| /* |
| * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/netdevice.h> |
| #include <linux/types.h> |
| #include <linux/skbuff.h> |
| #include <linux/debugfs.h> |
| #include <linux/random.h> |
| #include <linux/moduleparam.h> |
| #include <linux/ieee80211.h> |
| #include <net/mac80211.h> |
| #include "rate.h" |
| #include "sta_info.h" |
| #include "rc80211_minstrel.h" |
| #include "rc80211_minstrel_ht.h" |
| |
| #define AVG_AMPDU_SIZE 16 |
| #define AVG_PKT_SIZE 1200 |
| |
| /* Number of bits for an average sized packet */ |
| #define MCS_NBITS ((AVG_PKT_SIZE * AVG_AMPDU_SIZE) << 3) |
| |
| /* Number of symbols for a packet with (bps) bits per symbol */ |
| #define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps)) |
| |
| /* Transmission time (nanoseconds) for a packet containing (syms) symbols */ |
| #define MCS_SYMBOL_TIME(sgi, syms) \ |
| (sgi ? \ |
| ((syms) * 18000 + 4000) / 5 : /* syms * 3.6 us */ \ |
| ((syms) * 1000) << 2 /* syms * 4 us */ \ |
| ) |
| |
| /* Transmit duration for the raw data part of an average sized packet */ |
| #define MCS_DURATION(streams, sgi, bps) \ |
| (MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps))) / AVG_AMPDU_SIZE) |
| |
| #define BW_20 0 |
| #define BW_40 1 |
| #define BW_80 2 |
| |
| /* |
| * Define group sort order: HT40 -> SGI -> #streams |
| */ |
| #define GROUP_IDX(_streams, _sgi, _ht40) \ |
| MINSTREL_HT_GROUP_0 + \ |
| MINSTREL_MAX_STREAMS * 2 * _ht40 + \ |
| MINSTREL_MAX_STREAMS * _sgi + \ |
| _streams - 1 |
| |
| /* MCS rate information for an MCS group */ |
| #define MCS_GROUP(_streams, _sgi, _ht40) \ |
| [GROUP_IDX(_streams, _sgi, _ht40)] = { \ |
| .streams = _streams, \ |
| .flags = \ |
| IEEE80211_TX_RC_MCS | \ |
| (_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) | \ |
| (_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0), \ |
| .duration = { \ |
| MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26), \ |
| MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52), \ |
| MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78), \ |
| MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104), \ |
| MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156), \ |
| MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208), \ |
| MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234), \ |
| MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260) \ |
| } \ |
| } |
| |
| #define VHT_GROUP_IDX(_streams, _sgi, _bw) \ |
| (MINSTREL_VHT_GROUP_0 + \ |
| MINSTREL_MAX_STREAMS * 2 * (_bw) + \ |
| MINSTREL_MAX_STREAMS * (_sgi) + \ |
| (_streams) - 1) |
| |
| #define BW2VBPS(_bw, r3, r2, r1) \ |
| (_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1) |
| |
| #define VHT_GROUP(_streams, _sgi, _bw) \ |
| [VHT_GROUP_IDX(_streams, _sgi, _bw)] = { \ |
| .streams = _streams, \ |
| .flags = \ |
| IEEE80211_TX_RC_VHT_MCS | \ |
| (_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) | \ |
| (_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH : \ |
| _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0), \ |
| .duration = { \ |
| MCS_DURATION(_streams, _sgi, \ |
| BW2VBPS(_bw, 117, 54, 26)), \ |
| MCS_DURATION(_streams, _sgi, \ |
| BW2VBPS(_bw, 234, 108, 52)), \ |
| MCS_DURATION(_streams, _sgi, \ |
| BW2VBPS(_bw, 351, 162, 78)), \ |
| MCS_DURATION(_streams, _sgi, \ |
| BW2VBPS(_bw, 468, 216, 104)), \ |
| MCS_DURATION(_streams, _sgi, \ |
| BW2VBPS(_bw, 702, 324, 156)), \ |
| MCS_DURATION(_streams, _sgi, \ |
| BW2VBPS(_bw, 936, 432, 208)), \ |
| MCS_DURATION(_streams, _sgi, \ |
| BW2VBPS(_bw, 1053, 486, 234)), \ |
| MCS_DURATION(_streams, _sgi, \ |
| BW2VBPS(_bw, 1170, 540, 260)), \ |
| MCS_DURATION(_streams, _sgi, \ |
| BW2VBPS(_bw, 1404, 648, 312)), \ |
| MCS_DURATION(_streams, _sgi, \ |
| BW2VBPS(_bw, 1560, 720, 346)) \ |
| } \ |
| } |
| |
| #define CCK_DURATION(_bitrate, _short, _len) \ |
| (1000 * (10 /* SIFS */ + \ |
| (_short ? 72 + 24 : 144 + 48) + \ |
| (8 * (_len + 4) * 10) / (_bitrate))) |
| |
| #define CCK_ACK_DURATION(_bitrate, _short) \ |
| (CCK_DURATION((_bitrate > 10 ? 20 : 10), false, 60) + \ |
| CCK_DURATION(_bitrate, _short, AVG_PKT_SIZE)) |
| |
| #define CCK_DURATION_LIST(_short) \ |
| CCK_ACK_DURATION(10, _short), \ |
| CCK_ACK_DURATION(20, _short), \ |
| CCK_ACK_DURATION(55, _short), \ |
| CCK_ACK_DURATION(110, _short) |
| |
| #define CCK_GROUP \ |
| [MINSTREL_CCK_GROUP] = { \ |
| .streams = 0, \ |
| .flags = 0, \ |
| .duration = { \ |
| CCK_DURATION_LIST(false), \ |
| CCK_DURATION_LIST(true) \ |
| } \ |
| } |
| |
| #ifdef CONFIG_MAC80211_RC_MINSTREL_VHT |
| static bool minstrel_vht_only = true; |
| module_param(minstrel_vht_only, bool, 0644); |
| MODULE_PARM_DESC(minstrel_vht_only, |
| "Use only VHT rates when VHT is supported by sta."); |
| #endif |
| |
