blob: ea7383293ed00cbe3bfa4bf32e4797cf24d16eb9 [file] [log] [blame]
/*
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
#include <linux/kvm.h>
#include <trace/events/kvm.h>
#define CREATE_TRACE_POINTS
#include "trace.h"
#include <asm/unified.h>
#include <asm/uaccess.h>
#include <asm/ptrace.h>
#include <asm/mman.h>
#include <asm/cputype.h>
#include <asm/tlbflush.h>
#include <asm/cacheflush.h>
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_coproc.h>
#include <asm/kvm_psci.h>
#include <asm/opcodes.h>
#ifdef REQUIRES_VIRT
__asm__(".arch_extension virt");
#endif
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
static struct vfp_hard_struct __percpu *kvm_host_vfp_state;
static unsigned long hyp_default_vectors;
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
static u8 kvm_next_vmid;
static DEFINE_SPINLOCK(kvm_vmid_lock);
static bool vgic_present;
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
BUG_ON(preemptible());
__get_cpu_var(kvm_arm_running_vcpu) = vcpu;
}
/**
* kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
* Must be called from non-preemptible context
*/
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
BUG_ON(preemptible());
return __get_cpu_var(kvm_arm_running_vcpu);
}
/**
* kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
*/
struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
{
return &kvm_arm_running_vcpu;
}
int kvm_arch_hardware_enable(void *garbage)
{
return 0;
}
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}
void kvm_arch_hardware_disable(void *garbage)
{
}
int kvm_arch_hardware_setup(void)
{
return 0;
}
void kvm_arch_hardware_unsetup(void)
{
}
void kvm_arch_check_processor_compat(void *rtn)
{
*(int *)rtn = 0;
}
void kvm_arch_sync_events(struct kvm *kvm)
{
}
/**
* kvm_arch_init_vm - initializes a VM data structure
* @kvm: pointer to the KVM struct
*/
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
int ret = 0;
if (type)
return -EINVAL;
ret = kvm_alloc_stage2_pgd(kvm);
if (ret)
goto out_fail_alloc;
ret = create_hyp_mappings(kvm, kvm + 1);
if (ret)
goto out_free_stage2_pgd;
/* Mark the initial VMID generation invalid */
kvm->arch.vmid_gen = 0;
return ret;
out_free_stage2_pgd:
kvm_free_stage2_pgd(kvm);
out_fail_alloc:
return ret;
}
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
return VM_FAULT_SIGBUS;
}
void kvm_arch_free_memslot(struct kvm_memory_slot *free,
struct kvm_memory_slot *dont)
{
}
int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
{
return 0;
}
/**
* kvm_arch_destroy_vm - destroy the VM data structure
* @kvm: pointer to the KVM struct
*/
void kvm_arch_destroy_vm(struct kvm *kvm)
{
int i;
kvm_free_stage2_pgd(kvm);
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
if (kvm->vcpus[i]) {
kvm_arch_vcpu_free(kvm->vcpus[i]);
kvm->vcpus[i] = NULL;
}
}
}
int kvm_dev_ioctl_check_extension(long ext)
{
int r;
switch (ext) {
case KVM_CAP_IRQCHIP:
r = vgic_present;
break;
case KVM_CAP_USER_MEMORY:
case KVM_CAP_SYNC_MMU:
case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
case KVM_CAP_ONE_REG:
case KVM_CAP_ARM_PSCI:
r = 1;
break;
case KVM_CAP_COALESCED_MMIO:
r = KVM_COALESCED_MMIO_PAGE_OFFSET;
break;
case KVM_CAP_ARM_SET_DEVICE_ADDR:
r = 1;
case KVM_CAP_NR_VCPUS:
r = num_online_cpus();
break;
case KVM_CAP_MAX_VCPUS:
r = KVM_MAX_VCPUS;
break;
default:
r = 0;
break;
}
return r;
}
long kvm_arch_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
return -EINVAL;
}
int kvm_arch_set_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem,
struct kvm_memory_slot old,
int user_alloc)
{
return 0;
}
int kvm_arch_prepare_memory_region(struct kvm *kvm,
struct kvm_memory_slot *memslot,
struct kvm_memory_slot old,
struct kvm_userspace_memory_region *mem,
int user_alloc)
{
return 0;
}
void kvm_arch_commit_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem,
struct kvm_memory_slot old,
int user_alloc)
{
}
void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
}
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot)
{
}
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
int err;
struct kvm_vcpu *vcpu;
vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
