| /* |
| * Copyright © 2014 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Ben Widawsky <ben@bwidawsk.net> |
| * Michel Thierry <michel.thierry@intel.com> |
| * Thomas Daniel <thomas.daniel@intel.com> |
| * Oscar Mateo <oscar.mateo@intel.com> |
| * |
| */ |
| |
| /** |
| * DOC: Logical Rings, Logical Ring Contexts and Execlists |
| * |
| * Motivation: |
| * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts". |
| * These expanded contexts enable a number of new abilities, especially |
| * "Execlists" (also implemented in this file). |
| * |
| * One of the main differences with the legacy HW contexts is that logical |
| * ring contexts incorporate many more things to the context's state, like |
| * PDPs or ringbuffer control registers: |
| * |
| * The reason why PDPs are included in the context is straightforward: as |
| * PPGTTs (per-process GTTs) are actually per-context, having the PDPs |
| * contained there mean you don't need to do a ppgtt->switch_mm yourself, |
| * instead, the GPU will do it for you on the context switch. |
| * |
| * But, what about the ringbuffer control registers (head, tail, etc..)? |
| * shouldn't we just need a set of those per engine command streamer? This is |
| * where the name "Logical Rings" starts to make sense: by virtualizing the |
| * rings, the engine cs shifts to a new "ring buffer" with every context |
| * switch. When you want to submit a workload to the GPU you: A) choose your |
| * context, B) find its appropriate virtualized ring, C) write commands to it |
| * and then, finally, D) tell the GPU to switch to that context. |
| * |
| * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch |
| * to a contexts is via a context execution list, ergo "Execlists". |
| * |
| * LRC implementation: |
| * Regarding the creation of contexts, we have: |
| * |
| * - One global default context. |
| * - One local default context for each opened fd. |
| * - One local extra context for each context create ioctl call. |
| * |
| * Now that ringbuffers belong per-context (and not per-engine, like before) |
| * and that contexts are uniquely tied to a given engine (and not reusable, |
| * like before) we need: |
| * |
| * - One ringbuffer per-engine inside each context. |
| * - One backing object per-engine inside each context. |
| * |
| * The global default context starts its life with these new objects fully |
| * allocated and populated. The local default context for each opened fd is |
| * more complex, because we don't know at creation time which engine is going |
| * to use them. To handle this, we have implemented a deferred creation of LR |
| * contexts: |
| * |
| * The local context starts its life as a hollow or blank holder, that only |
| * gets populated for a given engine once we receive an execbuffer. If later |
| * on we receive another execbuffer ioctl for the same context but a different |
| * engine, we allocate/populate a new ringbuffer and context backing object and |
| * so on. |
| * |
| * Finally, regarding local contexts created using the ioctl call: as they are |
| * only allowed with the render ring, we can allocate & populate them right |
| * away (no need to defer anything, at least for now). |
| * |
| * Execlists implementation: |
| * Execlists are the new method by which, on gen8+ hardware, workloads are |
| * submitted for execution (as opposed to the legacy, ringbuffer-based, method). |
| * This method works as follows: |
| * |
| * When a request is committed, its commands (the BB start and any leading or |
| * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer |
| * for the appropriate context. The tail pointer in the hardware context is not |
| * updated at this time, but instead, kept by the driver in the ringbuffer |
| * structure. A structure representing this request is added to a request queue |
| * for the appropriate engine: this structure contains a copy of the context's |
| * tail after the request was written to the ring buffer and a pointer to the |
| * context itself. |
| * |
| * If the engine's request queue was empty before the request was added, the |
| * queue is processed immediately. Otherwise the queue will be processed during |
| * a context switch interrupt. In any case, elements on the queue will get sent |
| * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a |
| * globally unique 20-bits submission ID. |
| * |
| * When execution of a request completes, the GPU updates the context status |
| * buffer with a context complete event and generates a context switch interrupt. |
| * During the interrupt handling, the driver examines the events in the buffer: |
| * for each context complete event, if the announced ID matches that on the head |
| * of the request queue, then that request is retired and removed from the queue. |
| * |
| * After processing, if any requests were retired and the queue is not empty |
| * then a new execution list can be submitted. The two requests at the front of |
| * the queue are next to be submitted but since a context may not occur twice in |
| * an execution list, if subsequent requests have the same ID as the first then |
| * the two requests must be combined. This is done simply by discarding requests |
| * at the head of the queue until either only one requests is left (in which case |
| * we use a NULL second context) or the first two requests have unique IDs. |
| * |
| * By always executing the first two requests in the queue the driver ensures |
| * that the GPU is kept as busy as possible. In the case where a single context |
| * completes but a second context is still executing, the request for this second |
| * context will be at the head of the queue when we remove the first one. This |
| * request will then be resubmitted along with a new request for a different context, |
| * which will cause the hardware to continue executing the second request and queue |
| * the new request (the GPU detects the condition of a context getting preempted |
| * with the same context and optimizes the context switch flow by not doing |
| * preemption, but just sampling the new tail pointer). |
| * |
| */ |
| #include <linux/interrupt.h> |
| |
| #include <drm/drmP.h> |
| #include <drm/i915_drm.h> |
| #include "i915_drv.h" |
| #include "intel_mocs.h" |
| |
| #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) |
| #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE) |
| #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE) |
| |
| #define RING_EXECLIST_QFULL (1 << 0x2) |
| #define RING_EXECLIST1_VALID (1 << 0x3) |
| #define RING_EXECLIST0_VALID (1 << 0x4) |
| #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE) |
| #define RING_EXECLIST1_ACTIVE (1 << 0x11) |
| #define RING_EXECLIST0_ACTIVE (1 << 0x12) |
| |
| #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0) |
| #define GEN8_CTX_STATUS_PREEMPTED (1 << 1) |
| #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2) |
| #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3) |
| #define GEN8_CTX_STATUS_COMPLETE (1 << 4) |
| #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15) |
| |
| #define CTX_LRI_HEADER_0 0x01 |
| #define CTX_CONTEXT_CONTROL 0x02 |
| #define CTX_RING_HEAD 0x04 |
| #define CTX_RING_TAIL 0x06 |
| #define CTX_RING_BUFFER_START 0x08 |
| #define CTX_RING_BUFFER_CONTROL 0x0a |
| #define CTX_BB_HEAD_U 0x0c |
| #define CTX_BB_HEAD_L 0x0e |
| #define CTX_BB_STATE 0x10 |
| #define CTX_SECOND_BB_HEAD_U 0x12 |
| #define CTX_SECOND_BB_HEAD_L 0x14 |
| #define CTX_SECOND_BB_STATE 0x16 |
| #define CTX_BB_PER_CTX_PTR 0x18 |
| #define CTX_RCS_INDIRECT_CTX 0x1a |
| #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c |
| #define CTX_LRI_HEADER_1 0x21 |
| #define CTX_CTX_TIMESTAMP 0x22 |
| #define CTX_PDP3_UDW 0x24 |
| #define CTX_PDP3_LDW 0x26 |
| #define CTX_PDP2_UDW 0x28 |
| #define CTX_PDP2_LDW 0x2a |
| #define CTX_PDP1_UDW 0x2c |
| #define CTX_PDP1_LDW 0x2e |
| #define CTX_PDP0_UDW 0x30 |
| #define CTX_PDP0_LDW 0x32 |
| #define CTX_LRI_HEADER_2 0x41 |
| #define CTX_R_PWR_CLK_STATE 0x42 |
| #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44 |
| |
| #define GEN8_CTX_VALID (1<<0) |
| #define GEN8_CTX_FORCE_PD_RESTORE (1<<1) |
| #define GEN8_CTX_FORCE_RESTORE (1<<2) |
| #define GEN8_CTX_L3LLC_COHERENT (1<<5) |
| #define GEN8_CTX_PRIVILEGE (1<<8) |
| |
| #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \ |
| (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \ |
| (reg_state)[(pos)+1] = (val); \ |
| } while (0) |
| |
| #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \ |
| const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \ |
| reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \ |
| reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \ |
| } while (0) |
| |
| #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \ |
| reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \ |
| reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \ |
| } while (0) |
| |
| enum { |
| ADVANCED_CONTEXT = 0, |
| LEGACY_32B_CONTEXT, |
| ADVANCED_AD_CONTEXT, |
| LEGACY_64B_CONTEXT |
| }; |
| #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3 |
| #define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\ |
| LEGACY_64B_CONTEXT :\ |
| LEGACY_32B_CONTEXT) |
| enum { |
| FAULT_AND_HANG = 0, |
| FAULT_AND_HALT, /* Debug only */ |
| FAULT_AND_STREAM, |
| FAULT_AND_CONTINUE /* Unsupported */ |
| }; |
| #define GEN8_CTX_ID_SHIFT 32 |
| #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17 |
| #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26 |
| |
| static int intel_lr_context_pin(struct intel_context *ctx, |
| struct intel_engine_cs *engine); |
| |
| /** |
| * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists |
| * @dev: DRM device. |
| * @enable_execlists: value of i915.enable_execlists module parameter. |
| * |
| * Only certain platforms support Execlists (the prerequisites being |
| * support for Logical Ring Contexts and Aliasing PPGTT or better). |
| * |
| * Return: 1 if Execlists is supported and has to be enabled. |
| */ |
| int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists) |
| { |
| WARN_ON(i915.enable_ppgtt == -1); |
| |
| /* On platforms with execlist available, vGPU will only |
| * support execlist mode, no ring buffer mode. |
| */ |
| if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev)) |
| return 1; |
| |
| if (INTEL_INFO(dev)->gen >= 9) |
| return 1; |
| |
| if (enable_execlists == 0) |
| return 0; |
| |
| if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) && |
| i915.use_mmio_flip >= 0) |
| return 1; |
| |
| return 0; |
| } |
| |
| static void |
| logical_ring_init_platform_invariants(struct intel_engine_cs *engine) |
| { |
| struct drm_device *dev = engine->dev; |
| |
| if (IS_GEN8(dev) || IS_GEN9(dev)) |
| engine->idle_lite_restore_wa = ~0; |
| |
| engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) || |
| IS_BXT_REVID(dev, 0, BXT_REVID_A1)) && |
| (engine->id == VCS || engine->id == VCS2); |
| |