| /* |
| * To enable sufficiently targeted rate sampling, MCS rates are divided into |
| * groups, based on the number of streams and flags (HT40, SGI) that they |
| * use. |
| * |
| * Sortorder has to be fixed for GROUP_IDX macro to be applicable: |
| * BW -> SGI -> #streams |
| */ |
| const struct mcs_group minstrel_mcs_groups[] = { |
| MCS_GROUP(1, 0, BW_20), |
| MCS_GROUP(2, 0, BW_20), |
| MCS_GROUP(3, 0, BW_20), |
| |
| MCS_GROUP(1, 1, BW_20), |
| MCS_GROUP(2, 1, BW_20), |
| MCS_GROUP(3, 1, BW_20), |
| |
| MCS_GROUP(1, 0, BW_40), |
| MCS_GROUP(2, 0, BW_40), |
| MCS_GROUP(3, 0, BW_40), |
| |
| MCS_GROUP(1, 1, BW_40), |
| MCS_GROUP(2, 1, BW_40), |
| MCS_GROUP(3, 1, BW_40), |
| |
| CCK_GROUP, |
| |
| #ifdef CONFIG_MAC80211_RC_MINSTREL_VHT |
| VHT_GROUP(1, 0, BW_20), |
| VHT_GROUP(2, 0, BW_20), |
| VHT_GROUP(3, 0, BW_20), |
| |
| VHT_GROUP(1, 1, BW_20), |
| VHT_GROUP(2, 1, BW_20), |
| VHT_GROUP(3, 1, BW_20), |
| |
| VHT_GROUP(1, 0, BW_40), |
| VHT_GROUP(2, 0, BW_40), |
| VHT_GROUP(3, 0, BW_40), |
| |
| VHT_GROUP(1, 1, BW_40), |
| VHT_GROUP(2, 1, BW_40), |
| VHT_GROUP(3, 1, BW_40), |
| |
| VHT_GROUP(1, 0, BW_80), |
| VHT_GROUP(2, 0, BW_80), |
| VHT_GROUP(3, 0, BW_80), |
| |
| VHT_GROUP(1, 1, BW_80), |
| VHT_GROUP(2, 1, BW_80), |
| VHT_GROUP(3, 1, BW_80), |
| #endif |
| }; |
| |
| static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly; |
| |
| static void |
| minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi); |
| |
| /* |
| * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer) |
| * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1 |
| * |
| * Returns the valid mcs map for struct minstrel_mcs_group_data.supported |
| */ |
| static u16 |
| minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map) |
| { |
| u16 mask = 0; |
| |
| if (bw == BW_20) { |
| if (nss != 3 && nss != 6) |
| mask = BIT(9); |
| } else if (bw == BW_80) { |
| if (nss == 3 || nss == 7) |
| mask = BIT(6); |
| else if (nss == 6) |
| mask = BIT(9); |
| } else { |
| WARN_ON(bw != BW_40); |
| } |
| |
| switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) { |
| case IEEE80211_VHT_MCS_SUPPORT_0_7: |
| mask |= 0x300; |
| break; |
| case IEEE80211_VHT_MCS_SUPPORT_0_8: |
| mask |= 0x200; |
| break; |
| case IEEE80211_VHT_MCS_SUPPORT_0_9: |
| break; |
| default: |
| mask = 0x3ff; |
| } |
| |
| return 0x3ff & ~mask; |
| } |
| |
| /* |
| * Look up an MCS group index based on mac80211 rate information |
| */ |
| static int |
| minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate) |
| { |
| return GROUP_IDX((rate->idx / 8) + 1, |
| !!(rate->flags & IEEE80211_TX_RC_SHORT_GI), |
| !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)); |
| } |
| |
| static int |
| minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate) |
| { |
| return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate), |
| !!(rate->flags & IEEE80211_TX_RC_SHORT_GI), |
| !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) + |
| 2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH)); |
| } |
| |
| static struct minstrel_rate_stats * |
| minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, |
| struct ieee80211_tx_rate *rate) |
| { |
| int group, idx; |
| |
| if (rate->flags & IEEE80211_TX_RC_MCS) { |
| group = minstrel_ht_get_group_idx(rate); |
| idx = rate->idx % 8; |
| } else if (rate->flags & IEEE80211_TX_RC_VHT_MCS) { |
| group = minstrel_vht_get_group_idx(rate); |
| idx = ieee80211_rate_get_vht_mcs(rate); |
| } else { |
| group = MINSTREL_CCK_GROUP; |
| |
| for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++) |
| if (rate->idx == mp->cck_rates[idx]) |
| break; |
| |
| /* short preamble */ |
| if (!(mi->supported[group] & BIT(idx))) |
| idx += 4; |
| } |
| return &mi->groups[group].rates[idx]; |
| } |
| |
| static inline struct minstrel_rate_stats * |
| minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index) |
| { |
| return &mi->groups[index / MCS_GROUP_RATES].rates[index % MCS_GROUP_RATES]; |
| } |
| |
| /* |
| * Return current throughput based on the average A-MPDU length, taking into |
| * account the expected number of retransmissions and their expected length |
| */ |
| int |
| minstrel_ht_get_tp_avg(struct minstrel_ht_sta *mi, int group, int rate, |
| int prob_ewma) |
| { |
| unsigned int nsecs = 0; |
| |
| /* do not account throughput if sucess prob is below 10% */ |
| if (prob_ewma < MINSTREL_FRAC(10, 100)) |
| return 0; |
| |
| if (group != MINSTREL_CCK_GROUP) |
| nsecs = 1000 * mi->overhead / MINSTREL_TRUNC(mi->avg_ampdu_len); |
| |
| nsecs += minstrel_mcs_groups[group].duration[rate]; |
| |
| /* |
| * For the throughput calculation, limit the probability value to 90% to |
| * account for collision related packet error rate fluctuation |