if (!vcpu) {
err = -ENOMEM;
goto out;
}
err = kvm_vcpu_init(vcpu, kvm, id);
if (err)
goto free_vcpu;
err = create_hyp_mappings(vcpu, vcpu + 1);
if (err)
goto vcpu_uninit;
return vcpu;
vcpu_uninit:
kvm_vcpu_uninit(vcpu);
free_vcpu:
kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
return ERR_PTR(err);
}
int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
{
return 0;
}
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
kvm_mmu_free_memory_caches(vcpu);
kmem_cache_free(kvm_vcpu_cache, vcpu);
}
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
kvm_arch_vcpu_free(vcpu);
}
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
return 0;
}
int __attribute_const__ kvm_target_cpu(void)
{
unsigned long implementor = read_cpuid_implementor();
unsigned long part_number = read_cpuid_part_number();
if (implementor != ARM_CPU_IMP_ARM)
return -EINVAL;
switch (part_number) {
case ARM_CPU_PART_CORTEX_A15:
return KVM_ARM_TARGET_CORTEX_A15;
default:
return -EINVAL;
}
}
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
int ret;
/* Force users to call KVM_ARM_VCPU_INIT */
vcpu->arch.target = -1;
/* Set up VGIC */
ret = kvm_vgic_vcpu_init(vcpu);
if (ret)
return ret;
return 0;
}
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
}
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
vcpu->cpu = cpu;
vcpu->arch.vfp_host = this_cpu_ptr(kvm_host_vfp_state);
/*
* Check whether this vcpu requires the cache to be flushed on
* this physical CPU. This is a consequence of doing dcache
* operations by set/way on this vcpu. We do it here to be in
* a non-preemptible section.
*/
if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
kvm_arm_set_running_vcpu(vcpu);
}
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
kvm_arm_set_running_vcpu(NULL);
}
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *dbg)
{
return -EINVAL;
}
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
return -EINVAL;
}
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
return -EINVAL;
}
/**
* kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
* @v: The VCPU pointer
*
* If the guest CPU is not waiting for interrupts or an interrupt line is
* asserted, the CPU is by definition runnable.
*/
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
}
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}
void force_vm_exit(const cpumask_t *mask)
{
smp_call_function_many(mask, exit_vm_noop, NULL, true);
}
/**
* need_new_vmid_gen - check that the VMID is still valid
* @kvm: The VM's VMID to checkt
*
* return true if there is a new generation of VMIDs being used
*
* The hardware supports only 256 values with the value zero reserved for the
* host, so we check if an assigned value belongs to a previous generation,
* which which requires us to assign a new value. If we're the first to use a
* VMID for the new generation, we must flush necessary caches and TLBs on all
* CPUs.
*/
static bool need_new_vmid_gen(struct kvm *kvm)
{
return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}
/**
* update_vttbr - Update the VTTBR with a valid VMID before the guest runs
* @kvm The guest that we are about to run
*
* Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
* VM has a valid VMID, otherwise assigns a new one and flushes corresponding
* caches and TLBs.
*/
static void update_vttbr(struct kvm *kvm)
{
phys_addr_t pgd_phys;
u64 vmid;
if (!need_new_vmid_gen(kvm))
return;
spin_lock(&kvm_vmid_lock);
/*
* We need to re-check the vmid_gen here to ensure that if another vcpu
* already allocated a valid vmid for this vm, then this vcpu should
* use the same vmid.
*/
if (!need_new_vmid_gen(kvm)) {
spin_unlock(&kvm_vmid_lock);
return;
}
/* First user of a new VMID generation? */
if (unlikely(kvm_next_vmid == 0)) {
atomic64_inc(&kvm_vmid_gen);
kvm_next_vmid = 1;
/*
* On SMP we know no other CPUs can use this CPU's or each
* other's VMID after force_vm_exit returns since the
* kvm_vmid_lock blocks them from reentry to the guest.
*/
force_vm_exit(cpu_all_mask);
/*
* Now broadcast TLB + ICACHE invalidation over the inner
* shareable domain to make sure all data structures are
* clean.