| engine->ctx_desc_template = GEN8_CTX_VALID; |
| engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) << |
| GEN8_CTX_ADDRESSING_MODE_SHIFT; |
| if (IS_GEN8(dev)) |
| engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT; |
| engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE; |
| |
| /* TODO: WaDisableLiteRestore when we start using semaphore |
| * signalling between Command Streamers */ |
| /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */ |
| |
| /* WaEnableForceRestoreInCtxtDescForVCS:skl */ |
| /* WaEnableForceRestoreInCtxtDescForVCS:bxt */ |
| if (engine->disable_lite_restore_wa) |
| engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; |
| } |
| |
| /** |
| * intel_lr_context_descriptor_update() - calculate & cache the descriptor |
| * descriptor for a pinned context |
| * |
| * @ctx: Context to work on |
| * @ring: Engine the descriptor will be used with |
| * |
| * The context descriptor encodes various attributes of a context, |
| * including its GTT address and some flags. Because it's fairly |
| * expensive to calculate, we'll just do it once and cache the result, |
| * which remains valid until the context is unpinned. |
| * |
| * This is what a descriptor looks like, from LSB to MSB: |
| * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template) |
| * bits 12-31: LRCA, GTT address of (the HWSP of) this context |
| * bits 32-51: ctx ID, a globally unique tag (the LRCA again!) |
| * bits 52-63: reserved, may encode the engine ID (for GuC) |
| */ |
| static void |
| intel_lr_context_descriptor_update(struct intel_context *ctx, |
| struct intel_engine_cs *engine) |
| { |
| uint64_t lrca, desc; |
| |
| lrca = ctx->engine[engine->id].lrc_vma->node.start + |
| LRC_PPHWSP_PN * PAGE_SIZE; |
| |
| desc = engine->ctx_desc_template; /* bits 0-11 */ |
| desc |= lrca; /* bits 12-31 */ |
| desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */ |
| |
| ctx->engine[engine->id].lrc_desc = desc; |
| } |
| |
| uint64_t intel_lr_context_descriptor(struct intel_context *ctx, |
| struct intel_engine_cs *engine) |
| { |
| return ctx->engine[engine->id].lrc_desc; |
| } |
| |
| /** |
| * intel_execlists_ctx_id() - get the Execlists Context ID |
| * @ctx: Context to get the ID for |
| * @ring: Engine to get the ID for |
| * |
| * Do not confuse with ctx->id! Unfortunately we have a name overload |
| * here: the old context ID we pass to userspace as a handler so that |
| * they can refer to a context, and the new context ID we pass to the |
| * ELSP so that the GPU can inform us of the context status via |
| * interrupts. |
| * |
| * The context ID is a portion of the context descriptor, so we can |
| * just extract the required part from the cached descriptor. |
| * |
| * Return: 20-bits globally unique context ID. |
| */ |
| u32 intel_execlists_ctx_id(struct intel_context *ctx, |
| struct intel_engine_cs *engine) |
| { |
| return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT; |
| } |
| |
| static void execlists_elsp_write(struct drm_i915_gem_request *rq0, |
| struct drm_i915_gem_request *rq1) |
| { |
| |
| struct intel_engine_cs *engine = rq0->engine; |
| struct drm_device *dev = engine->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint64_t desc[2]; |
| |
| if (rq1) { |
| desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine); |
| rq1->elsp_submitted++; |
| } else { |
| desc[1] = 0; |
| } |
| |
| desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine); |
| rq0->elsp_submitted++; |
| |
| /* You must always write both descriptors in the order below. */ |
| I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1])); |
| I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1])); |
| |
| I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0])); |
| /* The context is automatically loaded after the following */ |
| I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0])); |
| |
| /* ELSP is a wo register, use another nearby reg for posting */ |
| POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine)); |
| } |
| |
| static void |
| execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state) |
| { |
| ASSIGN_CTX_PDP(ppgtt, reg_state, 3); |
| ASSIGN_CTX_PDP(ppgtt, reg_state, 2); |
| ASSIGN_CTX_PDP(ppgtt, reg_state, 1); |
| ASSIGN_CTX_PDP(ppgtt, reg_state, 0); |
| } |
| |
| static void execlists_update_context(struct drm_i915_gem_request *rq) |
| { |
| struct intel_engine_cs *engine = rq->engine; |
| struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt; |
| uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state; |
| |
| reg_state[CTX_RING_TAIL+1] = rq->tail; |
| |
| /* True 32b PPGTT with dynamic page allocation: update PDP |
| * registers and point the unallocated PDPs to scratch page. |
| * PML4 is allocated during ppgtt init, so this is not needed |
| * in 48-bit mode. |
| */ |
| if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) |
| execlists_update_context_pdps(ppgtt, reg_state); |
| } |
| |
| static void execlists_submit_requests(struct drm_i915_gem_request *rq0, |
| struct drm_i915_gem_request *rq1) |
| { |
| struct drm_i915_private *dev_priv = rq0->i915; |
| unsigned int fw_domains = rq0->engine->fw_domains; |
| |
| execlists_update_context(rq0); |
| |
| if (rq1) |
| execlists_update_context(rq1); |
| |
| spin_lock_irq(&dev_priv->uncore.lock); |
| intel_uncore_forcewake_get__locked(dev_priv, fw_domains); |
| |
| execlists_elsp_write(rq0, rq1); |
| |
| intel_uncore_forcewake_put__locked(dev_priv, fw_domains); |
| spin_unlock_irq(&dev_priv->uncore.lock); |
| } |
| |
| static void execlists_context_unqueue(struct intel_engine_cs *engine) |
| { |
| struct drm_i915_gem_request *req0 = NULL, *req1 = NULL; |
| struct drm_i915_gem_request *cursor, *tmp; |
| |
| assert_spin_locked(&engine->execlist_lock); |
| |
| /* |
| * If irqs are not active generate a warning as batches that finish |
| * without the irqs may get lost and a GPU Hang may occur. |
| */ |
| WARN_ON(!intel_irqs_enabled(engine->dev->dev_private)); |
| |
| /* Try to read in pairs */ |
| list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue, |
| execlist_link) { |
| if (!req0) { |
| req0 = cursor; |
| } else if (req0->ctx == cursor->ctx) { |
| /* Same ctx: ignore first request, as second request |
| * will update tail past first request's workload */ |
| cursor->elsp_submitted = req0->elsp_submitted; |
| list_move_tail(&req0->execlist_link, |
| &engine->execlist_retired_req_list); |
| req0 = cursor; |
| } else { |
| req1 = cursor; |
| WARN_ON(req1->elsp_submitted); |
| break; |
| } |
| } |
| |
| if (unlikely(!req0)) |
| return; |
| |
| if (req0->elsp_submitted & engine->idle_lite_restore_wa) { |
| /* |
| * WaIdleLiteRestore: make sure we never cause a lite restore |
| * with HEAD==TAIL. |
| * |
| * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we |
| * resubmit the request. See gen8_emit_request() for where we |
| * prepare the padding after the end of the request. |
| */ |
| struct intel_ringbuffer *ringbuf; |
| |
| ringbuf = req0->ctx->engine[engine->id].ringbuf; |
| req0->tail += 8; |
| req0->tail &= ringbuf->size - 1; |
| } |
| |
| execlists_submit_requests(req0, req1); |
| } |
| |
| static unsigned int |
| execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id) |
| { |
| struct drm_i915_gem_request *head_req; |
| |
| assert_spin_locked(&engine->execlist_lock); |
| |
| head_req = list_first_entry_or_null(&engine->execlist_queue, |
| struct drm_i915_gem_request, |
| execlist_link); |
| |
| if (!head_req) |
| return 0; |
| |
| if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id)) |
| return 0; |
| |
| WARN(head_req->elsp_submitted == 0, "Never submitted head request\n"); |
| |
| if (--head_req->elsp_submitted > 0) |
| return 0; |
| |
| list_move_tail(&head_req->execlist_link, |
| &engine->execlist_retired_req_list); |
| |
| return 1; |
| } |
| |
| static u32 |
| get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer, |
| u32 *context_id) |
| { |
| struct drm_i915_private *dev_priv = engine->dev->dev_private; |
| u32 status; |
| |
| read_pointer %= GEN8_CSB_ENTRIES; |
| |
| status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer)); |
| |
| if (status & GEN8_CTX_STATUS_IDLE_ACTIVE) |
| return 0; |
| |
| *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine, |
| read_pointer)); |
| |
| return status; |
| } |
| |
| /** |
| * intel_lrc_irq_handler() - handle Context Switch interrupts |
| * @engine: Engine Command Streamer to handle. |
| * |
| * Check the unread Context Status Buffers and manage the submission of new |
| * contexts to the ELSP accordingly. |
| */ |
| static void intel_lrc_irq_handler(unsigned long data) |
| { |
| struct intel_engine_cs *engine = (struct intel_engine_cs *)data; |
| struct drm_i915_private *dev_priv = engine->dev->dev_private; |
| u32 status_pointer; |
| unsigned int read_pointer, write_pointer; |
| u32 csb[GEN8_CSB_ENTRIES][2]; |
| unsigned int csb_read = 0, i; |
| unsigned int submit_contexts = 0; |
| |
| intel_uncore_forcewake_get(dev_priv, engine->fw_domains); |
| |
| status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine)); |
| |
| read_pointer = engine->next_context_status_buffer; |
| write_pointer = GEN8_CSB_WRITE_PTR(status_pointer); |
| if (read_pointer > write_pointer) |
| write_pointer += GEN8_CSB_ENTRIES; |
| |
| while (read_pointer < write_pointer) { |
| if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES)) |
| break; |
| csb[csb_read][0] = get_context_status(engine, ++read_pointer, |
| &csb[csb_read][1]); |
| csb_read++; |
| } |
| |
| engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES; |
| |
| /* Update the read pointer to the old write pointer. Manual ringbuffer |
| * management ftw </sarcasm> */ |
| I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine), |
| _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, |
| engine->next_context_status_buffer << 8)); |
| |
| intel_uncore_forcewake_put(dev_priv, engine->fw_domains); |
| |
| spin_lock(&engine->execlist_lock); |
| |
| for (i = 0; i < csb_read; i++) { |
| if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) { |
| if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) { |
| if (execlists_check_remove_request(engine, csb[i][1])) |
| WARN(1, "Lite Restored request removed from queue\n"); |
| } else |
| WARN(1, "Preemption without Lite Restore\n"); |
| } |
| |
| if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE | |
| GEN8_CTX_STATUS_ELEMENT_SWITCH)) |
| submit_contexts += |
| execlists_check_remove_request(engine, csb[i][1]); |
| } |
| |
| if (submit_contexts) { |
| if (!engine->disable_lite_restore_wa || |
| (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE)) |
| execlists_context_unqueue(engine); |
| } |
| |
| spin_unlock(&engine->execlist_lock); |
| |
| if (unlikely(submit_contexts > 2)) |
| DRM_ERROR("More than two context complete events?\n"); |
| } |
| |
| static void execlists_context_queue(struct drm_i915_gem_request *request) |
| { |
| struct intel_engine_cs *engine = request->engine; |
