver disabled.\n"); |
| return -ENODEV; |
| } |
| |
| err = parport_register_driver(&panel_driver); |
| if (err) { |
| pr_err("could not register with parport. Aborting.\n"); |
| return err; |
| } |
| |
| if (pprt) |
| pr_info("panel driver registered on parport%d (io=0x%lx).\n", |
| parport, pprt->port->base); |
| else |
| pr_info("panel driver not yet registered\n"); |
| return 0; |
| } |
| |
| static void __exit panel_cleanup_module(void) |
| { |
| parport_unregister_driver(&panel_driver); |
| } |
| |
| module_init(panel_init_module); |
| module_exit(panel_cleanup_module); |
| MODULE_AUTHOR("Willy Tarreau"); |
| MODULE_LICENSE("GPL"); |
| |
| /* |
| * Local variables: |
| * c-indent-level: 4 |
| * tab-width: 8 |
| * End: |
| */ |