| * (prob is scaled - see MINSTREL_FRAC above) |
| */ |
| if (prob_ewma > MINSTREL_FRAC(90, 100)) |
| return MINSTREL_TRUNC(100000 * ((MINSTREL_FRAC(90, 100) * 1000) |
| / nsecs)); |
| else |
| return MINSTREL_TRUNC(100000 * ((prob_ewma * 1000) / nsecs)); |
| } |
| |
| /* |
| * Find & sort topmost throughput rates |
| * |
| * If multiple rates provide equal throughput the sorting is based on their |
| * current success probability. Higher success probability is preferred among |
| * MCS groups, CCK rates do not provide aggregation and are therefore at last. |
| */ |
| static void |
| minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index, |
| u16 *tp_list) |
| { |
| int cur_group, cur_idx, cur_tp_avg, cur_prob; |
| int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob; |
| int j = MAX_THR_RATES; |
| |
| cur_group = index / MCS_GROUP_RATES; |
| cur_idx = index % MCS_GROUP_RATES; |
| cur_prob = mi->groups[cur_group].rates[cur_idx].prob_ewma; |
| cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, cur_prob); |
| |
| do { |
| tmp_group = tp_list[j - 1] / MCS_GROUP_RATES; |
| tmp_idx = tp_list[j - 1] % MCS_GROUP_RATES; |
| tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma; |
| tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, |
| tmp_prob); |
| if (cur_tp_avg < tmp_tp_avg || |
| (cur_tp_avg == tmp_tp_avg && cur_prob <= tmp_prob)) |
| break; |
| j--; |
| } while (j > 0); |
| |
| if (j < MAX_THR_RATES - 1) { |
| memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) * |
| (MAX_THR_RATES - (j + 1)))); |
| } |
| if (j < MAX_THR_RATES) |
| tp_list[j] = index; |
| } |
| |
| /* |
| * Find and set the topmost probability rate per sta and per group |
| */ |
| static void |
| minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 index) |
| { |
| struct minstrel_mcs_group_data *mg; |
| struct minstrel_rate_stats *mrs; |
| int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob; |
| int max_tp_group, cur_tp_avg, cur_group, cur_idx; |
| int max_gpr_group, max_gpr_idx; |
| int max_gpr_tp_avg, max_gpr_prob; |
| |
| cur_group = index / MCS_GROUP_RATES; |
| cur_idx = index % MCS_GROUP_RATES; |
| mg = &mi->groups[index / MCS_GROUP_RATES]; |
| mrs = &mg->rates[index % MCS_GROUP_RATES]; |
| |
| tmp_group = mi->max_prob_rate / MCS_GROUP_RATES; |
| tmp_idx = mi->max_prob_rate % MCS_GROUP_RATES; |
| tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma; |
| tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob); |
| |
| /* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from |
| * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */ |
| max_tp_group = mi->max_tp_rate[0] / MCS_GROUP_RATES; |
| if((index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) && |
| (max_tp_group != MINSTREL_CCK_GROUP)) |
| return; |
| |
| max_gpr_group = mg->max_group_prob_rate / MCS_GROUP_RATES; |
| max_gpr_idx = mg->max_group_prob_rate % MCS_GROUP_RATES; |
| max_gpr_prob = mi->groups[max_gpr_group].rates[max_gpr_idx].prob_ewma; |
| |
| if (mrs->prob_ewma > MINSTREL_FRAC(75, 100)) { |
| cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, |
| mrs->prob_ewma); |
| if (cur_tp_avg > tmp_tp_avg) |
| mi->max_prob_rate = index; |
| |
| max_gpr_tp_avg = minstrel_ht_get_tp_avg(mi, max_gpr_group, |
| max_gpr_idx, |
| max_gpr_prob); |
| if (cur_tp_avg > max_gpr_tp_avg) |
| mg->max_group_prob_rate = index; |
| } else { |
| if (mrs->prob_ewma > tmp_prob) |
| mi->max_prob_rate = index; |
| if (mrs->prob_ewma > max_gpr_prob) |
| mg->max_group_prob_rate = index; |
| } |
| } |
| |
| |
| /* |
| * Assign new rate set per sta and use CCK rates only if the fastest |
| * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted |
| * rate sets where MCS and CCK rates are mixed, because CCK rates can |
| * not use aggregation. |
| */ |
| static void |
| minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi, |
| u16 tmp_mcs_tp_rate[MAX_THR_RATES], |
| u16 tmp_cck_tp_rate[MAX_THR_RATES]) |
| { |
| unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp, tmp_prob; |
| int i; |
| |
| tmp_group = tmp_cck_tp_rate[0] / MCS_GROUP_RATES; |
| tmp_idx = tmp_cck_tp_rate[0] % MCS_GROUP_RATES; |
| tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma; |
| tmp_cck_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob); |
| |
| tmp_group = tmp_mcs_tp_rate[0] / MCS_GROUP_RATES; |
| tmp_idx = tmp_mcs_tp_rate[0] % MCS_GROUP_RATES; |
| tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma; |
| tmp_mcs_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob); |
| |
| if (tmp_cck_tp > tmp_mcs_tp) { |
| for(i = 0; i < MAX_THR_RATES; i++) { |
| minstrel_ht_sort_best_tp_rates(mi, tmp_cck_tp_rate[i], |
| tmp_mcs_tp_rate); |
| } |
| } |
| |
| } |
| |
| /* |
| * Try to increase robustness of max_prob rate by decrease number of |