| struct drm_i915_gem_request *cursor; |
| int num_elements = 0; |
| |
| if (request->ctx != request->i915->kernel_context) |
| intel_lr_context_pin(request->ctx, engine); |
| |
| i915_gem_request_reference(request); |
| |
| spin_lock_bh(&engine->execlist_lock); |
| |
| list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) |
| if (++num_elements > 2) |
| break; |
| |
| if (num_elements > 2) { |
| struct drm_i915_gem_request *tail_req; |
| |
| tail_req = list_last_entry(&engine->execlist_queue, |
| struct drm_i915_gem_request, |
| execlist_link); |
| |
| if (request->ctx == tail_req->ctx) { |
| WARN(tail_req->elsp_submitted != 0, |
| "More than 2 already-submitted reqs queued\n"); |
| list_move_tail(&tail_req->execlist_link, |
| &engine->execlist_retired_req_list); |
| } |
| } |
| |
| list_add_tail(&request->execlist_link, &engine->execlist_queue); |
| if (num_elements == 0) |
| execlists_context_unqueue(engine); |
| |
| spin_unlock_bh(&engine->execlist_lock); |
| } |
| |
| static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req) |
| { |
| struct intel_engine_cs *engine = req->engine; |
| uint32_t flush_domains; |
| int ret; |
| |
| flush_domains = 0; |
| if (engine->gpu_caches_dirty) |
| flush_domains = I915_GEM_GPU_DOMAINS; |
| |
| ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains); |
| if (ret) |
| return ret; |
| |
| engine->gpu_caches_dirty = false; |
| return 0; |
| } |
| |
| static int execlists_move_to_gpu(struct drm_i915_gem_request *req, |
| struct list_head *vmas) |
| { |
| const unsigned other_rings = ~intel_engine_flag(req->engine); |
| struct i915_vma *vma; |
| uint32_t flush_domains = 0; |
| bool flush_chipset = false; |
| int ret; |
| |
| list_for_each_entry(vma, vmas, exec_list) { |
| struct drm_i915_gem_object *obj = vma->obj; |
| |
| if (obj->active & other_rings) { |
| ret = i915_gem_object_sync(obj, req->engine, &req); |
| if (ret) |
| return ret; |
| } |
| |
| if (obj->base.write_domain & I915_GEM_DOMAIN_CPU) |
| flush_chipset |= i915_gem_clflush_object(obj, false); |
| |
| flush_domains |= obj->base.write_domain; |
| } |
| |
| if (flush_domains & I915_GEM_DOMAIN_GTT) |
| wmb(); |
| |
| /* Unconditionally invalidate gpu caches and ensure that we do flush |
| * any residual writes from the previous batch. |
| */ |
| return logical_ring_invalidate_all_caches(req); |
| } |
| |
| int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request) |
| { |
| int ret = 0; |
| |
| request->ringbuf = request->ctx->engine[request->engine->id].ringbuf; |
| |
| if (i915.enable_guc_submission) { |
| /* |
| * Check that the GuC has space for the request before |
| * going any further, as the i915_add_request() call |
| * later on mustn't fail ... |
| */ |
| struct intel_guc *guc = &request->i915->guc; |
| |
| ret = i915_guc_wq_check_space(guc->execbuf_client); |
| if (ret) |
| return ret; |
| } |
| |
| if (request->ctx != request->i915->kernel_context) |
| ret = intel_lr_context_pin(request->ctx, request->engine); |
| |
| return ret; |
| } |
| |
| static int logical_ring_wait_for_space(struct drm_i915_gem_request *req, |
| int bytes) |
| { |
| struct intel_ringbuffer *ringbuf = req->ringbuf; |
| struct intel_engine_cs *engine = req->engine; |
| struct drm_i915_gem_request *target; |
| unsigned space; |
| int ret; |
| |
| if (intel_ring_space(ringbuf) >= bytes) |
| return 0; |
| |
| /* The whole point of reserving space is to not wait! */ |
| WARN_ON(ringbuf->reserved_in_use); |
| |
| list_for_each_entry(target, &engine->request_list, list) { |
| /* |
| * The request queue is per-engine, so can contain requests |
| * from multiple ringbuffers. Here, we must ignore any that |
| * aren't from the ringbuffer we're considering. |
| */ |
| if (target->ringbuf != ringbuf) |
| continue; |
| |
| /* Would completion of this request free enough space? */ |
| space = __intel_ring_space(target->postfix, ringbuf->tail, |
| ringbuf->size); |
| if (space >= bytes) |
| break; |
| } |
| |
| if (WARN_ON(&target->list == &engine->request_list)) |
| return -ENOSPC; |
| |
| ret = i915_wait_request(target); |
| if (ret) |
| return ret; |
| |
| ringbuf->space = space; |
| return 0; |
| } |
| |
| /* |
| * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload |
| * @request: Request to advance the logical ringbuffer of. |
| * |
| * The tail is updated in our logical ringbuffer struct, not in the actual context. What |
| * really happens during submission is that the context and current tail will be placed |
| * on a queue waiting for the ELSP to be ready to accept a new context submission. At that |
| * point, the tail *inside* the context is updated and the ELSP written to. |
| */ |
| static int |
| intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request) |
| { |
| struct intel_ringbuffer *ringbuf = request->ringbuf; |
| struct drm_i915_private *dev_priv = request->i915; |
| struct intel_engine_cs *engine = request->engine; |
| |
| intel_logical_ring_advance(ringbuf); |
| request->tail = ringbuf->tail; |
| |
| /* |
| * Here we add two extra NOOPs as padding to avoid |
| * lite restore of a context with HEAD==TAIL. |
| * |
| * Caller must reserve WA_TAIL_DWORDS for us! |
| */ |
| intel_logical_ring_emit(ringbuf, MI_NOOP); |
| intel_logical_ring_emit(ringbuf, MI_NOOP); |
| intel_logical_ring_advance(ringbuf); |
| |
| if (intel_engine_stopped(engine)) |
| return 0; |
| |
| if (engine->last_context != request->ctx) { |
| if (engine->last_context) |
| intel_lr_context_unpin(engine->last_context, engine); |
| if (request->ctx != request->i915->kernel_context) { |
| intel_lr_context_pin(request->ctx, engine); |
| engine->last_context = request->ctx; |
| } else { |
| engine->last_context = NULL; |
| } |
| } |
| |
| if (dev_priv->guc.execbuf_client) |
| i915_guc_submit(dev_priv->guc.execbuf_client, request); |
| else |
| execlists_context_queue(request); |
| |
| return 0; |
| } |
| |
| static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf) |
| { |
| uint32_t __iomem *virt; |
| int rem = ringbuf->size - ringbuf->tail; |
| |
| virt = ringbuf->virtual_start + ringbuf->tail; |
| rem /= 4; |
| while (rem--) |
| iowrite32(MI_NOOP, virt++); |
| |
| ringbuf->tail = 0; |
| intel_ring_update_space(ringbuf); |
| } |
| |
| static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes) |
| { |
| struct intel_ringbuffer *ringbuf = req->ringbuf; |
| int remain_usable = ringbuf->effective_size - ringbuf->tail; |
| int remain_actual = ringbuf->size - ringbuf->tail; |
| int ret, total_bytes, wait_bytes = 0; |
| bool need_wrap = false; |
| |
| if (ringbuf->reserved_in_use) |
| total_bytes = bytes; |
| else |
| total_bytes = bytes + ringbuf->reserved_size; |
| |
| if (unlikely(bytes > remain_usable)) { |
| /* |
| * Not enough space for the basic request. So need to flush |
| * out the remainder and then wait for base + reserved. |
| */ |
| wait_bytes = remain_actual + total_bytes; |
| need_wrap = true; |
| } else { |
| if (unlikely(total_bytes > remain_usable)) { |
| /* |
| * The base request will fit but the reserved space |
| * falls off the end. So don't need an immediate wrap |
| * and only need to effectively wait for the reserved |
| * size space from the start of ringbuffer. |
| */ |
| wait_bytes = remain_actual + ringbuf->reserved_size; |
| } else if (total_bytes > ringbuf->space) { |
| /* No wrapping required, just waiting. */ |
| wait_bytes = total_bytes; |
| } |
| } |
| |
| if (wait_bytes) { |
| ret = logical_ring_wait_for_space(req, wait_bytes); |
| if (unlikely(ret)) |
| return ret; |
| |
| if (need_wrap) |
| __wrap_ring_buffer(ringbuf); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands |
| * |
| * @req: The request to start some new work for |
| * @num_dwords: number of DWORDs that we plan to write to the ringbuffer. |
| * |
| * The ringbuffer might not be ready to accept the commands right away (maybe it needs to |
| * be wrapped, or wait a bit for the tail to be updated). This function takes care of that |
| * and also preallocates a request (every workload submission is still mediated through |
| * requests, same as it did with legacy ringbuffer submission). |
| * |
| * Return: non-zero if the ringbuffer is not ready to be written to. |
| */ |
| int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords) |
| { |
| struct drm_i915_private *dev_priv; |
| int ret; |
| |
| WARN_ON(req == NULL); |
| dev_priv = req->i915; |
| |
| ret = i915_gem_check_wedge(&dev_priv->gpu_error, |
| dev_priv->mm.interruptible); |
| if (ret) |
| return ret; |
| |
| ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t)); |
| if (ret) |
| return ret; |
| |
| req->ringbuf->space -= num_dwords * sizeof(uint32_t); |
| return 0; |
| } |
| |
| int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request) |
| { |
| /* |
| * The first call merely notes the reserve request and is common for |
| * all back ends. The subsequent localised _begin() call actually |
| * ensures that the reservation is available. Without the begin, if |
| * the request creator immediately submitted the request without |
| * adding any commands to it then there might not actually be |
| * sufficient room for the submission commands. |
| */ |
| intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST); |
| |
| return intel_logical_ring_begin(request, 0); |
| } |
| |
| /** |
| * execlists_submission() - submit a batchbuffer for execution, Execlists style |
| * @dev: DRM device. |
| * @file: DRM file. |
| * @ring: Engine Command Streamer to submit to. |
| * @ctx: Context to employ for this submission. |
| * @args: execbuffer call arguments. |
| * @vmas: list of vmas. |
| * @batch_obj: the batchbuffer to submit. |
| * @exec_start: batchbuffer start virtual address pointer. |
| * @dispatch_flags: translated execbuffer call flags. |
| * |
| * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts |
| * away the submission details of the execbuffer ioctl call. |
| * |
| * Return: non-zero if the submission fails. |
| */ |
| int intel_execlists_submission(struct i915_execbuffer_params *params, |
| struct drm_i915_gem_execbuffer2 *args, |
| struct list_head *vmas) |
| { |
| struct drm_device *dev = params->dev; |
| struct intel_engine_cs *engine = params->engine; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf; |
| u64 exec_start; |
| int instp_mode; |
| u32 instp_mask; |
| int ret; |
| |
| instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK; |
| instp_mask = I915_EXEC_CONSTANTS_MASK; |
| switch (instp_mode) { |
| case I915_EXEC_CONSTANTS_REL_GENERAL: |
| case I915_EXEC_CONSTANTS_ABSOLUTE: |
| case I915_EXEC_CONSTANTS_REL_SURFACE: |
| if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) { |
| DRM_DEBUG("non-0 rel constants mode on non-RCS\n"); |
| return -EINVAL; |
| } |
| |
| if (instp_mode != dev_priv->relative_constants_mode) { |
| if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) { |
| DRM_DEBUG("rel surface constants mode invalid on gen5+\n"); |
| return -EINVAL; |
| } |
| |