*/
kvm_call_hyp(__kvm_flush_vm_context);
}
kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
kvm->arch.vmid = kvm_next_vmid;
kvm_next_vmid++;
/* update vttbr to be used with the new vmid */
pgd_phys = virt_to_phys(kvm->arch.pgd);
vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
kvm->arch.vttbr |= vmid;
spin_unlock(&kvm_vmid_lock);
}
static int handle_svc_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
/* SVC called from Hyp mode should never get here */
kvm_debug("SVC called from Hyp mode shouldn't go here\n");
BUG();
return -EINVAL; /* Squash warning */
}
static int handle_hvc(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
trace_kvm_hvc(*vcpu_pc(vcpu), *vcpu_reg(vcpu, 0),
vcpu->arch.hsr & HSR_HVC_IMM_MASK);
if (kvm_psci_call(vcpu))
return 1;
kvm_inject_undefined(vcpu);
return 1;
}
static int handle_smc(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
if (kvm_psci_call(vcpu))
return 1;
kvm_inject_undefined(vcpu);
return 1;
}
static int handle_pabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
/* The hypervisor should never cause aborts */
kvm_err("Prefetch Abort taken from Hyp mode at %#08x (HSR: %#08x)\n",
vcpu->arch.hxfar, vcpu->arch.hsr);
return -EFAULT;
}
static int handle_dabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
/* This is either an error in the ws. code or an external abort */
kvm_err("Data Abort taken from Hyp mode at %#08x (HSR: %#08x)\n",
vcpu->arch.hxfar, vcpu->arch.hsr);
return -EFAULT;
}
typedef int (*exit_handle_fn)(struct kvm_vcpu *, struct kvm_run *);
static exit_handle_fn arm_exit_handlers[] = {
[HSR_EC_WFI] = kvm_handle_wfi,
[HSR_EC_CP15_32] = kvm_handle_cp15_32,
[HSR_EC_CP15_64] = kvm_handle_cp15_64,
[HSR_EC_CP14_MR] = kvm_handle_cp14_access,
[HSR_EC_CP14_LS] = kvm_handle_cp14_load_store,
[HSR_EC_CP14_64] = kvm_handle_cp14_access,
[HSR_EC_CP_0_13] = kvm_handle_cp_0_13_access,
[HSR_EC_CP10_ID] = kvm_handle_cp10_id,
[HSR_EC_SVC_HYP] = handle_svc_hyp,
[HSR_EC_HVC] = handle_hvc,
[HSR_EC_SMC] = handle_smc,
[HSR_EC_IABT] = kvm_handle_guest_abort,
[HSR_EC_IABT_HYP] = handle_pabt_hyp,
[HSR_EC_DABT] = kvm_handle_guest_abort,
[HSR_EC_DABT_HYP] = handle_dabt_hyp,
};
/*
* A conditional instruction is allowed to trap, even though it
* wouldn't be executed. So let's re-implement the hardware, in
* software!
*/
static bool kvm_condition_valid(struct kvm_vcpu *vcpu)
{
unsigned long cpsr, cond, insn;
/*
* Exception Code 0 can only happen if we set HCR.TGE to 1, to
* catch undefined instructions, and then we won't get past
* the arm_exit_handlers test anyway.
*/
BUG_ON(((vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT) == 0);
/* Top two bits non-zero? Unconditional. */
if (vcpu->arch.hsr >> 30)
return true;
cpsr = *vcpu_cpsr(vcpu);
/* Is condition field valid? */
if ((vcpu->arch.hsr & HSR_CV) >> HSR_CV_SHIFT)
cond = (vcpu->arch.hsr & HSR_COND) >> HSR_COND_SHIFT;
else {
/* This can happen in Thumb mode: examine IT state. */
unsigned long it;
it = ((cpsr >> 8) & 0xFC) | ((cpsr >> 25) & 0x3);
/* it == 0 => unconditional. */
if (it == 0)
return true;
/* The cond for this insn works out as the top 4 bits. */
cond = (it >> 4);
}
/* Shift makes it look like an ARM-mode instruction */
insn = cond << 28;
return arm_check_condition(insn, cpsr) != ARM_OPCODE_CONDTEST_FAIL;
}
/*
* Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
* proper exit to QEMU.
