| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (c) 2004-2008 Silicon Graphics, Inc. All Rights Reserved. |
| */ |
| |
| /* |
| * Cross Partition Communication (XPC) structures and macros. |
| */ |
| |
| #ifndef _DRIVERS_MISC_SGIXP_XPC_H |
| #define _DRIVERS_MISC_SGIXP_XPC_H |
| |
| #include <linux/interrupt.h> |
| #include <linux/sysctl.h> |
| #include <linux/device.h> |
| #include <linux/mutex.h> |
| #include <linux/completion.h> |
| #include <asm/pgtable.h> |
| #include <asm/processor.h> |
| #include <asm/sn/bte.h> |
| #include <asm/sn/clksupport.h> |
| #include <asm/sn/addrs.h> |
| #include <asm/sn/mspec.h> |
| #include <asm/sn/shub_mmr.h> |
| #include "xp.h" |
| |
| /* |
| * XPC Version numbers consist of a major and minor number. XPC can always |
| * talk to versions with same major #, and never talk to versions with a |
| * different major #. |
| */ |
| #define _XPC_VERSION(_maj, _min) (((_maj) << 4) | ((_min) & 0xf)) |
| #define XPC_VERSION_MAJOR(_v) ((_v) >> 4) |
| #define XPC_VERSION_MINOR(_v) ((_v) & 0xf) |
| |
| /* |
| * The next macros define word or bit representations for given |
| * C-brick nasid in either the SAL provided bit array representing |
| * nasids in the partition/machine or the AMO_t array used for |
| * inter-partition initiation communications. |
| * |
| * For SN2 machines, C-Bricks are alway even numbered NASIDs. As |
| * such, some space will be saved by insisting that nasid information |
| * passed from SAL always be packed for C-Bricks and the |
| * cross-partition interrupts use the same packing scheme. |
| */ |
| #define XPC_NASID_W_INDEX(_n) (((_n) / 64) / 2) |
| #define XPC_NASID_B_INDEX(_n) (((_n) / 2) & (64 - 1)) |
| #define XPC_NASID_IN_ARRAY(_n, _p) ((_p)[XPC_NASID_W_INDEX(_n)] & \ |
| (1UL << XPC_NASID_B_INDEX(_n))) |
| #define XPC_NASID_FROM_W_B(_w, _b) (((_w) * 64 + (_b)) * 2) |
| |
| #define XPC_HB_DEFAULT_INTERVAL 5 /* incr HB every x secs */ |
| #define XPC_HB_CHECK_DEFAULT_INTERVAL 20 /* check HB every x secs */ |
| |
| /* define the process name of HB checker and the CPU it is pinned to */ |
| #define XPC_HB_CHECK_THREAD_NAME "xpc_hb" |
| #define XPC_HB_CHECK_CPU 0 |
| |
| /* define the process name of the discovery thread */ |
| #define XPC_DISCOVERY_THREAD_NAME "xpc_discovery" |
| |
| /* |
| * the reserved page |
| * |
| * SAL reserves one page of memory per partition for XPC. Though a full page |
| * in length (16384 bytes), its starting address is not page aligned, but it |
| * is cacheline aligned. The reserved page consists of the following: |
| * |
| * reserved page header |
| * |
| * The first cacheline of the reserved page contains the header |
| * (struct xpc_rsvd_page). Before SAL initialization has completed, |
| * SAL has set up the following fields of the reserved page header: |
| * SAL_signature, SAL_version, partid, and nasids_size. The other |
| * fields are set up by XPC. (xpc_rsvd_page points to the local |
| * partition's reserved page.) |
| * |
| * part_nasids mask |
| * mach_nasids mask |
| * |
| * SAL also sets up two bitmaps (or masks), one that reflects the actual |
| * nasids in this partition (part_nasids), and the other that reflects |
| * the actual nasids in the entire machine (mach_nasids). We're only |
| * interested in the even numbered nasids (which contain the processors |
| * and/or memory), so we only need half as many bits to represent the |
| * nasids. The part_nasids mask is located starting at the first cacheline |
| * following the reserved page header. The mach_nasids mask follows right |
| * after the part_nasids mask. The size in bytes of each mask is reflected |
| * by the reserved page header field 'nasids_size'. (Local partition's |
| * mask pointers are xpc_part_nasids and xpc_mach_nasids.) |
| * |
| * vars |
| * vars part |
| * |
| * Immediately following the mach_nasids mask are the XPC variables |
| * required by other partitions. First are those that are generic to all |
| * partitions (vars), followed on the next available cacheline by those |
| * which are partition specific (vars part). These are setup by XPC. |
| * (Local partition's vars pointers are xpc_vars and xpc_vars_part.) |
| * |
| * Note: Until vars_pa is set, the partition XPC code has not been initialized. |
| */ |
| struct xpc_rsvd_page { |
| u64 SAL_signature; /* SAL: unique signature */ |
| u64 SAL_version; /* SAL: version */ |
| u8 partid; /* SAL: partition ID */ |
| u8 version; |
| u8 pad1[6]; /* align to next u64 in cacheline */ |
| u64 vars_pa; /* physical address of struct xpc_vars */ |
| struct timespec stamp; /* time when reserved page was setup by XPC */ |
| u64 pad2[9]; /* align to last u64 in cacheline */ |
| u64 nasids_size; /* SAL: size of each nasid mask in bytes */ |
| }; |
| |
| #define XPC_RP_VERSION _XPC_VERSION(1, 1) /* version 1.1 of the reserved page */ |
| |
| #define XPC_SUPPORTS_RP_STAMP(_version) \ |
| (_version >= _XPC_VERSION(1, 1)) |
| |
| /* |
| * compare stamps - the return value is: |
| * |
| * < 0, if stamp1 < stamp2 |
| * = 0, if stamp1 == stamp2 |
| * > 0, if stamp1 > stamp2 |
| */ |
| static inline int |
| xpc_compare_stamps(struct timespec *stamp1, struct timespec *stamp2) |
| { |
| int ret; |
| |
| ret = stamp1->tv_sec - stamp2->tv_sec; |
| if (ret == 0) |
| ret = stamp1->tv_nsec - stamp2->tv_nsec; |
| |
| return ret; |
| } |
| |
| /* |
| * Define the structures by which XPC variables can be exported to other |
| * partitions. (There are two: struct xpc_vars and struct xpc_vars_part) |
| */ |
| |
| /* |
| * The following structure describes the partition generic variables |