| /* The HW changed the meaning on this bit on gen6 */ |
| instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE; |
| } |
| break; |
| default: |
| DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode); |
| return -EINVAL; |
| } |
| |
| if (args->flags & I915_EXEC_GEN7_SOL_RESET) { |
| DRM_DEBUG("sol reset is gen7 only\n"); |
| return -EINVAL; |
| } |
| |
| ret = execlists_move_to_gpu(params->request, vmas); |
| if (ret) |
| return ret; |
| |
| if (engine == &dev_priv->engine[RCS] && |
| instp_mode != dev_priv->relative_constants_mode) { |
| ret = intel_logical_ring_begin(params->request, 4); |
| if (ret) |
| return ret; |
| |
| intel_logical_ring_emit(ringbuf, MI_NOOP); |
| intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1)); |
| intel_logical_ring_emit_reg(ringbuf, INSTPM); |
| intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode); |
| intel_logical_ring_advance(ringbuf); |
| |
| dev_priv->relative_constants_mode = instp_mode; |
| } |
| |
| exec_start = params->batch_obj_vm_offset + |
| args->batch_start_offset; |
| |
| ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags); |
| if (ret) |
| return ret; |
| |
| trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags); |
| |
| i915_gem_execbuffer_move_to_active(vmas, params->request); |
| i915_gem_execbuffer_retire_commands(params); |
| |
| return 0; |
| } |
| |
| void intel_execlists_retire_requests(struct intel_engine_cs *engine) |
| { |
| struct drm_i915_gem_request *req, *tmp; |
| struct list_head retired_list; |
| |
| WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex)); |
| if (list_empty(&engine->execlist_retired_req_list)) |
| return; |
| |
| INIT_LIST_HEAD(&retired_list); |
| spin_lock_bh(&engine->execlist_lock); |
| list_replace_init(&engine->execlist_retired_req_list, &retired_list); |
| spin_unlock_bh(&engine->execlist_lock); |
| |
| list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) { |
| struct intel_context *ctx = req->ctx; |
| struct drm_i915_gem_object *ctx_obj = |
| ctx->engine[engine->id].state; |
| |
| if (ctx_obj && (ctx != req->i915->kernel_context)) |
| intel_lr_context_unpin(ctx, engine); |
| |
| list_del(&req->execlist_link); |
| i915_gem_request_unreference(req); |
| } |
| } |
| |
| void intel_logical_ring_stop(struct intel_engine_cs *engine) |
| { |
| struct drm_i915_private *dev_priv = engine->dev->dev_private; |
| int ret; |
| |
| if (!intel_engine_initialized(engine)) |
| return; |
| |
| ret = intel_engine_idle(engine); |
| if (ret && !i915_reset_in_progress(&to_i915(engine->dev)->gpu_error)) |
| DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n", |
| engine->name, ret); |
| |
| /* TODO: Is this correct with Execlists enabled? */ |
| I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING)); |
| if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) { |
| DRM_ERROR("%s :timed out trying to stop ring\n", engine->name); |
| return; |
| } |
| I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING)); |
| } |
| |
| int logical_ring_flush_all_caches(struct drm_i915_gem_request *req) |
| { |
| struct intel_engine_cs *engine = req->engine; |
| int ret; |
| |
| if (!engine->gpu_caches_dirty) |
| return 0; |
| |
| ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS); |
| if (ret) |
| return ret; |
| |
| engine->gpu_caches_dirty = false; |
| return 0; |
| } |
| |
| static int intel_lr_context_do_pin(struct intel_context *ctx, |
| struct intel_engine_cs *engine) |
| { |
| struct drm_device *dev = engine->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state; |
| struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf; |
| struct page *lrc_state_page; |
| uint32_t *lrc_reg_state; |
| int ret; |
| |
| WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex)); |
| |
| ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, |
| PIN_OFFSET_BIAS | GUC_WOPCM_TOP); |
| if (ret) |
| return ret; |
| |
| lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN); |
| if (WARN_ON(!lrc_state_page)) { |
| ret = -ENODEV; |
| goto unpin_ctx_obj; |
| } |
| |
| ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf); |
| if (ret) |
| goto unpin_ctx_obj; |
| |
| ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj); |
| intel_lr_context_descriptor_update(ctx, engine); |
| lrc_reg_state = kmap(lrc_state_page); |
| lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start; |
| ctx->engine[engine->id].lrc_reg_state = lrc_reg_state; |
| ctx_obj->dirty = true; |
| |
| /* Invalidate GuC TLB. */ |
| if (i915.enable_guc_submission) |
| I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE); |
| |
| return ret; |
| |
| unpin_ctx_obj: |
| i915_gem_object_ggtt_unpin(ctx_obj); |
| |
| return ret; |
| } |
| |
| static int intel_lr_context_pin(struct intel_context *ctx, |
| struct intel_engine_cs *engine) |
| { |
| int ret = 0; |
| |
| if (ctx->engine[engine->id].pin_count++ == 0) { |
| ret = intel_lr_context_do_pin(ctx, engine); |
| if (ret) |
| goto reset_pin_count; |
| |
| i915_gem_context_reference(ctx); |
| } |
| return ret; |
| |
| reset_pin_count: |
| ctx->engine[engine->id].pin_count = 0; |
| return ret; |
| } |
| |
| void intel_lr_context_unpin(struct intel_context *ctx, |
| struct intel_engine_cs *engine) |
| { |
| struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state; |
| |
| WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex)); |
| if (--ctx->engine[engine->id].pin_count == 0) { |
| kunmap(kmap_to_page(ctx->engine[engine->id].lrc_reg_state)); |
| intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf); |
| i915_gem_object_ggtt_unpin(ctx_obj); |
| ctx->engine[engine->id].lrc_vma = NULL; |
| ctx->engine[engine->id].lrc_desc = 0; |
| ctx->engine[engine->id].lrc_reg_state = NULL; |
| |
| i915_gem_context_unreference(ctx); |
| } |
| } |
| |
| static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req) |
| { |
| int ret, i; |
| struct intel_engine_cs *engine = req->engine; |
| struct intel_ringbuffer *ringbuf = req->ringbuf; |
| struct drm_device *dev = engine->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct i915_workarounds *w = &dev_priv->workarounds; |
| |
| if (w->count == 0) |
| return 0; |
| |
| engine->gpu_caches_dirty = true; |
| ret = logical_ring_flush_all_caches(req); |
| if (ret) |
| return ret; |
| |
| ret = intel_logical_ring_begin(req, w->count * 2 + 2); |
| if (ret) |
| return ret; |
| |
| intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count)); |
| for (i = 0; i < w->count; i++) { |
| intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr); |
| intel_logical_ring_emit(ringbuf, w->reg[i].value); |
| } |
| intel_logical_ring_emit(ringbuf, MI_NOOP); |
| |
| intel_logical_ring_advance(ringbuf); |
| |
| engine->gpu_caches_dirty = true; |
| ret = logical_ring_flush_all_caches(req); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| #define wa_ctx_emit(batch, index, cmd) \ |
| do { \ |
| int __index = (index)++; \ |
| if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \ |
| return -ENOSPC; \ |
| } \ |
| batch[__index] = (cmd); \ |
| } while (0) |
| |
| #define wa_ctx_emit_reg(batch, index, reg) \ |
| wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg)) |
| |
| /* |
| * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after |
| * PIPE_CONTROL instruction. This is required for the flush to happen correctly |
| * but there is a slight complication as this is applied in WA batch where the |
| * values are only initialized once so we cannot take register value at the |
| * beginning and reuse it further; hence we save its value to memory, upload a |
| * constant value with bit21 set and then we restore it back with the saved value. |
| * To simplify the WA, a constant value is formed by using the default value |
| * of this register. This shouldn't be a problem because we are only modifying |
| * it for a short period and this batch in non-premptible. We can ofcourse |
| * use additional instructions that read the actual value of the register |
| * at that time and set our bit of interest but it makes the WA complicated. |
| * |
| * This WA is also required for Gen9 so extracting as a function avoids |
| * code duplication. |
| */ |
| static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, |
| uint32_t *const batch, |
| uint32_t index) |
| { |
| uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES); |
| |
| /* |
| * WaDisableLSQCROPERFforOCL:skl |
| * This WA is implemented in skl_init_clock_gating() but since |
| * this batch updates GEN8_L3SQCREG4 with default value we need to |
| * set this bit here to retain the WA during flush. |
| */ |
| if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0)) |
| l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS; |
| |
| wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 | |
| MI_SRM_LRM_GLOBAL_GTT)); |
| wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4); |
| wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256); |
| wa_ctx_emit(batch, index, 0); |
| |
| wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1)); |
| wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4); |
| wa_ctx_emit(batch, index, l3sqc4_flush); |
| |
| wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6)); |
| wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL | |
| PIPE_CONTROL_DC_FLUSH_ENABLE)); |
| wa_ctx_emit(batch, index, 0); |
| wa_ctx_emit(batch, index, 0); |
| wa_ctx_emit(batch, index, 0); |
| wa_ctx_emit(batch, index, 0); |
| |
| wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 | |
| MI_SRM_LRM_GLOBAL_GTT)); |
| wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4); |
| wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256); |
| wa_ctx_emit(batch, index, 0); |
| |
| return index; |
| } |
| |
| static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx, |
| uint32_t offset, |
| uint32_t start_alignment) |
| { |
| return wa_ctx->offset = ALIGN(offset, start_alignment); |
| } |
| |
| static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx, |
| uint32_t offset, |
| uint32_t size_alignment) |
| { |
| wa_ctx->size = offset - wa_ctx->offset; |
| |
| WARN(wa_ctx->size % size_alignment, |
| "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n", |
| wa_ctx->size, size_alignment); |
| return 0; |
| } |
| |
| /** |
| * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA |
| * |
| * @ring: only applicable for RCS |
| * @wa_ctx: structure representing wa_ctx |
| * offset: specifies start of the batch, should be cache-aligned. This is updated |
| * with the offset value received as input. |
| * size: size of the batch in DWORDS but HW expects in terms of cachelines |
| * @batch: page in which WA are loaded |
| * @offset: This field specifies the start of the batch, it should be |
| * cache-aligned otherwise it is adjusted accordingly. |
| * Typically we only have one indirect_ctx and per_ctx batch buffer which are |
| * initialized at the beginning and shared across all contexts but this field |
| * helps us to have multiple batches at different offsets and select them based |