| * streams if possible. |
| */ |
| static inline void |
| minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi) |
| { |
| struct minstrel_mcs_group_data *mg; |
| int tmp_max_streams, group, tmp_idx, tmp_prob; |
| int tmp_tp = 0; |
| |
| tmp_max_streams = minstrel_mcs_groups[mi->max_tp_rate[0] / |
| MCS_GROUP_RATES].streams; |
| for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) { |
| mg = &mi->groups[group]; |
| if (!mi->supported[group] || group == MINSTREL_CCK_GROUP) |
| continue; |
| |
| tmp_idx = mg->max_group_prob_rate % MCS_GROUP_RATES; |
| tmp_prob = mi->groups[group].rates[tmp_idx].prob_ewma; |
| |
| if (tmp_tp < minstrel_ht_get_tp_avg(mi, group, tmp_idx, tmp_prob) && |
| (minstrel_mcs_groups[group].streams < tmp_max_streams)) { |
| mi->max_prob_rate = mg->max_group_prob_rate; |
| tmp_tp = minstrel_ht_get_tp_avg(mi, group, |
| tmp_idx, |
| tmp_prob); |
| } |
| } |
| } |
| |
| /* |
| * Update rate statistics and select new primary rates |
| * |
| * Rules for rate selection: |
| * - max_prob_rate must use only one stream, as a tradeoff between delivery |
| * probability and throughput during strong fluctuations |
| * - as long as the max prob rate has a probability of more than 75%, pick |
| * higher throughput rates, even if the probablity is a bit lower |
| */ |
| static void |
| minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi) |
| { |
| struct minstrel_mcs_group_data *mg; |
| struct minstrel_rate_stats *mrs; |
| int group, i, j, cur_prob; |
| u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES]; |
| u16 tmp_cck_tp_rate[MAX_THR_RATES], index; |
| |
| if (mi->ampdu_packets > 0) { |
| mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len, |
| MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets), EWMA_LEVEL); |
| mi->ampdu_len = 0; |
| mi->ampdu_packets = 0; |
| } |
| |
| mi->sample_slow = 0; |
| mi->sample_count = 0; |
| |
| /* Initialize global rate indexes */ |
| for(j = 0; j < MAX_THR_RATES; j++){ |
| tmp_mcs_tp_rate[j] = 0; |
| tmp_cck_tp_rate[j] = 0; |
| } |
| |
| /* Find best rate sets within all MCS groups*/ |
| for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) { |
| |
| mg = &mi->groups[group]; |
| if (!mi->supported[group]) |
| continue; |
| |
| mi->sample_count++; |
| |
| /* (re)Initialize group rate indexes */ |
| for(j = 0; j < MAX_THR_RATES; j++) |
| tmp_group_tp_rate[j] = group; |
| |
| for (i = 0; i < MCS_GROUP_RATES; i++) { |
| if (!(mi->supported[group] & BIT(i))) |
| continue; |
| |
| index = MCS_GROUP_RATES * group + i; |
| |
| mrs = &mg->rates[i]; |
| mrs->retry_updated = false; |
| minstrel_calc_rate_stats(mrs); |
| cur_prob = mrs->prob_ewma; |
| |
| if (minstrel_ht_get_tp_avg(mi, group, i, cur_prob) == 0) |
| continue; |
| |
| /* Find max throughput rate set */ |
| if (group != MINSTREL_CCK_GROUP) { |
| minstrel_ht_sort_best_tp_rates(mi, index, |
| tmp_mcs_tp_rate); |
| } else if (group == MINSTREL_CCK_GROUP) { |
| minstrel_ht_sort_best_tp_rates(mi, index, |
| tmp_cck_tp_rate); |
| } |
| |
| /* Find max throughput rate set within a group */ |
| minstrel_ht_sort_best_tp_rates(mi, index, |
| tmp_group_tp_rate); |
| |
| /* Find max probability rate per group and global */ |
| minstrel_ht_set_best_prob_rate(mi, index); |
| } |
| |
| memcpy(mg->max_group_tp_rate, tmp_group_tp_rate, |
| sizeof(mg->max_group_tp_rate)); |
| } |
| |
| /* Assign new rate set per sta */ |
| minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate, tmp_cck_tp_rate); |
| memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate)); |
| |
| /* Try to increase robustness of max_prob_rate*/ |
| minstrel_ht_prob_rate_reduce_streams(mi); |
| |
| /* try to sample all available rates during each interval */ |
| mi->sample_count *= 8; |
| |
| #ifdef CONFIG_MAC80211_DEBUGFS |
| /* use fixed index if set */ |
| if (mp->fixed_rate_idx != -1) { |
| for (i = 0; i < 4; i++) |
| mi->max_tp_rate[i] = mp->fixed_rate_idx; |
| mi->max_prob_rate = mp->fixed_rate_idx; |
| } |
| #endif |
| |
| /* Reset update timer */ |
| mi->last_stats_update = jiffies; |
| } |
| |
| static bool |
| minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct ieee80211_tx_rate *rate) |
| { |
| if (rate->idx < 0) |
| return false; |
| |
| if (!rate->count) |
| return false; |
| |
| if (rate->flags & IEEE80211_TX_RC_MCS || |
| rate->flags & IEEE80211_TX_RC_VHT_MCS) |
| return true; |
| |
| return rate->idx == mp->cck_rates[0] || |
| rate->idx == mp->cck_rates[1] || |
| rate->idx == mp->cck_rates[2] || |
| rate->idx == mp->cck_rates[3]; |
| } |
| |
| static void |
| minstrel_set_next_sample_idx(struct minstrel_ht_sta *mi) |
| { |
| struct minstrel_mcs_group_data *mg; |
| |
| for (;;) { |
| mi->sample_group++; |
| mi->sample_group %= ARRAY_SIZE(minstrel_mcs_groups); |