| * needed by other partitions in order to properly initialize. |
| * |
| * struct xpc_vars version number also applies to struct xpc_vars_part. |
| * Changes to either structure and/or related functionality should be |
| * reflected by incrementing either the major or minor version numbers |
| * of struct xpc_vars. |
| */ |
| struct xpc_vars { |
| u8 version; |
| u64 heartbeat; |
| u64 heartbeating_to_mask; |
| u64 heartbeat_offline; /* if 0, heartbeat should be changing */ |
| int act_nasid; |
| int act_phys_cpuid; |
| u64 vars_part_pa; |
| u64 amos_page_pa; /* paddr of page of AMOs from MSPEC driver */ |
| AMO_t *amos_page; /* vaddr of page of AMOs from MSPEC driver */ |
| }; |
| |
| #define XPC_V_VERSION _XPC_VERSION(3, 1) /* version 3.1 of the cross vars */ |
| |
| #define XPC_SUPPORTS_DISENGAGE_REQUEST(_version) \ |
| (_version >= _XPC_VERSION(3, 1)) |
| |
| static inline int |
| xpc_hb_allowed(partid_t partid, struct xpc_vars *vars) |
| { |
| return ((vars->heartbeating_to_mask & (1UL << partid)) != 0); |
| } |
| |
| static inline void |
| xpc_allow_hb(partid_t partid, struct xpc_vars *vars) |
| { |
| u64 old_mask, new_mask; |
| |
| do { |
| old_mask = vars->heartbeating_to_mask; |
| new_mask = (old_mask | (1UL << partid)); |
| } while (cmpxchg(&vars->heartbeating_to_mask, old_mask, new_mask) != |
| old_mask); |
| } |
| |
| static inline void |
| xpc_disallow_hb(partid_t partid, struct xpc_vars *vars) |
| { |
| u64 old_mask, new_mask; |
| |
| do { |
| old_mask = vars->heartbeating_to_mask; |
| new_mask = (old_mask & ~(1UL << partid)); |
| } while (cmpxchg(&vars->heartbeating_to_mask, old_mask, new_mask) != |
| old_mask); |
| } |
| |
| /* |
| * The AMOs page consists of a number of AMO variables which are divided into |
| * four groups, The first two groups are used to identify an IRQ's sender. |
| * These two groups consist of 64 and 128 AMO variables respectively. The last |
| * two groups, consisting of just one AMO variable each, are used to identify |
| * the remote partitions that are currently engaged (from the viewpoint of |
| * the XPC running on the remote partition). |
| */ |
| #define XPC_NOTIFY_IRQ_AMOS 0 |
| #define XPC_ACTIVATE_IRQ_AMOS (XPC_NOTIFY_IRQ_AMOS + XP_MAX_PARTITIONS) |
| #define XPC_ENGAGED_PARTITIONS_AMO (XPC_ACTIVATE_IRQ_AMOS + XP_NASID_MASK_WORDS) |
| #define XPC_DISENGAGE_REQUEST_AMO (XPC_ENGAGED_PARTITIONS_AMO + 1) |
| |
| /* |
| * The following structure describes the per partition specific variables. |
| * |
| * An array of these structures, one per partition, will be defined. As a |
| * partition becomes active XPC will copy the array entry corresponding to |
| * itself from that partition. It is desirable that the size of this |
| * structure evenly divide into a cacheline, such that none of the entries |
| * in this array crosses a cacheline boundary. As it is now, each entry |
| * occupies half a cacheline. |
| */ |
| struct xpc_vars_part { |
| u64 magic; |
| |
| u64 openclose_args_pa; /* physical address of open and close args */ |
| u64 GPs_pa; /* physical address of Get/Put values */ |
| |
| u64 IPI_amo_pa; /* physical address of IPI AMO_t structure */ |
| int IPI_nasid; /* nasid of where to send IPIs */ |
| int IPI_phys_cpuid; /* physical CPU ID of where to send IPIs */ |
| |
| u8 nchannels; /* #of defined channels supported */ |
| |
| u8 reserved[23]; /* pad to a full 64 bytes */ |
| }; |
| |
| /* |
| * The vars_part MAGIC numbers play a part in the first contact protocol. |
| * |
| * MAGIC1 indicates that the per partition specific variables for a remote |
| * partition have been initialized by this partition. |
| * |
| * MAGIC2 indicates that this partition has pulled the remote partititions |
| * per partition variables that pertain to this partition. |
| */ |
| #define XPC_VP_MAGIC1 0x0053524156435058L /* 'XPCVARS\0'L (little endian) */ |
| #define XPC_VP_MAGIC2 0x0073726176435058L /* 'XPCvars\0'L (little endian) */ |
| |
| /* the reserved page sizes and offsets */ |
| |
| #define XPC_RP_HEADER_SIZE L1_CACHE_ALIGN(sizeof(struct xpc_rsvd_page)) |
| #define XPC_RP_VARS_SIZE L1_CACHE_ALIGN(sizeof(struct xpc_vars)) |
| |
| #define XPC_RP_PART_NASIDS(_rp) ((u64 *)((u8 *)(_rp) + XPC_RP_HEADER_SIZE)) |
| #define XPC_RP_MACH_NASIDS(_rp) (XPC_RP_PART_NASIDS(_rp) + xp_nasid_mask_words) |
| #define XPC_RP_VARS(_rp) ((struct xpc_vars *)(XPC_RP_MACH_NASIDS(_rp) + \ |
| xp_nasid_mask_words)) |
| #define XPC_RP_VARS_PART(_rp) ((struct xpc_vars_part *) \ |
| ((u8 *)XPC_RP_VARS(_rp) + XPC_RP_VARS_SIZE)) |
| |
| /* |
| * Functions registered by add_timer() or called by kernel_thread() only |
| * allow for a single 64-bit argument. The following macros can be used to |
| * pack and unpack two (32-bit, 16-bit or 8-bit) arguments into or out from |
| * the passed argument. |
| */ |
| #define XPC_PACK_ARGS(_arg1, _arg2) \ |
| ((((u64) _arg1) & 0xffffffff) | \ |
| ((((u64) _arg2) & 0xffffffff) << 32)) |
| |
| #define XPC_UNPACK_ARG1(_args) (((u64) _args) & 0xffffffff) |
| #define XPC_UNPACK_ARG2(_args) ((((u64) _args) >> 32) & 0xffffffff) |
| |
| /* |
| * Define a Get/Put value pair (pointers) used with a message queue. |
| */ |
| struct xpc_gp { |
| s64 get; /* Get value */ |
| s64 put; /* Put value */ |
| }; |
| |
| #define XPC_GP_SIZE \ |
| L1_CACHE_ALIGN(sizeof(struct xpc_gp) * XPC_NCHANNELS) |
| |
| /* |
| * Define a structure that contains arguments associated with opening and |
| * closing a channel. |
| */ |
| struct xpc_openclose_args { |
| u16 reason; /* reason why channel is closing */ |
| u16 msg_size; /* sizeof each message entry */ |