*/
static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
int exception_index)
{
unsigned long hsr_ec;
switch (exception_index) {
case ARM_EXCEPTION_IRQ:
return 1;
case ARM_EXCEPTION_UNDEFINED:
kvm_err("Undefined exception in Hyp mode at: %#08x\n",
vcpu->arch.hyp_pc);
BUG();
panic("KVM: Hypervisor undefined exception!\n");
case ARM_EXCEPTION_DATA_ABORT:
case ARM_EXCEPTION_PREF_ABORT:
case ARM_EXCEPTION_HVC:
hsr_ec = (vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT;
if (hsr_ec >= ARRAY_SIZE(arm_exit_handlers)
|| !arm_exit_handlers[hsr_ec]) {
kvm_err("Unkown exception class: %#08lx, "
"hsr: %#08x\n", hsr_ec,
(unsigned int)vcpu->arch.hsr);
BUG();
}
/*
* See ARM ARM B1.14.1: "Hyp traps on instructions
* that fail their condition code check"
*/
if (!kvm_condition_valid(vcpu)) {
bool is_wide = vcpu->arch.hsr & HSR_IL;
kvm_skip_instr(vcpu, is_wide);
return 1;
}
return arm_exit_handlers[hsr_ec](vcpu, run);
default:
kvm_pr_unimpl("Unsupported exception type: %d",
exception_index);
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
return 0;
}
}
static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
if (likely(vcpu->arch.has_run_once))
return 0;
vcpu->arch.has_run_once = true;
/*
* Initialize the VGIC before running a vcpu the first time on
* this VM.
*/
if (irqchip_in_kernel(vcpu->kvm) &&
unlikely(!vgic_initialized(vcpu->kvm))) {
int ret = kvm_vgic_init(vcpu->kvm);
if (ret)
return ret;
}
/*
* Handle the "start in power-off" case by calling into the
* PSCI code.
*/
if (test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) {
*vcpu_reg(vcpu, 0) = KVM_PSCI_FN_CPU_OFF;
kvm_psci_call(vcpu);
}
return 0;
}
static void vcpu_pause(struct kvm_vcpu *vcpu)
{
wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
wait_event_interruptible(*wq, !vcpu->arch.pause);
}
/**
* kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
* @vcpu: The VCPU pointer
* @run: The kvm_run structure pointer used for userspace state exchange
*
* This function is called through the VCPU_RUN ioctl called from user space. It
* will execute VM code in a loop until the time slice for the process is used
* or some emulation is needed from user space in which case the function will
* return with return value 0 and with the kvm_run structure filled in with the
* required data for the requested emulation.
*/
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
int ret;
sigset_t sigsaved;
/* Make sure they initialize the vcpu with KVM_ARM_VCPU_INIT */
if (unlikely(vcpu->arch.target < 0))
return -ENOEXEC;
ret = kvm_vcpu_first_run_init(vcpu);
if (ret)
return ret;
if (run->exit_reason == KVM_EXIT_MMIO) {
ret = kvm_handle_mmio_return(vcpu, vcpu->run);
if (ret)
return ret;
}
if (vcpu->sigset_active)
sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
ret = 1;
run->exit_reason = KVM_EXIT_UNKNOWN;
while (ret > 0) {
/*
* Check conditions before entering the guest
*/
cond_resched();
update_vttbr(vcpu->kvm);
if (vcpu->arch.pause)
vcpu_pause(vcpu);
kvm_vgic_flush_hwstate(vcpu);
local_irq_disable();
/*
* Re-check atomic conditions
*/
if (signal_pending(current)) {
ret = -EINTR;
run->exit_reason = KVM_EXIT_INTR;
}
if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
local_irq_enable();
kvm_vgic_sync_hwstate(vcpu);
continue;
}
/**************************************************************
* Enter the guest
*/
trace_kvm_entry(*vcpu_pc(vcpu));
kvm_guest_enter();
vcpu->mode = IN_GUEST_MODE;
ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
vcpu->mode = OUTSIDE_GUEST_MODE;
vcpu->arch.last_pcpu = smp_processor_id();
kvm_guest_exit();
trace_kvm_exit(*vcpu_pc(vcpu));
/*
* We may have taken a host interrupt in HYP mode (ie
* while executing the guest). This interrupt is still
* pending, as we haven't serviced it yet!
*
* We're now back in SVC mode, with interrupts
* disabled. Enabling the interrupts now will have
* the effect of taking the interrupt again, in SVC
* mode this time.