| * on a criteria. At the moment this batch always start at the beginning of the page |
| * and at this point we don't have multiple wa_ctx batch buffers. |
| * |
| * The number of WA applied are not known at the beginning; we use this field |
| * to return the no of DWORDS written. |
| * |
| * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END |
| * so it adds NOOPs as padding to make it cacheline aligned. |
| * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together |
| * makes a complete batch buffer. |
| * |
| * Return: non-zero if we exceed the PAGE_SIZE limit. |
| */ |
| |
| static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine, |
| struct i915_wa_ctx_bb *wa_ctx, |
| uint32_t *const batch, |
| uint32_t *offset) |
| { |
| uint32_t scratch_addr; |
| uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS); |
| |
| /* WaDisableCtxRestoreArbitration:bdw,chv */ |
| wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE); |
| |
| /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */ |
| if (IS_BROADWELL(engine->dev)) { |
| int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index); |
| if (rc < 0) |
| return rc; |
| index = rc; |
| } |
| |
| /* WaClearSlmSpaceAtContextSwitch:bdw,chv */ |
| /* Actual scratch location is at 128 bytes offset */ |
| scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES; |
| |
| wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6)); |
| wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 | |
| PIPE_CONTROL_GLOBAL_GTT_IVB | |
| PIPE_CONTROL_CS_STALL | |
| PIPE_CONTROL_QW_WRITE)); |
| wa_ctx_emit(batch, index, scratch_addr); |
| wa_ctx_emit(batch, index, 0); |
| wa_ctx_emit(batch, index, 0); |
| wa_ctx_emit(batch, index, 0); |
| |
| /* Pad to end of cacheline */ |
| while (index % CACHELINE_DWORDS) |
| wa_ctx_emit(batch, index, MI_NOOP); |
| |
| /* |
| * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because |
| * execution depends on the length specified in terms of cache lines |
| * in the register CTX_RCS_INDIRECT_CTX |
| */ |
| |
| return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS); |
| } |
| |
| /** |
| * gen8_init_perctx_bb() - initialize per ctx batch with WA |
| * |
| * @ring: only applicable for RCS |
| * @wa_ctx: structure representing wa_ctx |
| * offset: specifies start of the batch, should be cache-aligned. |
| * size: size of the batch in DWORDS but HW expects in terms of cachelines |
| * @batch: page in which WA are loaded |
| * @offset: This field specifies the start of this batch. |
| * This batch is started immediately after indirect_ctx batch. Since we ensure |
| * that indirect_ctx ends on a cacheline this batch is aligned automatically. |
| * |
| * The number of DWORDS written are returned using this field. |
| * |
| * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding |
| * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant. |
| */ |
| static int gen8_init_perctx_bb(struct intel_engine_cs *engine, |
| struct i915_wa_ctx_bb *wa_ctx, |
| uint32_t *const batch, |
| uint32_t *offset) |
| { |
| uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS); |
| |
| /* WaDisableCtxRestoreArbitration:bdw,chv */ |
| wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE); |
| |
| wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END); |
| |
| return wa_ctx_end(wa_ctx, *offset = index, 1); |
| } |
| |
| static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine, |
| struct i915_wa_ctx_bb *wa_ctx, |
| uint32_t *const batch, |
| uint32_t *offset) |
| { |
| int ret; |
| struct drm_device *dev = engine->dev; |
| uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS); |
| |
| /* WaDisableCtxRestoreArbitration:skl,bxt */ |
| if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) || |
| IS_BXT_REVID(dev, 0, BXT_REVID_A1)) |
| wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE); |
| |
| /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */ |
| ret = gen8_emit_flush_coherentl3_wa(engine, batch, index); |
| if (ret < 0) |
| return ret; |
| index = ret; |
| |
| /* Pad to end of cacheline */ |
| while (index % CACHELINE_DWORDS) |
| wa_ctx_emit(batch, index, MI_NOOP); |
| |
| return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS); |
| } |
| |
| static int gen9_init_perctx_bb(struct intel_engine_cs *engine, |
| struct i915_wa_ctx_bb *wa_ctx, |
| uint32_t *const batch, |
| uint32_t *offset) |
| { |
| struct drm_device *dev = engine->dev; |
| uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS); |
| |
| /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */ |
| if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) || |
| IS_BXT_REVID(dev, 0, BXT_REVID_A1)) { |
| wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1)); |
| wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0); |
| wa_ctx_emit(batch, index, |
| _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING)); |
| wa_ctx_emit(batch, index, MI_NOOP); |
| } |
| |
| /* WaClearTdlStateAckDirtyBits:bxt */ |
| if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) { |
| wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4)); |
| |
| wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK); |
| wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS)); |
| |
| wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1); |
| wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS)); |
| |
| wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2); |
| wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS)); |
| |
| wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2); |
| /* dummy write to CS, mask bits are 0 to ensure the register is not modified */ |
| wa_ctx_emit(batch, index, 0x0); |
| wa_ctx_emit(batch, index, MI_NOOP); |
| } |
| |
| /* WaDisableCtxRestoreArbitration:skl,bxt */ |
| if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) || |
| IS_BXT_REVID(dev, 0, BXT_REVID_A1)) |
| wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE); |
| |
| wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END); |
| |
| return wa_ctx_end(wa_ctx, *offset = index, 1); |
| } |
| |
| static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size) |
| { |
| int ret; |
| |
| engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev, |
| PAGE_ALIGN(size)); |
| if (!engine->wa_ctx.obj) { |
| DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n"); |
| return -ENOMEM; |
| } |
| |
| ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0); |
| if (ret) { |
| DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n", |
| ret); |
| drm_gem_object_unreference(&engine->wa_ctx.obj->base); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine) |
| { |
| if (engine->wa_ctx.obj) { |
| i915_gem_object_ggtt_unpin(engine->wa_ctx.obj); |
| drm_gem_object_unreference(&engine->wa_ctx.obj->base); |
| engine->wa_ctx.obj = NULL; |
| } |
| } |
| |
| static int intel_init_workaround_bb(struct intel_engine_cs *engine) |
| { |
| int ret; |
| uint32_t *batch; |
| uint32_t offset; |
| struct page *page; |
| struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx; |
| |
| WARN_ON(engine->id != RCS); |
| |
| /* update this when WA for higher Gen are added */ |
| if (INTEL_INFO(engine->dev)->gen > 9) { |
| DRM_ERROR("WA batch buffer is not initialized for Gen%d\n", |
| INTEL_INFO(engine->dev)->gen); |
| return 0; |
| } |
| |
| /* some WA perform writes to scratch page, ensure it is valid */ |
| if (engine->scratch.obj == NULL) { |
| DRM_ERROR("scratch page not allocated for %s\n", engine->name); |
| return -EINVAL; |
| } |
| |
| ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE); |
| if (ret) { |
| DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret); |
| return ret; |
| } |
| |
| page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0); |
| batch = kmap_atomic(page); |
| offset = 0; |
| |
| if (INTEL_INFO(engine->dev)->gen == 8) { |
| ret = gen8_init_indirectctx_bb(engine, |
| &wa_ctx->indirect_ctx, |
| batch, |
| &offset); |
| if (ret) |
| goto out; |
| |
| ret = gen8_init_perctx_bb(engine, |
| &wa_ctx->per_ctx, |
| batch, |
| &offset); |
| if (ret) |
| goto out; |
| } else if (INTEL_INFO(engine->dev)->gen == 9) { |
| ret = gen9_init_indirectctx_bb(engine, |
| &wa_ctx->indirect_ctx, |
| batch, |
| &offset); |
| if (ret) |
| goto out; |
| |
| ret = gen9_init_perctx_bb(engine, |
| &wa_ctx->per_ctx, |
| batch, |
| &offset); |
| if (ret) |
| goto out; |
| } |
| |
| out: |
| kunmap_atomic(batch); |
| if (ret) |
| lrc_destroy_wa_ctx_obj(engine); |
| |
| return ret; |
| } |
| |
| static void lrc_init_hws(struct intel_engine_cs *engine) |
| { |
| struct drm_i915_private *dev_priv = engine->dev->dev_private; |
| |
| I915_WRITE(RING_HWS_PGA(engine->mmio_base), |
| (u32)engine->status_page.gfx_addr); |
| POSTING_READ(RING_HWS_PGA(engine->mmio_base)); |
| } |
| |
| static int gen8_init_common_ring(struct intel_engine_cs *engine) |
| { |
| struct drm_device *dev = engine->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| unsigned int next_context_status_buffer_hw; |
| |
| lrc_init_hws(engine); |
| |
| I915_WRITE_IMR(engine, |
| ~(engine->irq_enable_mask | engine->irq_keep_mask)); |
| I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff); |
| |
| I915_WRITE(RING_MODE_GEN7(engine), |
| _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) | |
| _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE)); |
| POSTING_READ(RING_MODE_GEN7(engine)); |
| |
| /* |
| * Instead of resetting the Context Status Buffer (CSB) read pointer to |
| * zero, we need to read the write pointer from hardware and use its |
| * value because "this register is power context save restored". |
| * Effectively, these states have been observed: |
| * |
| * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) | |
| * BDW | CSB regs not reset | CSB regs reset | |
| * CHT | CSB regs not reset | CSB regs not reset | |
| * SKL | ? | ? | |
| * BXT | ? | ? | |
| */ |
| next_context_status_buffer_hw = |
| GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine))); |
| |
| /* |
| * When the CSB registers are reset (also after power-up / gpu reset), |
| * CSB write pointer is set to all 1's, which is not valid, use '5' in |
| * this special case, so the first element read is CSB[0]. |
| */ |
| if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK) |
| next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1); |
| |
| engine->next_context_status_buffer = next_context_status_buffer_hw; |
| DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name); |
| |
| intel_engine_init_hangcheck(engine); |
| |
| return 0; |
| } |
| |
| static int gen8_init_render_ring(struct intel_engine_cs *engine) |
| { |
| struct drm_device *dev = engine->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret; |
| |
| ret = gen8_init_common_ring(engine); |
| if (ret) |
| return ret; |
| |
| /* We need to disable the AsyncFlip performance optimisations in order |
| * to use MI_WAIT_FOR_EVENT within the CS. It should already be |
| * programmed to '1' on all products. |