| u16 remote_nentries; /* #of message entries in remote msg queue */ |
| u16 local_nentries; /* #of message entries in local msg queue */ |
| u64 local_msgqueue_pa; /* physical address of local message queue */ |
| }; |
| |
| #define XPC_OPENCLOSE_ARGS_SIZE \ |
| L1_CACHE_ALIGN(sizeof(struct xpc_openclose_args) * XPC_NCHANNELS) |
| |
| /* struct xpc_msg flags */ |
| |
| #define XPC_M_DONE 0x01 /* msg has been received/consumed */ |
| #define XPC_M_READY 0x02 /* msg is ready to be sent */ |
| #define XPC_M_INTERRUPT 0x04 /* send interrupt when msg consumed */ |
| |
| #define XPC_MSG_ADDRESS(_payload) \ |
| ((struct xpc_msg *)((u8 *)(_payload) - XPC_MSG_PAYLOAD_OFFSET)) |
| |
| /* |
| * Defines notify entry. |
| * |
| * This is used to notify a message's sender that their message was received |
| * and consumed by the intended recipient. |
| */ |
| struct xpc_notify { |
| u8 type; /* type of notification */ |
| |
| /* the following two fields are only used if type == XPC_N_CALL */ |
| xpc_notify_func func; /* user's notify function */ |
| void *key; /* pointer to user's key */ |
| }; |
| |
| /* struct xpc_notify type of notification */ |
| |
| #define XPC_N_CALL 0x01 /* notify function provided by user */ |
| |
| /* |
| * Define the structure that manages all the stuff required by a channel. In |
| * particular, they are used to manage the messages sent across the channel. |
| * |
| * This structure is private to a partition, and is NOT shared across the |
| * partition boundary. |
| * |
| * There is an array of these structures for each remote partition. It is |
| * allocated at the time a partition becomes active. The array contains one |
| * of these structures for each potential channel connection to that partition. |
| * |
| * Each of these structures manages two message queues (circular buffers). |
| * They are allocated at the time a channel connection is made. One of |
| * these message queues (local_msgqueue) holds the locally created messages |
| * that are destined for the remote partition. The other of these message |
| * queues (remote_msgqueue) is a locally cached copy of the remote partition's |
| * own local_msgqueue. |
| * |
| * The following is a description of the Get/Put pointers used to manage these |
| * two message queues. Consider the local_msgqueue to be on one partition |
| * and the remote_msgqueue to be its cached copy on another partition. A |
| * description of what each of the lettered areas contains is included. |
| * |
| * |
| * local_msgqueue remote_msgqueue |
| * |
| * |/////////| |/////////| |
| * w_remote_GP.get --> +---------+ |/////////| |
| * | F | |/////////| |
| * remote_GP.get --> +---------+ +---------+ <-- local_GP->get |
| * | | | | |
| * | | | E | |
| * | | | | |
| * | | +---------+ <-- w_local_GP.get |
| * | B | |/////////| |
| * | | |////D////| |
| * | | |/////////| |
| * | | +---------+ <-- w_remote_GP.put |
| * | | |////C////| |
| * local_GP->put --> +---------+ +---------+ <-- remote_GP.put |
| * | | |/////////| |
| * | A | |/////////| |
| * | | |/////////| |
| * w_local_GP.put --> +---------+ |/////////| |
| * |/////////| |/////////| |
| * |
| * |
| * ( remote_GP.[get|put] are cached copies of the remote |
| * partition's local_GP->[get|put], and thus their values can |
| * lag behind their counterparts on the remote partition. ) |
| * |
| * |
| * A - Messages that have been allocated, but have not yet been sent to the |
| * remote partition. |
| * |
| * B - Messages that have been sent, but have not yet been acknowledged by the |
| * remote partition as having been received. |
| * |
| * C - Area that needs to be prepared for the copying of sent messages, by |
| * the clearing of the message flags of any previously received messages. |
| * |
| * D - Area into which sent messages are to be copied from the remote |
| * partition's local_msgqueue and then delivered to their intended |
| * recipients. [ To allow for a multi-message copy, another pointer |
| * (next_msg_to_pull) has been added to keep track of the next message |
| * number needing to be copied (pulled). It chases after w_remote_GP.put. |
| * Any messages lying between w_local_GP.get and next_msg_to_pull have |
| * been copied and are ready to be delivered. ] |
| * |
| * E - Messages that have been copied and delivered, but have not yet been |
| * acknowledged by the recipient as having been received. |
| * |
| * F - Messages that have been acknowledged, but XPC has not yet notified the |
| * sender that the message was received by its intended recipient. |
| * This is also an area that needs to be prepared for the allocating of |
| * new messages, by the clearing of the message flags of the acknowledged |
| * messages. |
| */ |
| struct xpc_channel { |
| partid_t partid; /* ID of remote partition connected */ |
| spinlock_t lock; /* lock for updating this structure */ |
| u32 flags; /* general flags */ |
| |
| enum xpc_retval reason; /* reason why channel is disconnect'g */ |
| int reason_line; /* line# disconnect initiated from */ |
| |
| u16 number; /* channel # */ |
| |
| u16 msg_size; /* sizeof each msg entry */ |
| u16 local_nentries; /* #of msg entries in local msg queue */ |
| u16 remote_nentries; /* #of msg entries in remote msg queue */ |
| |
| void *local_msgqueue_base; /* base address of kmalloc'd space */ |
| struct xpc_msg *local_msgqueue; /* local message queue */ |
| void *remote_msgqueue_base; /* base address of kmalloc'd space */ |
| struct xpc_msg *remote_msgqueue; /* cached copy of remote partition's */ |
| /* local message queue */ |