| mg = &mi->groups[mi->sample_group]; |
| |
| if (!mi->supported[mi->sample_group]) |
| continue; |
| |
| if (++mg->index >= MCS_GROUP_RATES) { |
| mg->index = 0; |
| if (++mg->column >= ARRAY_SIZE(sample_table)) |
| mg->column = 0; |
| } |
| break; |
| } |
| } |
| |
| static void |
| minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary) |
| { |
| int group, orig_group; |
| |
| orig_group = group = *idx / MCS_GROUP_RATES; |
| while (group > 0) { |
| group--; |
| |
| if (!mi->supported[group]) |
| continue; |
| |
| if (minstrel_mcs_groups[group].streams > |
| minstrel_mcs_groups[orig_group].streams) |
| continue; |
| |
| if (primary) |
| *idx = mi->groups[group].max_group_tp_rate[0]; |
| else |
| *idx = mi->groups[group].max_group_tp_rate[1]; |
| break; |
| } |
| } |
| |
| static void |
| minstrel_aggr_check(struct ieee80211_sta *pubsta, struct sk_buff *skb) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| struct sta_info *sta = container_of(pubsta, struct sta_info, sta); |
| u16 tid; |
| |
| if (skb_get_queue_mapping(skb) == IEEE80211_AC_VO) |
| return; |
| |
| if (unlikely(!ieee80211_is_data_qos(hdr->frame_control))) |
| return; |
| |
| if (unlikely(skb->protocol == cpu_to_be16(ETH_P_PAE))) |
| return; |
| |
| tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; |
| if (likely(sta->ampdu_mlme.tid_tx[tid])) |
| return; |
| |
| ieee80211_start_tx_ba_session(pubsta, tid, 0); |
| } |
| |
| static void |
| minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband, |
| struct ieee80211_sta *sta, void *priv_sta, |
| struct ieee80211_tx_info *info) |
| { |
| struct minstrel_ht_sta_priv *msp = priv_sta; |
| struct minstrel_ht_sta *mi = &msp->ht; |
| struct ieee80211_tx_rate *ar = info->status.rates; |
| struct minstrel_rate_stats *rate, *rate2; |
| struct minstrel_priv *mp = priv; |
| bool last, update = false; |
| int i; |
| |
| if (!msp->is_ht) |
| return mac80211_minstrel.tx_status_noskb(priv, sband, sta, |
| &msp->legacy, info); |
| |
| /* This packet was aggregated but doesn't carry status info */ |
| if ((info->flags & IEEE80211_TX_CTL_AMPDU) && |
| !(info->flags & IEEE80211_TX_STAT_AMPDU)) |
| return; |
| |
| if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) { |
| info->status.ampdu_ack_len = |
| (info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0); |
| info->status.ampdu_len = 1; |
| } |
| |
| mi->ampdu_packets++; |
| mi->ampdu_len += info->status.ampdu_len; |
| |
| if (!mi->sample_wait && !mi->sample_tries && mi->sample_count > 0) { |
| mi->sample_wait = 16 + 2 * MINSTREL_TRUNC(mi->avg_ampdu_len); |
| mi->sample_tries = 1; |
| mi->sample_count--; |
| } |
| |
| if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) |
| mi->sample_packets += info->status.ampdu_len; |
| |
| last = !minstrel_ht_txstat_valid(mp, &ar[0]); |
| for (i = 0; !last; i++) { |
| last = (i == IEEE80211_TX_MAX_RATES - 1) || |
| !minstrel_ht_txstat_valid(mp, &ar[i + 1]); |
| |
| rate = minstrel_ht_get_stats(mp, mi, &ar[i]); |
| |
| if (last) |
| rate->success += info->status.ampdu_ack_len; |
| |
| rate->attempts += ar[i].count * info->status.ampdu_len; |
| } |
| |
| /* |
| * check for sudden death of spatial multiplexing, |
| * downgrade to a lower number of streams if necessary. |
| */ |
| rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]); |
| if (rate->attempts > 30 && |
| MINSTREL_FRAC(rate->success, rate->attempts) < |
| MINSTREL_FRAC(20, 100)) { |
| minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true); |
| update = true; |
| } |
| |
| rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]); |
| if (rate2->attempts > 30 && |
| MINSTREL_FRAC(rate2->success, rate2->attempts) < |
| MINSTREL_FRAC(20, 100)) { |
| minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false); |
| update = true; |
| } |
| |
| if (time_after(jiffies, mi->last_stats_update + |
| (mp->update_interval / 2 * HZ) / 1000)) { |
| update = true; |
| minstrel_ht_update_stats(mp, mi); |
| } |
| |
| if (update) |
| minstrel_ht_update_rates(mp, mi); |
| } |
| |
| static void |
| minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, |
| int index) |
| { |
| struct minstrel_rate_stats *mrs; |
| const struct mcs_group *group; |
| unsigned int tx_time, tx_time_rtscts, tx_time_data; |
| unsigned int cw = mp->cw_min; |
| unsigned int ctime = 0; |
| unsigned int t_slot = 9; /* FIXME */ |
| unsigned int ampdu_len = MINSTREL_TRUNC(mi->avg_ampdu_len); |
| unsigned int overhead = 0, overhead_rtscts = 0; |
| |
| mrs = minstrel_get_ratestats(mi, index); |
| if (mrs->prob_ewma < MINSTREL_FRAC(1, 10)) { |
| mrs->retry_count = 1; |
| mrs->retry_count_rtscts = 1; |
| return; |
| } |
| |
| mrs->retry_count = 2; |
| mrs->retry_count_rtscts = 2; |
| mrs->retry_updated = true; |