| * |
| * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv |
| */ |
| I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE)); |
| |
| I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING)); |
| |
| return init_workarounds_ring(engine); |
| } |
| |
| static int gen9_init_render_ring(struct intel_engine_cs *engine) |
| { |
| int ret; |
| |
| ret = gen8_init_common_ring(engine); |
| if (ret) |
| return ret; |
| |
| return init_workarounds_ring(engine); |
| } |
| |
| static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req) |
| { |
| struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt; |
| struct intel_engine_cs *engine = req->engine; |
| struct intel_ringbuffer *ringbuf = req->ringbuf; |
| const int num_lri_cmds = GEN8_LEGACY_PDPES * 2; |
| int i, ret; |
| |
| ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2); |
| if (ret) |
| return ret; |
| |
| intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds)); |
| for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) { |
| const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i); |
| |
| intel_logical_ring_emit_reg(ringbuf, |
| GEN8_RING_PDP_UDW(engine, i)); |
| intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr)); |
| intel_logical_ring_emit_reg(ringbuf, |
| GEN8_RING_PDP_LDW(engine, i)); |
| intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr)); |
| } |
| |
| intel_logical_ring_emit(ringbuf, MI_NOOP); |
| intel_logical_ring_advance(ringbuf); |
| |
| return 0; |
| } |
| |
| static int gen8_emit_bb_start(struct drm_i915_gem_request *req, |
| u64 offset, unsigned dispatch_flags) |
| { |
| struct intel_ringbuffer *ringbuf = req->ringbuf; |
| bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE); |
| int ret; |
| |
| /* Don't rely in hw updating PDPs, specially in lite-restore. |
| * Ideally, we should set Force PD Restore in ctx descriptor, |
| * but we can't. Force Restore would be a second option, but |
| * it is unsafe in case of lite-restore (because the ctx is |
| * not idle). PML4 is allocated during ppgtt init so this is |
| * not needed in 48-bit.*/ |
| if (req->ctx->ppgtt && |
| (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) { |
| if (!USES_FULL_48BIT_PPGTT(req->i915) && |
| !intel_vgpu_active(req->i915->dev)) { |
| ret = intel_logical_ring_emit_pdps(req); |
| if (ret) |
| return ret; |
| } |
| |
| req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine); |
| } |
| |
| ret = intel_logical_ring_begin(req, 4); |
| if (ret) |
| return ret; |
| |
| /* FIXME(BDW): Address space and security selectors. */ |
| intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | |
| (ppgtt<<8) | |
| (dispatch_flags & I915_DISPATCH_RS ? |
| MI_BATCH_RESOURCE_STREAMER : 0)); |
| intel_logical_ring_emit(ringbuf, lower_32_bits(offset)); |
| intel_logical_ring_emit(ringbuf, upper_32_bits(offset)); |
| intel_logical_ring_emit(ringbuf, MI_NOOP); |
| intel_logical_ring_advance(ringbuf); |
| |
| return 0; |
| } |
| |
| static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine) |
| { |
| struct drm_device *dev = engine->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| unsigned long flags; |
| |
| if (WARN_ON(!intel_irqs_enabled(dev_priv))) |
| return false; |
| |
| spin_lock_irqsave(&dev_priv->irq_lock, flags); |
| if (engine->irq_refcount++ == 0) { |
| I915_WRITE_IMR(engine, |
| ~(engine->irq_enable_mask | engine->irq_keep_mask)); |
| POSTING_READ(RING_IMR(engine->mmio_base)); |
| } |
| spin_unlock_irqrestore(&dev_priv->irq_lock, flags); |
| |
| return true; |
| } |
| |
| static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine) |
| { |
| struct drm_device *dev = engine->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev_priv->irq_lock, flags); |
| if (--engine->irq_refcount == 0) { |
| I915_WRITE_IMR(engine, ~engine->irq_keep_mask); |
| POSTING_READ(RING_IMR(engine->mmio_base)); |
| } |
| spin_unlock_irqrestore(&dev_priv->irq_lock, flags); |
| } |
| |
| static int gen8_emit_flush(struct drm_i915_gem_request *request, |
| u32 invalidate_domains, |
| u32 unused) |
| { |
| struct intel_ringbuffer *ringbuf = request->ringbuf; |
| struct intel_engine_cs *engine = ringbuf->engine; |
| struct drm_device *dev = engine->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t cmd; |
| int ret; |
| |
| ret = intel_logical_ring_begin(request, 4); |
| if (ret) |
| return ret; |
| |
| cmd = MI_FLUSH_DW + 1; |
| |
| /* We always require a command barrier so that subsequent |
| * commands, such as breadcrumb interrupts, are strictly ordered |
| * wrt the contents of the write cache being flushed to memory |
| * (and thus being coherent from the CPU). |
| */ |
| cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; |
| |
| if (invalidate_domains & I915_GEM_GPU_DOMAINS) { |
| cmd |= MI_INVALIDATE_TLB; |
| if (engine == &dev_priv->engine[VCS]) |
| cmd |= MI_INVALIDATE_BSD; |
| } |
| |
| intel_logical_ring_emit(ringbuf, cmd); |
| intel_logical_ring_emit(ringbuf, |
| I915_GEM_HWS_SCRATCH_ADDR | |
| MI_FLUSH_DW_USE_GTT); |
| intel_logical_ring_emit(ringbuf, 0); /* upper addr */ |
| intel_logical_ring_emit(ringbuf, 0); /* value */ |
| intel_logical_ring_advance(ringbuf); |
| |
| return 0; |
| } |
| |
| static int gen8_emit_flush_render(struct drm_i915_gem_request *request, |
| u32 invalidate_domains, |
| u32 flush_domains) |
| { |
| struct intel_ringbuffer *ringbuf = request->ringbuf; |
| struct intel_engine_cs *engine = ringbuf->engine; |
| u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES; |
| bool vf_flush_wa = false; |
| u32 flags = 0; |
| int ret; |
| |
| flags |= PIPE_CONTROL_CS_STALL; |
| |
| if (flush_domains) { |
| flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; |
| flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; |
| flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; |
| flags |= PIPE_CONTROL_FLUSH_ENABLE; |
| } |
| |
| if (invalidate_domains) { |
| flags |= PIPE_CONTROL_TLB_INVALIDATE; |
| flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_QW_WRITE; |
| flags |= PIPE_CONTROL_GLOBAL_GTT_IVB; |
| |
| /* |
| * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL |
| * pipe control. |
| */ |
| if (IS_GEN9(engine->dev)) |
| vf_flush_wa = true; |
| } |
| |
| ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6); |
| if (ret) |
| return ret; |
| |
| if (vf_flush_wa) { |
| intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6)); |
| intel_logical_ring_emit(ringbuf, 0); |
| intel_logical_ring_emit(ringbuf, 0); |
| intel_logical_ring_emit(ringbuf, 0); |
| intel_logical_ring_emit(ringbuf, 0); |
| intel_logical_ring_emit(ringbuf, 0); |
| } |
| |
| intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6)); |
| intel_logical_ring_emit(ringbuf, flags); |
| intel_logical_ring_emit(ringbuf, scratch_addr); |
| intel_logical_ring_emit(ringbuf, 0); |
| intel_logical_ring_emit(ringbuf, 0); |
| intel_logical_ring_emit(ringbuf, 0); |
| intel_logical_ring_advance(ringbuf); |
| |
| return 0; |
| } |
| |
| static u32 gen8_get_seqno(struct intel_engine_cs *engine) |
| { |
| return intel_read_status_page(engine, I915_GEM_HWS_INDEX); |
| } |
| |
| static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno) |
| { |
| intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno); |
| } |
| |
| static void bxt_a_seqno_barrier(struct intel_engine_cs *engine) |
| { |
| /* |
| * On BXT A steppings there is a HW coherency issue whereby the |
| * MI_STORE_DATA_IMM storing the completed request's seqno |
| * occasionally doesn't invalidate the CPU cache. Work around this by |
| * clflushing the corresponding cacheline whenever the caller wants |
| * the coherency to be guaranteed. Note that this cacheline is known |
| * to be clean at this point, since we only write it in |
| * bxt_a_set_seqno(), where we also do a clflush after the write. So |
| * this clflush in practice becomes an invalidate operation. |
| */ |
| intel_flush_status_page(engine, I915_GEM_HWS_INDEX); |
| } |
| |
| static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno) |
| { |
| intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno); |
| |
| /* See bxt_a_get_seqno() explaining the reason for the clflush. */ |
| intel_flush_status_page(engine, I915_GEM_HWS_INDEX); |
| } |
| |
| /* |
| * Reserve space for 2 NOOPs at the end of each request to be |
| * used as a workaround for not being allowed to do lite |
| * restore with HEAD==TAIL (WaIdleLiteRestore). |
| */ |
| #define WA_TAIL_DWORDS 2 |
| |
| static inline u32 hws_seqno_address(struct intel_engine_cs *engine) |
| { |
| return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR; |
| } |
| |
| static int gen8_emit_request(struct drm_i915_gem_request *request) |
| { |
| struct intel_ringbuffer *ringbuf = request->ringbuf; |
| int ret; |
| |
| ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS); |
| if (ret) |
| return ret; |
| |
| /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */ |
| BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5)); |
| |
| intel_logical_ring_emit(ringbuf, |
| (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW); |
| intel_logical_ring_emit(ringbuf, |
| hws_seqno_address(request->engine) | |
| MI_FLUSH_DW_USE_GTT); |
| intel_logical_ring_emit(ringbuf, 0); |
| intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request)); |
| intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT); |
| intel_logical_ring_emit(ringbuf, MI_NOOP); |
| return intel_logical_ring_advance_and_submit(request); |
| } |
| |
| static int gen8_emit_request_render(struct drm_i915_gem_request *request) |
| { |
| struct intel_ringbuffer *ringbuf = request->ringbuf; |
| int ret; |
| |
| ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS); |
| if (ret) |
| return ret; |
| |
| /* w/a for post sync ops following a GPGPU operation we |
| * need a prior CS_STALL, which is emitted by the flush |
| * following the batch. |
| */ |
| intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(5)); |
| intel_logical_ring_emit(ringbuf, |
| (PIPE_CONTROL_GLOBAL_GTT_IVB | |
| PIPE_CONTROL_CS_STALL | |
| PIPE_CONTROL_QW_WRITE)); |
| intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine)); |
| intel_logical_ring_emit(ringbuf, 0); |
| intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request)); |
| intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT); |
| return intel_logical_ring_advance_and_submit(request); |
| } |
| |
| static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req) |
| { |
| struct render_state so; |
| int ret; |
| |
| ret = i915_gem_render_state_prepare(req->engine, &so); |
| if (ret) |
| return ret; |
| |
| if (so.rodata == NULL) |
| return 0; |
| |
| ret = req->engine->emit_bb_start(req, so.ggtt_offset, |
| I915_DISPATCH_SECURE); |
| if (ret) |
| goto out; |
| |
| ret = req->engine->emit_bb_start(req, |
| (so.ggtt_offset + so.aux_batch_offset), |
| I915_DISPATCH_SECURE); |
| if (ret) |
| goto out; |
| |
| i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req); |
| |
| out: |