| u64 remote_msgqueue_pa; /* phys addr of remote partition's */ |
| /* local message queue */ |
| |
| atomic_t references; /* #of external references to queues */ |
| |
| atomic_t n_on_msg_allocate_wq; /* #on msg allocation wait queue */ |
| wait_queue_head_t msg_allocate_wq; /* msg allocation wait queue */ |
| |
| u8 delayed_IPI_flags; /* IPI flags received, but delayed */ |
| /* action until channel disconnected */ |
| |
| /* queue of msg senders who want to be notified when msg received */ |
| |
| atomic_t n_to_notify; /* #of msg senders to notify */ |
| struct xpc_notify *notify_queue; /* notify queue for messages sent */ |
| |
| xpc_channel_func func; /* user's channel function */ |
| void *key; /* pointer to user's key */ |
| |
| struct mutex msg_to_pull_mutex; /* next msg to pull serialization */ |
| struct completion wdisconnect_wait; /* wait for channel disconnect */ |
| |
| struct xpc_openclose_args *local_openclose_args; /* args passed on */ |
| /* opening or closing of channel */ |
| |
| /* various flavors of local and remote Get/Put values */ |
| |
| struct xpc_gp *local_GP; /* local Get/Put values */ |
| struct xpc_gp remote_GP; /* remote Get/Put values */ |
| struct xpc_gp w_local_GP; /* working local Get/Put values */ |
| struct xpc_gp w_remote_GP; /* working remote Get/Put values */ |
| s64 next_msg_to_pull; /* Put value of next msg to pull */ |
| |
| /* kthread management related fields */ |
| |
| atomic_t kthreads_assigned; /* #of kthreads assigned to channel */ |
| u32 kthreads_assigned_limit; /* limit on #of kthreads assigned */ |
| atomic_t kthreads_idle; /* #of kthreads idle waiting for work */ |
| u32 kthreads_idle_limit; /* limit on #of kthreads idle */ |
| atomic_t kthreads_active; /* #of kthreads actively working */ |
| |
| wait_queue_head_t idle_wq; /* idle kthread wait queue */ |
| |
| } ____cacheline_aligned; |
| |
| /* struct xpc_channel flags */ |
| |
| #define XPC_C_WASCONNECTED 0x00000001 /* channel was connected */ |
| |
| #define XPC_C_ROPENREPLY 0x00000002 /* remote open channel reply */ |
| #define XPC_C_OPENREPLY 0x00000004 /* local open channel reply */ |
| #define XPC_C_ROPENREQUEST 0x00000008 /* remote open channel request */ |
| #define XPC_C_OPENREQUEST 0x00000010 /* local open channel request */ |
| |
| #define XPC_C_SETUP 0x00000020 /* channel's msgqueues are alloc'd */ |
| #define XPC_C_CONNECTEDCALLOUT 0x00000040 /* connected callout initiated */ |
| #define XPC_C_CONNECTEDCALLOUT_MADE \ |
| 0x00000080 /* connected callout completed */ |
| #define XPC_C_CONNECTED 0x00000100 /* local channel is connected */ |
| #define XPC_C_CONNECTING 0x00000200 /* channel is being connected */ |
| |
| #define XPC_C_RCLOSEREPLY 0x00000400 /* remote close channel reply */ |
| #define XPC_C_CLOSEREPLY 0x00000800 /* local close channel reply */ |
| #define XPC_C_RCLOSEREQUEST 0x00001000 /* remote close channel request */ |
| #define XPC_C_CLOSEREQUEST 0x00002000 /* local close channel request */ |
| |
| #define XPC_C_DISCONNECTED 0x00004000 /* channel is disconnected */ |
| #define XPC_C_DISCONNECTING 0x00008000 /* channel is being disconnected */ |
| #define XPC_C_DISCONNECTINGCALLOUT \ |
| 0x00010000 /* disconnecting callout initiated */ |
| #define XPC_C_DISCONNECTINGCALLOUT_MADE \ |
| 0x00020000 /* disconnecting callout completed */ |
| #define XPC_C_WDISCONNECT 0x00040000 /* waiting for channel disconnect */ |
| |
| /* |
| * Manages channels on a partition basis. There is one of these structures |
| * for each partition (a partition will never utilize the structure that |
| * represents itself). |
| */ |
| struct xpc_partition { |
| |
| /* XPC HB infrastructure */ |
| |
| u8 remote_rp_version; /* version# of partition's rsvd pg */ |
| struct timespec remote_rp_stamp; /* time when rsvd pg was initialized */ |
| u64 remote_rp_pa; /* phys addr of partition's rsvd pg */ |
| u64 remote_vars_pa; /* phys addr of partition's vars */ |
| u64 remote_vars_part_pa; /* phys addr of partition's vars part */ |
| u64 last_heartbeat; /* HB at last read */ |
| u64 remote_amos_page_pa; /* phys addr of partition's amos page */ |
| int remote_act_nasid; /* active part's act/deact nasid */ |
| int remote_act_phys_cpuid; /* active part's act/deact phys cpuid */ |
| u32 act_IRQ_rcvd; /* IRQs since activation */ |
| spinlock_t act_lock; /* protect updating of act_state */ |
| u8 act_state; /* from XPC HB viewpoint */ |
| u8 remote_vars_version; /* version# of partition's vars */ |
| enum xpc_retval reason; /* reason partition is deactivating */ |
| int reason_line; /* line# deactivation initiated from */ |
| int reactivate_nasid; /* nasid in partition to reactivate */ |
| |
| unsigned long disengage_request_timeout; /* timeout in jiffies */ |
| struct timer_list disengage_request_timer; |
| |
| /* XPC infrastructure referencing and teardown control */ |
| |
| u8 setup_state; /* infrastructure setup state */ |
| wait_queue_head_t teardown_wq; /* kthread waiting to teardown infra */ |
| atomic_t references; /* #of references to infrastructure */ |
| |
| /* |
| * NONE OF THE PRECEDING FIELDS OF THIS STRUCTURE WILL BE CLEARED WHEN |
| * XPC SETS UP THE NECESSARY INFRASTRUCTURE TO SUPPORT CROSS PARTITION |
| * COMMUNICATION. ALL OF THE FOLLOWING FIELDS WILL BE CLEARED. (THE |
| * 'nchannels' FIELD MUST BE THE FIRST OF THE FIELDS TO BE CLEARED.) |
| */ |
| |
| u8 nchannels; /* #of defined channels supported */ |
| atomic_t nchannels_active; /* #of channels that are not DISCONNECTED */ |
| atomic_t nchannels_engaged; /* #of channels engaged with remote part */ |