| |
| group = &minstrel_mcs_groups[index / MCS_GROUP_RATES]; |
| tx_time_data = group->duration[index % MCS_GROUP_RATES] * ampdu_len / 1000; |
| |
| /* Contention time for first 2 tries */ |
| ctime = (t_slot * cw) >> 1; |
| cw = min((cw << 1) | 1, mp->cw_max); |
| ctime += (t_slot * cw) >> 1; |
| cw = min((cw << 1) | 1, mp->cw_max); |
| |
| if (index / MCS_GROUP_RATES != MINSTREL_CCK_GROUP) { |
| overhead = mi->overhead; |
| overhead_rtscts = mi->overhead_rtscts; |
| } |
| |
| /* Total TX time for data and Contention after first 2 tries */ |
| tx_time = ctime + 2 * (overhead + tx_time_data); |
| tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data); |
| |
| /* See how many more tries we can fit inside segment size */ |
| do { |
| /* Contention time for this try */ |
| ctime = (t_slot * cw) >> 1; |
| cw = min((cw << 1) | 1, mp->cw_max); |
| |
| /* Total TX time after this try */ |
| tx_time += ctime + overhead + tx_time_data; |
| tx_time_rtscts += ctime + overhead_rtscts + tx_time_data; |
| |
| if (tx_time_rtscts < mp->segment_size) |
| mrs->retry_count_rtscts++; |
| } while ((tx_time < mp->segment_size) && |
| (++mrs->retry_count < mp->max_retry)); |
| } |
| |
| |
| static void |
| minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, |
| struct ieee80211_sta_rates *ratetbl, int offset, int index) |
| { |
| const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES]; |
| struct minstrel_rate_stats *mrs; |
| u8 idx; |
| u16 flags = group->flags; |
| |
| mrs = minstrel_get_ratestats(mi, index); |
| if (!mrs->retry_updated) |
| minstrel_calc_retransmit(mp, mi, index); |
| |
| if (mrs->prob_ewma < MINSTREL_FRAC(20, 100) || !mrs->retry_count) { |
| ratetbl->rate[offset].count = 2; |
| ratetbl->rate[offset].count_rts = 2; |
| ratetbl->rate[offset].count_cts = 2; |
| } else { |
| ratetbl->rate[offset].count = mrs->retry_count; |
| ratetbl->rate[offset].count_cts = mrs->retry_count; |
| ratetbl->rate[offset].count_rts = mrs->retry_count_rtscts; |
| } |
| |
| if (index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) |
| idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)]; |
| else if (flags & IEEE80211_TX_RC_VHT_MCS) |
| idx = ((group->streams - 1) << 4) | |
| ((index % MCS_GROUP_RATES) & 0xF); |
| else |
| idx = index % MCS_GROUP_RATES + (group->streams - 1) * 8; |
| |
| /* enable RTS/CTS if needed: |
| * - if station is in dynamic SMPS (and streams > 1) |
| * - for fallback rates, to increase chances of getting through |
| */ |
| if (offset > 0 || |
| (mi->sta->smps_mode == IEEE80211_SMPS_DYNAMIC && |
| group->streams > 1)) { |
| ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts; |
| flags |= IEEE80211_TX_RC_USE_RTS_CTS; |
| } |
| |
| ratetbl->rate[offset].idx = idx; |
| ratetbl->rate[offset].flags = flags; |
| } |
| |
| static inline int |
| minstrel_ht_get_prob_ewma(struct minstrel_ht_sta *mi, int rate) |
| { |
| int group = rate / MCS_GROUP_RATES; |
| rate %= MCS_GROUP_RATES; |
| return mi->groups[group].rates[rate].prob_ewma; |
| } |
| |
| static int |
| minstrel_ht_get_max_amsdu_len(struct minstrel_ht_sta *mi) |
| { |
| int group = mi->max_prob_rate / MCS_GROUP_RATES; |
| const struct mcs_group *g = &minstrel_mcs_groups[group]; |
| int rate = mi->max_prob_rate % MCS_GROUP_RATES; |
| |
| /* Disable A-MSDU if max_prob_rate is bad */ |
| if (mi->groups[group].rates[rate].prob_ewma < MINSTREL_FRAC(50, 100)) |
| return 1; |
| |
| /* If the rate is slower than single-stream MCS1, make A-MSDU limit small */ |
| if (g->duration[rate] > MCS_DURATION(1, 0, 52)) |
| return 500; |
| |
| /* |
| * If the rate is slower than single-stream MCS4, limit A-MSDU to usual |
| * data packet size |
| */ |
| if (g->duration[rate] > MCS_DURATION(1, 0, 104)) |
| return 1600; |
| |
| /* |
| * If the rate is slower than single-stream MCS7, or if the max throughput |
| * rate success probability is less than 75%, limit A-MSDU to twice the usual |
| * data packet size |
| */ |
| if (g->duration[rate] > MCS_DURATION(1, 0, 260) || |
| (minstrel_ht_get_prob_ewma(mi, mi->max_tp_rate[0]) < |
| MINSTREL_FRAC(75, 100))) |
| return 3200; |
| |
| /* |
| * HT A-MPDU limits maximum MPDU size under BA agreement to 4095 bytes. |
| * Since aggregation sessions are started/stopped without txq flush, use |
| * the limit here to avoid the complexity of having to de-aggregate |
| * packets in the queue. |
| */ |
| if (!mi->sta->vht_cap.vht_supported) |
| return IEEE80211_MAX_MPDU_LEN_HT_BA; |
| |
| /* unlimited */ |
| return 0; |
| } |
| |
| static void |
| minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi) |
| { |
| struct ieee80211_sta_rates *rates; |
| int i = 0; |
| |
| rates = kzalloc(sizeof(*rates), GFP_ATOMIC); |
| if (!rates) |
| return; |
| |