*/
local_irq_enable();
/*
* Back from guest
*************************************************************/
kvm_vgic_sync_hwstate(vcpu);
ret = handle_exit(vcpu, run, ret);
}
if (vcpu->sigset_active)
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
return ret;
}
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
int bit_index;
bool set;
unsigned long *ptr;
if (number == KVM_ARM_IRQ_CPU_IRQ)
bit_index = __ffs(HCR_VI);
else /* KVM_ARM_IRQ_CPU_FIQ */
bit_index = __ffs(HCR_VF);
ptr = (unsigned long *)&vcpu->arch.irq_lines;
if (level)
set = test_and_set_bit(bit_index, ptr);
else
set = test_and_clear_bit(bit_index, ptr);
/*
* If we didn't change anything, no need to wake up or kick other CPUs
*/
if (set == level)
return 0;
/*
* The vcpu irq_lines field was updated, wake up sleeping VCPUs and
* trigger a world-switch round on the running physical CPU to set the
* virtual IRQ/FIQ fields in the HCR appropriately.
*/
kvm_vcpu_kick(vcpu);
return 0;
}
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level)
{
u32 irq = irq_level->irq;
unsigned int irq_type, vcpu_idx, irq_num;
int nrcpus = atomic_read(&kvm->online_vcpus);
struct kvm_vcpu *vcpu = NULL;
bool level = irq_level->level;
irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
switch (irq_type) {
case KVM_ARM_IRQ_TYPE_CPU:
if (irqchip_in_kernel(kvm))
return -ENXIO;
if (vcpu_idx >= nrcpus)
return -EINVAL;
vcpu = kvm_get_vcpu(kvm, vcpu_idx);
if (!vcpu)
return -EINVAL;
if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
return -EINVAL;
return vcpu_interrupt_line(vcpu, irq_num, level);
case KVM_ARM_IRQ_TYPE_PPI:
if (!irqchip_in_kernel(kvm))
return -ENXIO;
if (vcpu_idx >= nrcpus)
return -EINVAL;
vcpu = kvm_get_vcpu(kvm, vcpu_idx);
if (!vcpu)
return -EINVAL;
if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
return -EINVAL;
return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
case KVM_ARM_IRQ_TYPE_SPI:
if (!irqchip_in_kernel(kvm))
return -ENXIO;
if (irq_num < VGIC_NR_PRIVATE_IRQS ||
irq_num > KVM_ARM_IRQ_GIC_MAX)
return -EINVAL;
return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
}
return -EINVAL;
}
long kvm_arch_vcpu_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = (void __user *)arg;
switch (ioctl) {
case KVM_ARM_VCPU_INIT: {
struct kvm_vcpu_init init;
if (copy_from_user(&init, argp, sizeof(init)))
return -EFAULT;
return kvm_vcpu_set_target(vcpu, &init);
}
case KVM_SET_ONE_REG:
case KVM_GET_ONE_REG: {
struct kvm_one_reg reg;
if (copy_from_user(&reg, argp, sizeof(reg)))
return -EFAULT;
if (ioctl == KVM_SET_ONE_REG)
return kvm_arm_set_reg(vcpu, &reg);
else
return kvm_arm_get_reg(vcpu, &reg);
}
case KVM_GET_REG_LIST: {
struct kvm_reg_list __user *user_list = argp;
struct kvm_reg_list reg_list;
unsigned n;
if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
return -EFAULT;
n = reg_list.n;
reg_list.n = kvm_arm_num_regs(vcpu);
if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
return -EFAULT;
if (n < reg_list.n)
return -E2BIG;
return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
}
default:
return -EINVAL;
}
}
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
return -EINVAL;
}
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
struct kvm_arm_device_addr *dev_addr)
{
unsigned long dev_id, type;
dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
KVM_ARM_DEVICE_ID_SHIFT;
type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
KVM_ARM_DEVICE_TYPE_SHIFT;
switch (dev_id) {
case KVM_ARM_DEVICE_VGIC_V2:
if (!vgic_present)
return -ENXIO;
return kvm_vgic_set_addr(kvm, type, dev_addr->addr);
default:
return -ENODEV;
}
}
long kvm_arch_vm_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm *kvm = filp->private_data;
void __user *argp = (void __user *)arg;
switch (ioctl) {
case KVM_CREATE_IRQCHIP: {
if (vgic_present)
return kvm_vgic_create(kvm);
else
return -ENXIO;
}
case KVM_ARM_SET_DEVICE_ADDR: {
struct kvm_arm_device_addr dev_addr;
if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
return -EFAULT;
return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
}
default:
return -EINVAL;
}
}
static void cpu_init_hyp_mode(void *vector)
{
unsigned long long pgd_ptr;
unsigned long pgd_low, pgd_high;
unsigned long hyp_stack_ptr;
unsigned long stack_page;
unsigned long vector_ptr;
/* Switch from the HYP stub to our own HYP init vector */
__hyp_set_vectors((unsigned long)vector);
pgd_ptr = (unsigned long long)kvm_mmu_get_httbr();
pgd_low = (pgd_ptr & ((1ULL << 32) - 1));
pgd_high = (pgd_ptr >> 32ULL);
stack_page = __get_cpu_var(kvm_arm_hyp_stack_page);
hyp_stack_ptr = stack_page + PAGE_SIZE;
vector_ptr = (unsigned long)__kvm_hyp_vector;
/*
* Call initialization code, and switch to the full blown
* HYP code. The init code doesn't need to preserve these registers as
* r1-r3 and r12 are already callee save according to the AAPCS.