| struct xpc_channel *channels; /* array of channel structures */ |
| |
| void *local_GPs_base; /* base address of kmalloc'd space */ |
| struct xpc_gp *local_GPs; /* local Get/Put values */ |
| void *remote_GPs_base; /* base address of kmalloc'd space */ |
| struct xpc_gp *remote_GPs; /* copy of remote partition's local */ |
| /* Get/Put values */ |
| u64 remote_GPs_pa; /* phys address of remote partition's local */ |
| /* Get/Put values */ |
| |
| /* fields used to pass args when opening or closing a channel */ |
| |
| void *local_openclose_args_base; /* base address of kmalloc'd space */ |
| struct xpc_openclose_args *local_openclose_args; /* local's args */ |
| void *remote_openclose_args_base; /* base address of kmalloc'd space */ |
| struct xpc_openclose_args *remote_openclose_args; /* copy of remote's */ |
| /* args */ |
| u64 remote_openclose_args_pa; /* phys addr of remote's args */ |
| |
| /* IPI sending, receiving and handling related fields */ |
| |
| int remote_IPI_nasid; /* nasid of where to send IPIs */ |
| int remote_IPI_phys_cpuid; /* phys CPU ID of where to send IPIs */ |
| AMO_t *remote_IPI_amo_va; /* address of remote IPI AMO_t structure */ |
| |
| AMO_t *local_IPI_amo_va; /* address of IPI AMO_t structure */ |
| u64 local_IPI_amo; /* IPI amo flags yet to be handled */ |
| char IPI_owner[8]; /* IPI owner's name */ |
| struct timer_list dropped_IPI_timer; /* dropped IPI timer */ |
| |
| spinlock_t IPI_lock; /* IPI handler lock */ |
| |
| /* channel manager related fields */ |
| |
| atomic_t channel_mgr_requests; /* #of requests to activate chan mgr */ |
| wait_queue_head_t channel_mgr_wq; /* channel mgr's wait queue */ |
| |
| } ____cacheline_aligned; |
| |
| /* struct xpc_partition act_state values (for XPC HB) */ |
| |
| #define XPC_P_INACTIVE 0x00 /* partition is not active */ |
| #define XPC_P_ACTIVATION_REQ 0x01 /* created thread to activate */ |
| #define XPC_P_ACTIVATING 0x02 /* activation thread started */ |
| #define XPC_P_ACTIVE 0x03 /* xpc_partition_up() was called */ |
| #define XPC_P_DEACTIVATING 0x04 /* partition deactivation initiated */ |
| |
| #define XPC_DEACTIVATE_PARTITION(_p, _reason) \ |
| xpc_deactivate_partition(__LINE__, (_p), (_reason)) |
| |
| /* struct xpc_partition setup_state values */ |
| |
| #define XPC_P_UNSET 0x00 /* infrastructure was never setup */ |
| #define XPC_P_SETUP 0x01 /* infrastructure is setup */ |
| #define XPC_P_WTEARDOWN 0x02 /* waiting to teardown infrastructure */ |
| #define XPC_P_TORNDOWN 0x03 /* infrastructure is torndown */ |
| |
| /* |
| * struct xpc_partition IPI_timer #of seconds to wait before checking for |
| * dropped IPIs. These occur whenever an IPI amo write doesn't complete until |
| * after the IPI was received. |
| */ |
| #define XPC_P_DROPPED_IPI_WAIT (0.25 * HZ) |
| |
| /* number of seconds to wait for other partitions to disengage */ |
| #define XPC_DISENGAGE_REQUEST_DEFAULT_TIMELIMIT 90 |
| |
| /* interval in seconds to print 'waiting disengagement' messages */ |
| #define XPC_DISENGAGE_PRINTMSG_INTERVAL 10 |
| |
| #define XPC_PARTID(_p) ((partid_t) ((_p) - &xpc_partitions[0])) |
| |
| /* found in xp_main.c */ |
| extern struct xpc_registration xpc_registrations[]; |
| |
| /* found in xpc_main.c */ |
| extern struct device *xpc_part; |
| extern struct device *xpc_chan; |
| extern int xpc_disengage_request_timelimit; |
| extern int xpc_disengage_request_timedout; |
| extern irqreturn_t xpc_notify_IRQ_handler(int, void *); |
| extern void xpc_dropped_IPI_check(struct xpc_partition *); |
| extern void xpc_activate_partition(struct xpc_partition *); |
| extern void xpc_activate_kthreads(struct xpc_channel *, int); |
| extern void xpc_create_kthreads(struct xpc_channel *, int, int); |
| extern void xpc_disconnect_wait(int); |
| |
| /* found in xpc_partition.c */ |
| extern int xpc_exiting; |
| extern struct xpc_vars *xpc_vars; |
| extern struct xpc_rsvd_page *xpc_rsvd_page; |
| extern struct xpc_vars_part *xpc_vars_part; |
| extern struct xpc_partition xpc_partitions[XP_MAX_PARTITIONS + 1]; |
| extern char *xpc_remote_copy_buffer; |
| extern void *xpc_remote_copy_buffer_base; |
| extern void *xpc_kmalloc_cacheline_aligned(size_t, gfp_t, void **); |
| extern struct xpc_rsvd_page *xpc_rsvd_page_init(void); |
| extern void xpc_allow_IPI_ops(void); |
| extern void xpc_restrict_IPI_ops(void); |
| extern int xpc_identify_act_IRQ_sender(void); |
| extern int xpc_partition_disengaged(struct xpc_partition *); |
| extern enum xpc_retval xpc_mark_partition_active(struct xpc_partition *); |
| extern void xpc_mark_partition_inactive(struct xpc_partition *); |
| extern void xpc_discovery(void); |
| extern void xpc_check_remote_hb(void); |
| extern void xpc_deactivate_partition(const int, struct xpc_partition *, |
| enum xpc_retval); |
| extern enum xpc_retval xpc_initiate_partid_to_nasids(partid_t, void *); |
| |
| /* found in xpc_channel.c */ |
| extern void xpc_initiate_connect(int); |
| extern void xpc_initiate_disconnect(int); |
| extern enum xpc_retval xpc_initiate_allocate(partid_t, int, u32, void **); |
| extern enum xpc_retval xpc_initiate_send(partid_t, int, void *); |
| extern enum xpc_retval xpc_initiate_send_notify(partid_t, int, void *, |
| xpc_notify_func, void *); |
| extern void xpc_initiate_received(partid_t, int, void *); |
| extern enum xpc_retval xpc_setup_infrastructure(struct xpc_partition *); |
| extern enum xpc_retval xpc_pull_remote_vars_part(struct xpc_partition *); |
| extern void xpc_process_channel_activity(struct xpc_partition *); |
| extern void xpc_connected_callout(struct xpc_channel *); |