| /* Start with max_tp_rate[0] */ |
| minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[0]); |
| |
| if (mp->hw->max_rates >= 3) { |
| /* At least 3 tx rates supported, use max_tp_rate[1] next */ |
| minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[1]); |
| } |
| |
| if (mp->hw->max_rates >= 2) { |
| /* |
| * At least 2 tx rates supported, use max_prob_rate next */ |
| minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate); |
| } |
| |
| mi->sta->max_rc_amsdu_len = minstrel_ht_get_max_amsdu_len(mi); |
| rates->rate[i].idx = -1; |
| rate_control_set_rates(mp->hw, mi->sta, rates); |
| } |
| |
| static inline int |
| minstrel_get_duration(int index) |
| { |
| const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES]; |
| return group->duration[index % MCS_GROUP_RATES]; |
| } |
| |
| static int |
| minstrel_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi) |
| { |
| struct minstrel_rate_stats *mrs; |
| struct minstrel_mcs_group_data *mg; |
| unsigned int sample_dur, sample_group, cur_max_tp_streams; |
| int tp_rate1, tp_rate2; |
| int sample_idx = 0; |
| |
| if (mi->sample_wait > 0) { |
| mi->sample_wait--; |
| return -1; |
| } |
| |
| if (!mi->sample_tries) |
| return -1; |
| |
| sample_group = mi->sample_group; |
| mg = &mi->groups[sample_group]; |
| sample_idx = sample_table[mg->column][mg->index]; |
| minstrel_set_next_sample_idx(mi); |
| |
| if (!(mi->supported[sample_group] & BIT(sample_idx))) |
| return -1; |
| |
| mrs = &mg->rates[sample_idx]; |
| sample_idx += sample_group * MCS_GROUP_RATES; |
| |
| /* Set tp_rate1, tp_rate2 to the highest / second highest max_tp_rate */ |
| if (minstrel_get_duration(mi->max_tp_rate[0]) > |
| minstrel_get_duration(mi->max_tp_rate[1])) { |
| tp_rate1 = mi->max_tp_rate[1]; |
| tp_rate2 = mi->max_tp_rate[0]; |
| } else { |
| tp_rate1 = mi->max_tp_rate[0]; |
| tp_rate2 = mi->max_tp_rate[1]; |
| } |
| |
| /* |
| * Sampling might add some overhead (RTS, no aggregation) |
| * to the frame. Hence, don't use sampling for the highest currently |
| * used highest throughput or probability rate. |
| */ |
| if (sample_idx == mi->max_tp_rate[0] || sample_idx == mi->max_prob_rate) |
| return -1; |
| |
| /* |
| * Do not sample if the probability is already higher than 95% |
| * to avoid wasting airtime. |
| */ |
| if (mrs->prob_ewma > MINSTREL_FRAC(95, 100)) |
| return -1; |
| |
| /* |
| * Make sure that lower rates get sampled only occasionally, |
| * if the link is working perfectly. |
| */ |
| |
| cur_max_tp_streams = minstrel_mcs_groups[tp_rate1 / |
| MCS_GROUP_RATES].streams; |
| sample_dur = minstrel_get_duration(sample_idx); |
| if (sample_dur >= minstrel_get_duration(tp_rate2) && |
| (cur_max_tp_streams - 1 < |
| minstrel_mcs_groups[sample_group].streams || |
| sample_dur >= minstrel_get_duration(mi->max_prob_rate))) { |
| if (mrs->sample_skipped < 20) |
| return -1; |
| |
| if (mi->sample_slow++ > 2) |
| return -1; |
| } |
| mi->sample_tries--; |
| |
| return sample_idx; |
| } |
| |
| static void |
| minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta, |
| struct ieee80211_tx_rate_control *txrc) |
| { |
| const struct mcs_group *sample_group; |
| struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb); |
| struct ieee80211_tx_rate *rate = &info->status.rates[0]; |
| struct minstrel_ht_sta_priv *msp = priv_sta; |
| struct minstrel_ht_sta *mi = &msp->ht; |
| struct minstrel_priv *mp = priv; |
| int sample_idx; |
| |
| if (rate_control_send_low(sta, priv_sta, txrc)) |
| return; |
| |
| if (!msp->is_ht) |
| return mac80211_minstrel.get_rate(priv, sta, &msp->legacy, txrc); |
| |
| if (!(info->flags & IEEE80211_TX_CTL_AMPDU) && |
| mi->max_prob_rate / MCS_GROUP_RATES != MINSTREL_CCK_GROUP) |
| minstrel_aggr_check(sta, txrc->skb); |
| |
| info->flags |= mi->tx_flags; |
| |
| #ifdef CONFIG_MAC80211_DEBUGFS |
| if (mp->fixed_rate_idx != -1) |
| return; |
| #endif |
| |
| /* Don't use EAPOL frames for sampling on non-mrr hw */ |
| if (mp->hw->max_rates == 1 && |
| (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO)) |
| sample_idx = -1; |
| else |
| sample_idx = minstrel_get_sample_rate(mp, mi); |
| |
| mi->total_packets++; |
| |
| /* wraparound */ |
| if (mi->total_packets == ~0) { |
| mi->total_packets = 0; |
| mi->sample_packets = 0; |
| } |
| |
| if (sample_idx < 0) |
| return; |
| |
| sample_group = &minstrel_mcs_groups[sample_idx / MCS_GROUP_RATES]; |
| info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE; |
| rate->count = 1; |
| |
| if (sample_idx / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) { |
| int idx = sample_idx % ARRAY_SIZE(mp->cck_rates); |
| rate->idx = mp->cck_rates[idx]; |
| } else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) { |
| ieee80211_rate_set_vht(rate, sample_idx % MCS_GROUP_RATES, |