| i915_gem_render_state_fini(&so); |
| return ret; |
| } |
| |
| static int gen8_init_rcs_context(struct drm_i915_gem_request *req) |
| { |
| int ret; |
| |
| ret = intel_logical_ring_workarounds_emit(req); |
| if (ret) |
| return ret; |
| |
| ret = intel_rcs_context_init_mocs(req); |
| /* |
| * Failing to program the MOCS is non-fatal.The system will not |
| * run at peak performance. So generate an error and carry on. |
| */ |
| if (ret) |
| DRM_ERROR("MOCS failed to program: expect performance issues.\n"); |
| |
| return intel_lr_context_render_state_init(req); |
| } |
| |
| /** |
| * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer |
| * |
| * @ring: Engine Command Streamer. |
| * |
| */ |
| void intel_logical_ring_cleanup(struct intel_engine_cs *engine) |
| { |
| struct drm_i915_private *dev_priv; |
| |
| if (!intel_engine_initialized(engine)) |
| return; |
| |
| /* |
| * Tasklet cannot be active at this point due intel_mark_active/idle |
| * so this is just for documentation. |
| */ |
| if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state))) |
| tasklet_kill(&engine->irq_tasklet); |
| |
| dev_priv = engine->dev->dev_private; |
| |
| if (engine->buffer) { |
| intel_logical_ring_stop(engine); |
| WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0); |
| } |
| |
| if (engine->cleanup) |
| engine->cleanup(engine); |
| |
| i915_cmd_parser_fini_ring(engine); |
| i915_gem_batch_pool_fini(&engine->batch_pool); |
| |
| if (engine->status_page.obj) { |
| kunmap(sg_page(engine->status_page.obj->pages->sgl)); |
| engine->status_page.obj = NULL; |
| } |
| |
| engine->idle_lite_restore_wa = 0; |
| engine->disable_lite_restore_wa = false; |
| engine->ctx_desc_template = 0; |
| |
| lrc_destroy_wa_ctx_obj(engine); |
| engine->dev = NULL; |
| } |
| |
| static void |
| logical_ring_default_vfuncs(struct drm_device *dev, |
| struct intel_engine_cs *engine) |
| { |
| /* Default vfuncs which can be overriden by each engine. */ |
| engine->init_hw = gen8_init_common_ring; |
| engine->emit_request = gen8_emit_request; |
| engine->emit_flush = gen8_emit_flush; |
| engine->irq_get = gen8_logical_ring_get_irq; |
| engine->irq_put = gen8_logical_ring_put_irq; |
| engine->emit_bb_start = gen8_emit_bb_start; |
| engine->get_seqno = gen8_get_seqno; |
| engine->set_seqno = gen8_set_seqno; |
| if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) { |
| engine->irq_seqno_barrier = bxt_a_seqno_barrier; |
| engine->set_seqno = bxt_a_set_seqno; |
| } |
| } |
| |
| static inline void |
| logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift) |
| { |
| engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift; |
| engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift; |
| } |
| |
| static void |
| lrc_setup_hws(struct intel_engine_cs *engine, |
| struct drm_i915_gem_object *dctx_obj) |
| { |
| struct page *page; |
| |
| /* The HWSP is part of the default context object in LRC mode. */ |
| engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) + |
| LRC_PPHWSP_PN * PAGE_SIZE; |
| page = i915_gem_object_get_page(dctx_obj, LRC_PPHWSP_PN); |
| engine->status_page.page_addr = kmap(page); |
| engine->status_page.obj = dctx_obj; |
| } |
| |
| static int |
| logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_context *dctx = dev_priv->kernel_context; |
| enum forcewake_domains fw_domains; |
| int ret; |
| |
| /* Intentionally left blank. */ |
| engine->buffer = NULL; |
| |
| engine->dev = dev; |
| INIT_LIST_HEAD(&engine->active_list); |
| INIT_LIST_HEAD(&engine->request_list); |
| i915_gem_batch_pool_init(dev, &engine->batch_pool); |
| init_waitqueue_head(&engine->irq_queue); |
| |
| INIT_LIST_HEAD(&engine->buffers); |
| INIT_LIST_HEAD(&engine->execlist_queue); |
| INIT_LIST_HEAD(&engine->execlist_retired_req_list); |
| spin_lock_init(&engine->execlist_lock); |
| |
| tasklet_init(&engine->irq_tasklet, |
| intel_lrc_irq_handler, (unsigned long)engine); |
| |
| logical_ring_init_platform_invariants(engine); |
| |
| fw_domains = intel_uncore_forcewake_for_reg(dev_priv, |
| RING_ELSP(engine), |
| FW_REG_WRITE); |
| |
| fw_domains |= intel_uncore_forcewake_for_reg(dev_priv, |
| RING_CONTEXT_STATUS_PTR(engine), |
| FW_REG_READ | FW_REG_WRITE); |
| |
| fw_domains |= intel_uncore_forcewake_for_reg(dev_priv, |
| RING_CONTEXT_STATUS_BUF_BASE(engine), |
| FW_REG_READ); |
| |
| engine->fw_domains = fw_domains; |
| |
| ret = i915_cmd_parser_init_ring(engine); |
| if (ret) |
| goto error; |
| |
| ret = intel_lr_context_deferred_alloc(dctx, engine); |
| if (ret) |
| goto error; |
| |
| /* As this is the default context, always pin it */ |
| ret = intel_lr_context_do_pin(dctx, engine); |
| if (ret) { |
| DRM_ERROR( |
| "Failed to pin and map ringbuffer %s: %d\n", |
| engine->name, ret); |
| goto error; |
| } |
| |
| /* And setup the hardware status page. */ |
| lrc_setup_hws(engine, dctx->engine[engine->id].state); |
| |
| return 0; |
| |
| error: |
| intel_logical_ring_cleanup(engine); |
| return ret; |
| } |
| |
| static int logical_render_ring_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *engine = &dev_priv->engine[RCS]; |
| int ret; |
| |
| engine->name = "render ring"; |
| engine->id = RCS; |
| engine->exec_id = I915_EXEC_RENDER; |
| engine->guc_id = GUC_RENDER_ENGINE; |
| engine->mmio_base = RENDER_RING_BASE; |
| |
| logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT); |
| if (HAS_L3_DPF(dev)) |
| engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT; |
| |
| logical_ring_default_vfuncs(dev, engine); |
| |
| /* Override some for render ring. */ |
| if (INTEL_INFO(dev)->gen >= 9) |
| engine->init_hw = gen9_init_render_ring; |
| else |
| engine->init_hw = gen8_init_render_ring; |
| engine->init_context = gen8_init_rcs_context; |
| engine->cleanup = intel_fini_pipe_control; |
| engine->emit_flush = gen8_emit_flush_render; |
| engine->emit_request = gen8_emit_request_render; |
| |
| engine->dev = dev; |
| |
| ret = intel_init_pipe_control(engine); |
| if (ret) |
| return ret; |
| |
| ret = intel_init_workaround_bb(engine); |
| if (ret) { |
| /* |
| * We continue even if we fail to initialize WA batch |
| * because we only expect rare glitches but nothing |
| * critical to prevent us from using GPU |
| */ |
| DRM_ERROR("WA batch buffer initialization failed: %d\n", |
| ret); |
| } |
| |
| ret = logical_ring_init(dev, engine); |
| if (ret) { |
| lrc_destroy_wa_ctx_obj(engine); |
| } |
| |
| return ret; |
| } |
| |
| static int logical_bsd_ring_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *engine = &dev_priv->engine[VCS]; |
| |
| engine->name = "bsd ring"; |
| engine->id = VCS; |
| engine->exec_id = I915_EXEC_BSD; |
| engine->guc_id = GUC_VIDEO_ENGINE; |
| engine->mmio_base = GEN6_BSD_RING_BASE; |
| |
| logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT); |
| logical_ring_default_vfuncs(dev, engine); |
| |
| return logical_ring_init(dev, engine); |
| } |
| |
| static int logical_bsd2_ring_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *engine = &dev_priv->engine[VCS2]; |
| |
| engine->name = "bsd2 ring"; |
| engine->id = VCS2; |
| engine->exec_id = I915_EXEC_BSD; |
| engine->guc_id = GUC_VIDEO_ENGINE2; |
| engine->mmio_base = GEN8_BSD2_RING_BASE; |
| |
| logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT); |
| logical_ring_default_vfuncs(dev, engine); |
| |
| return logical_ring_init(dev, engine); |
| } |
| |
| static int logical_blt_ring_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *engine = &dev_priv->engine[BCS]; |
| |
| engine->name = "blitter ring"; |
| engine->id = BCS; |
| engine->exec_id = I915_EXEC_BLT; |
| engine->guc_id = GUC_BLITTER_ENGINE; |
| engine->mmio_base = BLT_RING_BASE; |
| |
| logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT); |
| logical_ring_default_vfuncs(dev, engine); |
| |
| return logical_ring_init(dev, engine); |
| } |
| |
| static int logical_vebox_ring_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *engine = &dev_priv->engine[VECS]; |
| |
| engine->name = "video enhancement ring"; |
| engine->id = VECS; |
| engine->exec_id = I915_EXEC_VEBOX; |
| engine->guc_id = GUC_VIDEOENHANCE_ENGINE; |
| engine->mmio_base = VEBOX_RING_BASE; |
| |
| logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT); |
| logical_ring_default_vfuncs(dev, engine); |
| |
| return logical_ring_init(dev, engine); |
| } |
| |
| /** |
| * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers |
| * @dev: DRM device. |
| * |
| * This function inits the engines for an Execlists submission style (the equivalent in the |
| * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for |
| * those engines that are present in the hardware. |
| * |
| * Return: non-zero if the initialization failed. |
| */ |
| int intel_logical_rings_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret; |
| |
| ret = logical_render_ring_init(dev); |
| if (ret) |
| return ret; |
| |
| if (HAS_BSD(dev)) { |
| ret = logical_bsd_ring_init(dev); |
| if (ret) |
| goto cleanup_render_ring; |
| } |
| |
| if (HAS_BLT(dev)) { |
| ret = logical_blt_ring_init(dev); |
| if (ret) |
| goto cleanup_bsd_ring; |
| } |
| |
| if (HAS_VEBOX(dev)) { |
| ret = logical_vebox_ring_init(dev); |
| if (ret) |
| goto cleanup_blt_ring; |
| } |
| |
| if (HAS_BSD2(dev)) { |
| ret = logical_bsd2_ring_init(dev); |
| if (ret) |
| goto cleanup_vebox_ring; |
| } |
| |
| return 0; |
| |
| cleanup_vebox_ring: |
| intel_logical_ring_cleanup(&dev_priv->engine[VECS]); |
| cleanup_blt_ring: |
| intel_logical_ring_cleanup(&dev_priv->engine[BCS]); |
| cleanup_bsd_ring: |
| intel_logical_ring_cleanup(&dev_priv->engine[VCS]); |
| cleanup_render_ring: |
| intel_logical_ring_cleanup(&dev_priv->engine[RCS]); |
| |
| return ret; |
| } |
| |
| static u32 |
| make_rpcs(struct drm_device *dev) |
| { |
| u32 rpcs = 0; |
| |
| /* |
| * No explicit RPCS request is needed to ensure full |
| * slice/subslice/EU enablement prior to Gen9. |
| */ |
| if (INTEL_INFO(dev)->gen < 9) |
| return 0; |
| |
| /* |
| * Starting in Gen9, render power gating can leave |
| * slice/subslice/EU in a partially enabled state. We |
| * must make an explicit request through RPCS for full |
| * enablement. |
| */ |
| if (INTEL_INFO(dev)->has_slice_pg) { |
| rpcs |= GEN8_RPCS_S_CNT_ENABLE; |
| rpcs |= INTEL_INFO(dev)->slice_total << |
| GEN8_RPCS_S_CNT_SHIFT; |
| rpcs |= GEN8_RPCS_ENABLE; |
| } |
| |
| if (INTEL_INFO(dev)->has_subslice_pg) { |
| rpcs |= GEN8_RPCS_SS_CNT_ENABLE; |
| rpcs |= INTEL_INFO(dev)->subslice_per_slice << |
| GEN8_RPCS_SS_CNT_SHIFT; |
| rpcs |= GEN8_RPCS_ENABLE; |
| } |
| |
| if (INTEL_INFO(dev)->has_eu_pg) { |
| rpcs |= INTEL_INFO(dev)->eu_per_subslice << |
| GEN8_RPCS_EU_MIN_SHIFT; |
| rpcs |= INTEL_INFO(dev)->eu_per_subslice << |
| GEN8_RPCS_EU_MAX_SHIFT; |
| rpcs |= GEN8_RPCS_ENABLE; |
| } |
| |
| return rpcs; |
| } |
| |
| static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine) |
| { |
| u32 indirect_ctx_offset; |
| |
| switch (INTEL_INFO(engine->dev)->gen) { |
| default: |
| MISSING_CASE(INTEL_INFO(engine->dev)->gen); |