| extern void xpc_deliver_msg(struct xpc_channel *); |
| extern void xpc_disconnect_channel(const int, struct xpc_channel *, |
| enum xpc_retval, unsigned long *); |
| extern void xpc_disconnect_callout(struct xpc_channel *, enum xpc_retval); |
| extern void xpc_partition_going_down(struct xpc_partition *, enum xpc_retval); |
| extern void xpc_teardown_infrastructure(struct xpc_partition *); |
| |
| static inline void |
| xpc_wakeup_channel_mgr(struct xpc_partition *part) |
| { |
| if (atomic_inc_return(&part->channel_mgr_requests) == 1) |
| wake_up(&part->channel_mgr_wq); |
| } |
| |
| /* |
| * These next two inlines are used to keep us from tearing down a channel's |
| * msg queues while a thread may be referencing them. |
| */ |
| static inline void |
| xpc_msgqueue_ref(struct xpc_channel *ch) |
| { |
| atomic_inc(&ch->references); |
| } |
| |
| static inline void |
| xpc_msgqueue_deref(struct xpc_channel *ch) |
| { |
| s32 refs = atomic_dec_return(&ch->references); |
| |
| DBUG_ON(refs < 0); |
| if (refs == 0) |
| xpc_wakeup_channel_mgr(&xpc_partitions[ch->partid]); |
| } |
| |
| #define XPC_DISCONNECT_CHANNEL(_ch, _reason, _irqflgs) \ |
| xpc_disconnect_channel(__LINE__, _ch, _reason, _irqflgs) |
| |
| /* |
| * These two inlines are used to keep us from tearing down a partition's |
| * setup infrastructure while a thread may be referencing it. |
| */ |
| static inline void |
| xpc_part_deref(struct xpc_partition *part) |
| { |
| s32 refs = atomic_dec_return(&part->references); |
| |
| DBUG_ON(refs < 0); |
| if (refs == 0 && part->setup_state == XPC_P_WTEARDOWN) |
| wake_up(&part->teardown_wq); |
| } |
| |
| static inline int |
| xpc_part_ref(struct xpc_partition *part) |
| { |
| int setup; |
| |
| atomic_inc(&part->references); |
| setup = (part->setup_state == XPC_P_SETUP); |
| if (!setup) |
| xpc_part_deref(part); |
| |
| return setup; |
| } |
| |
| /* |
| * The following macro is to be used for the setting of the reason and |
| * reason_line fields in both the struct xpc_channel and struct xpc_partition |
| * structures. |
| */ |
| #define XPC_SET_REASON(_p, _reason, _line) \ |
| { \ |
| (_p)->reason = _reason; \ |
| (_p)->reason_line = _line; \ |
| } |
| |
| /* |
| * This next set of inlines are used to keep track of when a partition is |
| * potentially engaged in accessing memory belonging to another partition. |
| */ |
| |
| static inline void |
| xpc_mark_partition_engaged(struct xpc_partition *part) |
| { |
| unsigned long irq_flags; |
| AMO_t *amo = (AMO_t *)__va(part->remote_amos_page_pa + |
| (XPC_ENGAGED_PARTITIONS_AMO * |
| sizeof(AMO_t))); |
| |
| local_irq_save(irq_flags); |
| |
| /* set bit corresponding to our partid in remote partition's AMO */ |
| FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, |
| (1UL << sn_partition_id)); |
| /* |
| * We must always use the nofault function regardless of whether we |
| * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we |
| * didn't, we'd never know that the other partition is down and would |
| * keep sending IPIs and AMOs to it until the heartbeat times out. |
| */ |
| (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo-> |
| variable), |
| xp_nofault_PIOR_target)); |
| |
| local_irq_restore(irq_flags); |
| } |
| |
| static inline void |
| xpc_mark_partition_disengaged(struct xpc_partition *part) |
| { |
| unsigned long irq_flags; |
| AMO_t *amo = (AMO_t *)__va(part->remote_amos_page_pa + |
| (XPC_ENGAGED_PARTITIONS_AMO * |
| sizeof(AMO_t))); |
| |
| local_irq_save(irq_flags); |
| |
| /* clear bit corresponding to our partid in remote partition's AMO */ |
| FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND, |
| ~(1UL << sn_partition_id)); |
| /* |
| * We must always use the nofault function regardless of whether we |
| * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we |
| * didn't, we'd never know that the other partition is down and would |
| * keep sending IPIs and AMOs to it until the heartbeat times out. |
| */ |
| (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo-> |
| variable), |
| xp_nofault_PIOR_target)); |
| |
| local_irq_restore(irq_flags); |
| } |
| |
| static inline void |
| xpc_request_partition_disengage(struct xpc_partition *part) |
| { |
| unsigned long irq_flags; |
| AMO_t *amo = (AMO_t *)__va(part->remote_amos_page_pa + |
| (XPC_DISENGAGE_REQUEST_AMO * sizeof(AMO_t))); |
| |
| local_irq_save(irq_flags); |
| |
| /* set bit corresponding to our partid in remote partition's AMO */ |
| FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, |
| (1UL << sn_partition_id)); |
| /* |
| * We must always use the nofault function regardless of whether we |
| * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we |
| * didn't, we'd never know that the other partition is down and would |
| * keep sending IPIs and AMOs to it until the heartbeat times out. |
| */ |
| (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo-> |
| variable), |
| xp_nofault_PIOR_target)); |
| |
| local_irq_restore(irq_flags); |
| } |
| |
| static inline void |
| xpc_cancel_partition_disengage_request(struct xpc_partition *part) |
| { |
| unsigned long irq_flags; |
| AMO_t *amo = (AMO_t *)__va(part->remote_amos_page_pa + |
| (XPC_DISENGAGE_REQUEST_AMO * sizeof(AMO_t))); |
| |
| local_irq_save(irq_flags); |
| |
| /* clear bit corresponding to our partid in remote partition's AMO */ |
| FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND, |
| ~(1UL << sn_partition_id)); |
| /* |
| * We must always use the nofault function regardless of whether we |
| * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we |