* Note that we slightly misuse the prototype by casing the pgd_low to
* a void *.
*/
kvm_call_hyp((void *)pgd_low, pgd_high, hyp_stack_ptr, vector_ptr);
}
/**
* Inits Hyp-mode on all online CPUs
*/
static int init_hyp_mode(void)
{
phys_addr_t init_phys_addr;
int cpu;
int err = 0;
/*
* Allocate Hyp PGD and setup Hyp identity mapping
*/
err = kvm_mmu_init();
if (err)
goto out_err;
/*
* It is probably enough to obtain the default on one
* CPU. It's unlikely to be different on the others.
*/
hyp_default_vectors = __hyp_get_vectors();
/*
* Allocate stack pages for Hypervisor-mode
*/
for_each_possible_cpu(cpu) {
unsigned long stack_page;
stack_page = __get_free_page(GFP_KERNEL);
if (!stack_page) {
err = -ENOMEM;
goto out_free_stack_pages;
}
per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
}
/*
* Execute the init code on each CPU.
*
* Note: The stack is not mapped yet, so don't do anything else than
* initializing the hypervisor mode on each CPU using a local stack
* space for temporary storage.
*/
init_phys_addr = virt_to_phys(__kvm_hyp_init);
for_each_online_cpu(cpu) {
smp_call_function_single(cpu, cpu_init_hyp_mode,
(void *)(long)init_phys_addr, 1);
}
/*
* Unmap the identity mapping
*/
kvm_clear_hyp_idmap();
/*
* Map the Hyp-code called directly from the host
*/
err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
if (err) {
kvm_err("Cannot map world-switch code\n");
goto out_free_mappings;
}
/*
* Map the Hyp stack pages
*/
for_each_possible_cpu(cpu) {
char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
if (err) {
kvm_err("Cannot map hyp stack\n");
goto out_free_mappings;
}
}
/*
* Map the host VFP structures
*/
kvm_host_vfp_state = alloc_percpu(struct vfp_hard_struct);
if (!kvm_host_vfp_state) {
err = -ENOMEM;
kvm_err("Cannot allocate host VFP state\n");
goto out_free_mappings;
}
for_each_possible_cpu(cpu) {
struct vfp_hard_struct *vfp;
vfp = per_cpu_ptr(kvm_host_vfp_state, cpu);
err = create_hyp_mappings(vfp, vfp + 1);
if (err) {
kvm_err("Cannot map host VFP state: %d\n", err);
goto out_free_vfp;
}
}
/*
* Init HYP view of VGIC
*/
err = kvm_vgic_hyp_init();
if (err)
goto out_free_vfp;
#ifdef CONFIG_KVM_ARM_VGIC
vgic_present = true;
#endif
kvm_info("Hyp mode initialized successfully\n");
return 0;
out_free_vfp:
free_percpu(kvm_host_vfp_state);
out_free_mappings:
free_hyp_pmds();
out_free_stack_pages:
for_each_possible_cpu(cpu)
free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
out_err:
kvm_err("error initializing Hyp mode: %d\n", err);
return err;
}
/**
* Initialize Hyp-mode and memory mappings on all CPUs.
*/
int kvm_arch_init(void *opaque)
{
int err;
if (!is_hyp_mode_available()) {
kvm_err("HYP mode not available\n");
return -ENODEV;
}
if (kvm_target_cpu() < 0) {
kvm_err("Target CPU not supported!\n");
return -ENODEV;
}
err = init_hyp_mode();
if (err)
goto out_err;
kvm_coproc_table_init();
return 0;
out_err:
return err;
}
/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
}
static int arm_init(void)
{
int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
return rc;
}
module_init(arm_init);