| /* fall through */ |
| case 9: |
| indirect_ctx_offset = |
| GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; |
| break; |
| case 8: |
| indirect_ctx_offset = |
| GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; |
| break; |
| } |
| |
| return indirect_ctx_offset; |
| } |
| |
| static int |
| populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj, |
| struct intel_engine_cs *engine, |
| struct intel_ringbuffer *ringbuf) |
| { |
| struct drm_device *dev = engine->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct i915_hw_ppgtt *ppgtt = ctx->ppgtt; |
| struct page *page; |
| uint32_t *reg_state; |
| int ret; |
| |
| if (!ppgtt) |
| ppgtt = dev_priv->mm.aliasing_ppgtt; |
| |
| ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true); |
| if (ret) { |
| DRM_DEBUG_DRIVER("Could not set to CPU domain\n"); |
| return ret; |
| } |
| |
| ret = i915_gem_object_get_pages(ctx_obj); |
| if (ret) { |
| DRM_DEBUG_DRIVER("Could not get object pages\n"); |
| return ret; |
| } |
| |
| i915_gem_object_pin_pages(ctx_obj); |
| |
| /* The second page of the context object contains some fields which must |
| * be set up prior to the first execution. */ |
| page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN); |
| reg_state = kmap_atomic(page); |
| |
| /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM |
| * commands followed by (reg, value) pairs. The values we are setting here are |
| * only for the first context restore: on a subsequent save, the GPU will |
| * recreate this batchbuffer with new values (including all the missing |
| * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */ |
| reg_state[CTX_LRI_HEADER_0] = |
| MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED; |
| ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, |
| RING_CONTEXT_CONTROL(engine), |
| _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH | |
| CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT | |
| (HAS_RESOURCE_STREAMER(dev) ? |
| CTX_CTRL_RS_CTX_ENABLE : 0))); |
| ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base), |
| 0); |
| ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base), |
| 0); |
| /* Ring buffer start address is not known until the buffer is pinned. |
| * It is written to the context image in execlists_update_context() |
| */ |
| ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, |
| RING_START(engine->mmio_base), 0); |
| ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, |
| RING_CTL(engine->mmio_base), |
| ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID); |
| ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, |
| RING_BBADDR_UDW(engine->mmio_base), 0); |
| ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, |
| RING_BBADDR(engine->mmio_base), 0); |
| ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, |
| RING_BBSTATE(engine->mmio_base), |
| RING_BB_PPGTT); |
| ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, |
| RING_SBBADDR_UDW(engine->mmio_base), 0); |
| ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, |
| RING_SBBADDR(engine->mmio_base), 0); |
| ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, |
| RING_SBBSTATE(engine->mmio_base), 0); |
| if (engine->id == RCS) { |
| ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, |
| RING_BB_PER_CTX_PTR(engine->mmio_base), 0); |
| ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, |
| RING_INDIRECT_CTX(engine->mmio_base), 0); |
| ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, |
| RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0); |
| if (engine->wa_ctx.obj) { |
| struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx; |
| uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj); |
| |
| reg_state[CTX_RCS_INDIRECT_CTX+1] = |
| (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) | |
| (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS); |
| |
| reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = |
| intel_lr_indirect_ctx_offset(engine) << 6; |
| |
| reg_state[CTX_BB_PER_CTX_PTR+1] = |
| (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) | |
| 0x01; |
| } |
| } |
| reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED; |
| ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, |
| RING_CTX_TIMESTAMP(engine->mmio_base), 0); |
| /* PDP values well be assigned later if needed */ |
| ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), |
| 0); |
| ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), |
| 0); |
| ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), |
| 0); |
| ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), |
| 0); |
| ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), |
| 0); |
| ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), |
| 0); |
| ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), |
| 0); |
| ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), |
| 0); |
| |
| if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) { |
| /* 64b PPGTT (48bit canonical) |
| * PDP0_DESCRIPTOR contains the base address to PML4 and |
| * other PDP Descriptors are ignored. |
| */ |
| ASSIGN_CTX_PML4(ppgtt, reg_state); |
| } else { |
| /* 32b PPGTT |
| * PDP*_DESCRIPTOR contains the base address of space supported. |
| * With dynamic page allocation, PDPs may not be allocated at |
| * this point. Point the unallocated PDPs to the scratch page |
| */ |
| execlists_update_context_pdps(ppgtt, reg_state); |
| } |
| |
| if (engine->id == RCS) { |
| reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1); |
| ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, |
| make_rpcs(dev)); |
| } |
| |
| kunmap_atomic(reg_state); |
| i915_gem_object_unpin_pages(ctx_obj); |
| |
| return 0; |
| } |
| |
| /** |
| * intel_lr_context_free() - free the LRC specific bits of a context |
| * @ctx: the LR context to free. |
| * |
| * The real context freeing is done in i915_gem_context_free: this only |
| * takes care of the bits that are LRC related: the per-engine backing |
| * objects and the logical ringbuffer. |
| */ |
| void intel_lr_context_free(struct intel_context *ctx) |
| { |
| int i; |
| |
| for (i = I915_NUM_ENGINES; --i >= 0; ) { |
| struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf; |
| struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state; |
| |
| if (!ctx_obj) |
| continue; |
| |
| if (ctx == ctx->i915->kernel_context) { |
| intel_unpin_ringbuffer_obj(ringbuf); |
| i915_gem_object_ggtt_unpin(ctx_obj); |
| } |
| |
| WARN_ON(ctx->engine[i].pin_count); |
| intel_ringbuffer_free(ringbuf); |
| drm_gem_object_unreference(&ctx_obj->base); |
| } |
| } |
| |
| /** |
| * intel_lr_context_size() - return the size of the context for an engine |
| * @ring: which engine to find the context size for |
| * |
| * Each engine may require a different amount of space for a context image, |
| * so when allocating (or copying) an image, this function can be used to |
| * find the right size for the specific engine. |
| * |
| * Return: size (in bytes) of an engine-specific context image |
| * |
| * Note: this size includes the HWSP, which is part of the context image |
| * in LRC mode, but does not include the "shared data page" used with |
| * GuC submission. The caller should account for this if using the GuC. |
| */ |
| uint32_t intel_lr_context_size(struct intel_engine_cs *engine) |
| { |
| int ret = 0; |
| |
| WARN_ON(INTEL_INFO(engine->dev)->gen < 8); |
| |
| switch (engine->id) { |
| case RCS: |
| if (INTEL_INFO(engine->dev)->gen >= 9) |
| ret = GEN9_LR_CONTEXT_RENDER_SIZE; |
| else |
| ret = GEN8_LR_CONTEXT_RENDER_SIZE; |
| break; |
| case VCS: |
| case BCS: |
| case VECS: |
| case VCS2: |
| ret = GEN8_LR_CONTEXT_OTHER_SIZE; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context |
| * @ctx: LR context to create. |
| * @ring: engine to be used with the context. |
| * |
| * This function can be called more than once, with different engines, if we plan |
| * to use the context with them. The context backing objects and the ringbuffers |
| * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why |
| * the creation is a deferred call: it's better to make sure first that we need to use |
| * a given ring with the context. |
| * |
| * Return: non-zero on error. |
| */ |
| |
| int intel_lr_context_deferred_alloc(struct intel_context *ctx, |
| struct intel_engine_cs *engine) |
| { |
| struct drm_device *dev = engine->dev; |
| struct drm_i915_gem_object *ctx_obj; |
| uint32_t context_size; |
| struct intel_ringbuffer *ringbuf; |
| int ret; |
| |
| WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL); |
| WARN_ON(ctx->engine[engine->id].state); |
| |
| context_size = round_up(intel_lr_context_size(engine), 4096); |
| |
| /* One extra page as the sharing data between driver and GuC */ |
| context_size += PAGE_SIZE * LRC_PPHWSP_PN; |
| |
| ctx_obj = i915_gem_alloc_object(dev, context_size); |
| if (!ctx_obj) { |
| DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n"); |
| return -ENOMEM; |
| } |
| |
| ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE); |
| if (IS_ERR(ringbuf)) { |
| ret = PTR_ERR(ringbuf); |
| goto error_deref_obj; |
| } |
| |
| ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf); |
| if (ret) { |
| DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret); |
| goto error_ringbuf; |
| } |
| |
| ctx->engine[engine->id].ringbuf = ringbuf; |
| ctx->engine[engine->id].state = ctx_obj; |
| |
| if (ctx != ctx->i915->kernel_context && engine->init_context) { |
| struct drm_i915_gem_request *req; |
| |
| req = i915_gem_request_alloc(engine, ctx); |
| if (IS_ERR(req)) { |
| ret = PTR_ERR(req); |
| DRM_ERROR("ring create req: %d\n", ret); |
| goto error_ringbuf; |
| } |
| |
| ret = engine->init_context(req); |
| if (ret) { |
| DRM_ERROR("ring init context: %d\n", |
| ret); |
| i915_gem_request_cancel(req); |
| goto error_ringbuf; |
| } |
| i915_add_request_no_flush(req); |
| } |
| return 0; |
| |
| error_ringbuf: |
| intel_ringbuffer_free(ringbuf); |
| error_deref_obj: |
| drm_gem_object_unreference(&ctx_obj->base); |
| ctx->engine[engine->id].ringbuf = NULL; |
| ctx->engine[engine->id].state = NULL; |
| return ret; |
| } |
| |
| void intel_lr_context_reset(struct drm_device *dev, |
| struct intel_context *ctx) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *engine; |
| |
| for_each_engine(engine, dev_priv) { |
| struct drm_i915_gem_object *ctx_obj = |
| ctx->engine[engine->id].state; |
| struct intel_ringbuffer *ringbuf = |
| ctx->engine[engine->id].ringbuf; |
| uint32_t *reg_state; |
| struct page *page; |
| |
| if (!ctx_obj) |
| continue; |
| |
| if (i915_gem_object_get_pages(ctx_obj)) { |
| WARN(1, "Failed get_pages for context obj\n"); |
| continue; |
| } |
| page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN); |
| reg_state = kmap_atomic(page); |
| |
| reg_state[CTX_RING_HEAD+1] = 0; |
| reg_state[CTX_RING_TAIL+1] = 0; |
| |
| kunmap_atomic(reg_state); |
| |
| ringbuf->head = 0; |
| ringbuf->tail = 0; |
| } |
| } |