| * didn't, we'd never know that the other partition is down and would |
| * keep sending IPIs and AMOs to it until the heartbeat times out. |
| */ |
| (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo-> |
| variable), |
| xp_nofault_PIOR_target)); |
| |
| local_irq_restore(irq_flags); |
| } |
| |
| static inline u64 |
| xpc_partition_engaged(u64 partid_mask) |
| { |
| AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO; |
| |
| /* return our partition's AMO variable ANDed with partid_mask */ |
| return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) & |
| partid_mask); |
| } |
| |
| static inline u64 |
| xpc_partition_disengage_requested(u64 partid_mask) |
| { |
| AMO_t *amo = xpc_vars->amos_page + XPC_DISENGAGE_REQUEST_AMO; |
| |
| /* return our partition's AMO variable ANDed with partid_mask */ |
| return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) & |
| partid_mask); |
| } |
| |
| static inline void |
| xpc_clear_partition_engaged(u64 partid_mask) |
| { |
| AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO; |
| |
| /* clear bit(s) based on partid_mask in our partition's AMO */ |
| FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND, |
| ~partid_mask); |
| } |
| |
| static inline void |
| xpc_clear_partition_disengage_request(u64 partid_mask) |
| { |
| AMO_t *amo = xpc_vars->amos_page + XPC_DISENGAGE_REQUEST_AMO; |
| |
| /* clear bit(s) based on partid_mask in our partition's AMO */ |
| FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND, |
| ~partid_mask); |
| } |
| |
| /* |
| * The following set of macros and inlines are used for the sending and |
| * receiving of IPIs (also known as IRQs). There are two flavors of IPIs, |
| * one that is associated with partition activity (SGI_XPC_ACTIVATE) and |
| * the other that is associated with channel activity (SGI_XPC_NOTIFY). |
| */ |
| |
| static inline u64 |
| xpc_IPI_receive(AMO_t *amo) |
| { |
| return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR); |
| } |
| |
| static inline enum xpc_retval |
| xpc_IPI_send(AMO_t *amo, u64 flag, int nasid, int phys_cpuid, int vector) |
| { |
| int ret = 0; |
| unsigned long irq_flags; |
| |
| local_irq_save(irq_flags); |
| |
| FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag); |
| sn_send_IPI_phys(nasid, phys_cpuid, vector, 0); |
| |
| /* |
| * We must always use the nofault function regardless of whether we |
| * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we |
| * didn't, we'd never know that the other partition is down and would |
| * keep sending IPIs and AMOs to it until the heartbeat times out. |
| */ |
| ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable), |
| xp_nofault_PIOR_target)); |
| |
| local_irq_restore(irq_flags); |
| |
| return ((ret == 0) ? xpcSuccess : xpcPioReadError); |
| } |
| |
| /* |
| * IPIs associated with SGI_XPC_ACTIVATE IRQ. |
| */ |
| |
| /* |
| * Flag the appropriate AMO variable and send an IPI to the specified node. |
| */ |
| static inline void |
| xpc_activate_IRQ_send(u64 amos_page_pa, int from_nasid, int to_nasid, |
| int to_phys_cpuid) |
| { |
| int w_index = XPC_NASID_W_INDEX(from_nasid); |
| int b_index = XPC_NASID_B_INDEX(from_nasid); |
| AMO_t *amos = (AMO_t *)__va(amos_page_pa + |
| (XPC_ACTIVATE_IRQ_AMOS * sizeof(AMO_t))); |
| |
| (void)xpc_IPI_send(&amos[w_index], (1UL << b_index), to_nasid, |
| to_phys_cpuid, SGI_XPC_ACTIVATE); |
| } |
| |
| static inline void |
| xpc_IPI_send_activate(struct xpc_vars *vars) |
| { |
| xpc_activate_IRQ_send(vars->amos_page_pa, cnodeid_to_nasid(0), |
| vars->act_nasid, vars->act_phys_cpuid); |
| } |
| |
| static inline void |
| xpc_IPI_send_activated(struct xpc_partition *part) |
| { |
| xpc_activate_IRQ_send(part->remote_amos_page_pa, cnodeid_to_nasid(0), |
| part->remote_act_nasid, |
| part->remote_act_phys_cpuid); |
| } |
| |
| static inline void |
| xpc_IPI_send_reactivate(struct xpc_partition *part) |
| { |
| xpc_activate_IRQ_send(xpc_vars->amos_page_pa, part->reactivate_nasid, |
| xpc_vars->act_nasid, xpc_vars->act_phys_cpuid); |
| } |
| |
| static inline void |
| xpc_IPI_send_disengage(struct xpc_partition *part) |
| { |
| xpc_activate_IRQ_send(part->remote_amos_page_pa, cnodeid_to_nasid(0), |
| part->remote_act_nasid, |
| part->remote_act_phys_cpuid); |
| } |
| |
| /* |
| * IPIs associated with SGI_XPC_NOTIFY IRQ. |
| */ |
| |
| /* |
| * Send an IPI to the remote partition that is associated with the |
| * specified channel. |
| */ |
| #define XPC_NOTIFY_IRQ_SEND(_ch, _ipi_f, _irq_f) \ |
| xpc_notify_IRQ_send(_ch, _ipi_f, #_ipi_f, _irq_f) |
| |
| static inline void |
| xpc_notify_IRQ_send(struct xpc_channel *ch, u8 ipi_flag, char *ipi_flag_string, |
| unsigned long *irq_flags) |
| { |
| struct xpc_partition *part = &xpc_partitions[ch->partid]; |
| enum xpc_retval ret; |
| |
| if (likely(part->act_state != XPC_P_DEACTIVATING)) { |
| ret = xpc_IPI_send(part->remote_IPI_amo_va, |
| (u64)ipi_flag << (ch->number * 8), |
| part->remote_IPI_nasid, |
| part->remote_IPI_phys_cpuid, SGI_XPC_NOTIFY); |
| dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n", |
| ipi_flag_string, ch->partid, ch->number, ret); |
| if (unlikely(ret != xpcSuccess)) { |
| if (irq_flags != NULL) |
| spin_unlock_irqrestore(&ch->lock, *irq_flags); |
| XPC_DEACTIVATE_PARTITION(part, ret); |
| if (irq_flags != NULL) |
| spin_lock_irqsave(&ch->lock, *irq_flags); |
| } |
| } |
| } |
| |
| /* |
| * Make it look like the remote partition, which is associated with the |
| * specified channel, sent us an IPI. This faked IPI will be handled |
| * by xpc_dropped_IPI_check(). |
| */ |
| #define XPC_NOTIFY_IRQ_SEND_LOCAL(_ch, _ipi_f) \ |
| xpc_notify_IRQ_send_local(_ch, _ipi_f, #_ipi_f) |
| |
| static inline void |
| xpc_notify_IRQ_send_local(struct xpc_channel *ch, u8 ipi_flag, |
| char *ipi_flag_string) |
| { |
| struct xpc_partition *part = &xpc_partitions[ch->partid]; |
| |
| FETCHOP_STORE_OP(TO_AMO((u64)&part->local_IPI_amo_va->variable), |
| FETCHOP_OR, ((u64)ipi_flag << (ch->number * 8))); |
| dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n", |
| ipi_flag_string, ch->partid, ch->number); |
| } |
| |
| /* |
| * The sending and receiving of IPIs includes the setting of an AMO variable |
| * to indicate the reason the IPI was sent. The 64-bit variable is divided |
| * up into eight bytes, ordered from right to left. Byte zero pertains to |
| * channel 0, byte one to channel 1, and so on. Each byte is described by |
| * the following IPI flags. |
| */ |
| |
| #define XPC_IPI_CLOSEREQUEST 0x01 |
| #define XPC_IPI_CLOSEREPLY 0x02 |
| #define XPC_IPI_OPENREQUEST 0x04 |
| #define XPC_IPI_OPENREPLY 0x08 |
| #define XPC_IPI_MSGREQUEST 0x10 |
| |
| /* given an AMO variable and a channel#, get its associated IPI flags */ |
| #define XPC_GET_IPI_FLAGS(_amo, _c) ((u8) (((_amo) >> ((_c) * 8)) & 0xff)) |
| #define XPC_SET_IPI_FLAGS(_amo, _c, _f) (_amo) |= ((u64) (_f) << ((_c) * 8)) |
| |
| #define XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(_amo) ((_amo) & 0x0f0f0f0f0f0f0f0fUL) |
| #define XPC_ANY_MSG_IPI_FLAGS_SET(_amo) ((_amo) & 0x1010101010101010UL) |
| |
| static inline void |
| xpc_IPI_send_closerequest(struct xpc_channel *ch, unsigned long *irq_flags) |
| { |
| struct xpc_openclose_args *args = ch->local_openclose_args; |
| |
| args->reason = ch->reason; |
| |
| XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREQUEST, irq_flags); |
| } |
| |
| static inline void |
| xpc_IPI_send_closereply(struct xpc_channel *ch, unsigned long *irq_flags) |
| { |
| XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREPLY, irq_flags); |
| } |
| |
| static inline void |
| xpc_IPI_send_openrequest(struct xpc_channel *ch, unsigned long *irq_flags) |
| { |
| struct xpc_openclose_args *args = ch->local_openclose_args; |
| |
| args->msg_size = ch->msg_size; |
| args->local_nentries = ch->local_nentries; |
| |
| XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREQUEST, irq_flags); |
| } |
| |
| static inline void |
| xpc_IPI_send_openreply(struct xpc_channel *ch, unsigned long *irq_flags) |
| { |
| struct xpc_openclose_args *args = ch->local_openclose_args; |
| |
| args->remote_nentries = ch->remote_nentries; |
| args->local_nentries = ch->local_nentries; |
| args->local_msgqueue_pa = __pa(ch->local_msgqueue); |
| |
| XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREPLY, irq_flags); |
| } |
| |
| static inline void |
| xpc_IPI_send_msgrequest(struct xpc_channel *ch) |
| { |
| XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_MSGREQUEST, NULL); |
| } |
| |
| static inline void |
| xpc_IPI_send_local_msgrequest(struct xpc_channel *ch) |
| { |
| XPC_NOTIFY_IRQ_SEND_LOCAL(ch, XPC_IPI_MSGREQUEST); |
| } |
| |
| /* |
| * Memory for XPC's AMO variables is allocated by the MSPEC driver. These |
| * pages are located in the lowest granule. The lowest granule uses 4k pages |
| * for cached references and an alternate TLB handler to never provide a |
| * cacheable mapping for the entire region. This will prevent speculative |
| * reading of cached copies of our lines from being issued which will cause |
| * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64 |
| * AMO variables (based on XP_MAX_PARTITIONS) for message notification and an |
| * additional 128 AMO variables (based on XP_NASID_MASK_WORDS) for partition |
| * activation and 2 AMO variables for partition deactivation. |
| */ |
| static inline AMO_t * |
| xpc_IPI_init(int index) |
| { |
| AMO_t *amo = xpc_vars->amos_page + index; |
| |
| (void)xpc_IPI_receive(amo); /* clear AMO variable */ |
| return amo; |
| } |
| |
| static inline enum xpc_retval |
| xpc_map_bte_errors(bte_result_t error) |
| { |
| if (error == BTE_SUCCESS) |
| return xpcSuccess; |
| |
| if (is_shub2()) { |
| if (BTE_VALID_SH2_ERROR(error)) |
| return xpcBteSh2Start + error; |
| return xpcBteUnmappedError; |
| } |
| switch (error) { |
| case BTE_SUCCESS: |
| return xpcSuccess; |
| case BTEFAIL_DIR: |
| return xpcBteDirectoryError; |
| case BTEFAIL_POISON: |
| return xpcBtePoisonError; |
| case BTEFAIL_WERR: |
| return xpcBteWriteError; |
| case BTEFAIL_ACCESS: |
| return xpcBteAccessError; |
| case BTEFAIL_PWERR: |
| return xpcBtePWriteError; |
| case BTEFAIL_PRERR: |
| return xpcBtePReadError; |
| case BTEFAIL_TOUT: |
| return xpcBteTimeOutError; |
| case BTEFAIL_XTERR: |
| return xpcBteXtalkError; |
| case BTEFAIL_NOTAVAIL: |
| return xpcBteNotAvailable; |
| default: |
| return xpcBteUnmappedError; |
| } |
| } |
| |
| /* |
| * Check to see if there is any channel activity to/from the specified |
| * partition. |
| */ |
| static inline void |
| xpc_check_for_channel_activity(struct xpc_partition *part) |
| { |
| u64 IPI_amo; |
| unsigned long irq_flags; |
| |
| IPI_amo = xpc_IPI_receive(part->local_IPI_amo_va); |
| if (IPI_amo == 0) |
| return; |
| |
| spin_lock_irqsave(&part->IPI_lock, irq_flags); |
| part->local_IPI_amo |= IPI_amo; |
| spin_unlock_irqrestore(&part->IPI_lock, irq_flags); |
| |
| dev_dbg(xpc_chan, "received IPI from partid=%d, IPI_amo=0x%lx\n", |
| XPC_PARTID(part), IPI_amo); |
| |
| xpc_wakeup_channel_mgr(part); |
| } |
| |
| #endif /* _DRIVERS_MISC_SGIXP_XPC_H */ |