| sample_group->streams); |
| } else { |
| rate->idx = sample_idx % MCS_GROUP_RATES + |
| (sample_group->streams - 1) * 8; |
| } |
| |
| rate->flags = sample_group->flags; |
| } |
| |
| static void |
| minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, |
| struct ieee80211_supported_band *sband, |
| struct ieee80211_sta *sta) |
| { |
| int i; |
| |
| if (sband->band != NL80211_BAND_2GHZ) |
| return; |
| |
| if (!ieee80211_hw_check(mp->hw, SUPPORTS_HT_CCK_RATES)) |
| return; |
| |
| mi->cck_supported = 0; |
| mi->cck_supported_short = 0; |
| for (i = 0; i < 4; i++) { |
| if (!rate_supported(sta, sband->band, mp->cck_rates[i])) |
| continue; |
| |
| mi->cck_supported |= BIT(i); |
| if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE) |
| mi->cck_supported_short |= BIT(i); |
| } |
| |
| mi->supported[MINSTREL_CCK_GROUP] = mi->cck_supported; |
| } |
| |
| static void |
| minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband, |
| struct cfg80211_chan_def *chandef, |
| struct ieee80211_sta *sta, void *priv_sta) |
| { |
| struct minstrel_priv *mp = priv; |
| struct minstrel_ht_sta_priv *msp = priv_sta; |
| struct minstrel_ht_sta *mi = &msp->ht; |
| struct ieee80211_mcs_info *mcs = &sta->ht_cap.mcs; |
| u16 sta_cap = sta->ht_cap.cap; |
| struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap; |
| struct sta_info *sinfo = container_of(sta, struct sta_info, sta); |
| int use_vht; |
| int n_supported = 0; |
| int ack_dur; |
| int stbc; |
| int i; |
| |
| /* fall back to the old minstrel for legacy stations */ |
| if (!sta->ht_cap.ht_supported) |
| goto use_legacy; |
| |
| BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB); |
| |
| #ifdef CONFIG_MAC80211_RC_MINSTREL_VHT |
| if (vht_cap->vht_supported) |
| use_vht = vht_cap->vht_mcs.tx_mcs_map != cpu_to_le16(~0); |
| else |
| #endif |
| use_vht = 0; |
| |
| msp->is_ht = true; |
| memset(mi, 0, sizeof(*mi)); |
| |
| mi->sta = sta; |
| mi->last_stats_update = jiffies; |
| |
| ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1, 0); |
| mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1, 0); |
| mi->overhead += ack_dur; |
| mi->overhead_rtscts = mi->overhead + 2 * ack_dur; |
| |
| mi->avg_ampdu_len = MINSTREL_FRAC(1, 1); |
| |
| /* When using MRR, sample more on the first attempt, without delay */ |
| if (mp->has_mrr) { |
| mi->sample_count = 16; |
| mi->sample_wait = 0; |
| } else { |
| mi->sample_count = 8; |
| mi->sample_wait = 8; |
| } |
| mi->sample_tries = 4; |
| |
| /* TODO tx_flags for vht - ATM the RC API is not fine-grained enough */ |
| if (!use_vht) { |
| stbc = (sta_cap & IEEE80211_HT_CAP_RX_STBC) >> |
| IEEE80211_HT_CAP_RX_STBC_SHIFT; |
| mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT; |
| |
| if (sta_cap & IEEE80211_HT_CAP_LDPC_CODING) |
| mi->tx_flags |= IEEE80211_TX_CTL_LDPC; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(mi->groups); i++) { |
| u32 gflags = minstrel_mcs_groups[i].flags; |
| int bw, nss; |
| |
| mi->supported[i] = 0; |
| if (i == MINSTREL_CCK_GROUP) { |
| minstrel_ht_update_cck(mp, mi, sband, sta); |
| continue; |
| } |
| |
| if (gflags & IEEE80211_TX_RC_SHORT_GI) { |
| if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) { |
| if (!(sta_cap & IEEE80211_HT_CAP_SGI_40)) |
| continue; |
| } else { |
| if (!(sta_cap & IEEE80211_HT_CAP_SGI_20)) |
| continue; |
| } |
| } |
| |
| if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH && |
| sta->bandwidth < IEEE80211_STA_RX_BW_40) |
| continue; |
| |
| nss = minstrel_mcs_groups[i].streams; |
| |
| /* Mark MCS > 7 as unsupported if STA is in static SMPS mode */ |
| if (sta->smps_mode == IEEE80211_SMPS_STATIC && nss > 1) |
| continue; |
| |
| /* HT rate */ |
| if (gflags & IEEE80211_TX_RC_MCS) { |
| #ifdef CONFIG_MAC80211_RC_MINSTREL_VHT |
| if (use_vht && minstrel_vht_only) |
| continue; |
| #endif |
| mi->supported[i] = mcs->rx_mask[nss - 1]; |
| if (mi->supported[i]) |
| n_supported++; |
| continue; |
| } |
| |
| /* VHT rate */ |
| if (!vht_cap->vht_supported || |
| WARN_ON(!(gflags & IEEE80211_TX_RC_VHT_MCS)) || |
| WARN_ON(gflags & IEEE80211_TX_RC_160_MHZ_WIDTH)) |
| continue; |
| |
| if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) { |
| if (sta->bandwidth < IEEE80211_STA_RX_BW_80 || |
| ((gflags & IEEE80211_TX_RC_SHORT_GI) && |
| !(vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80))) { |
| continue; |
| } |
| } |
| |
| if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) |
| bw = BW_40; |
| else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) |
| bw = BW_80; |
| else |
| bw = BW_20; |
| |
| mi->supported[i] = minstrel_get_valid_vht_rates(bw, nss, |
| vht_cap->vht_mcs.tx_mcs_map); |
| |
| if (mi->supported[i]) |
| n_supported++; |
| } |
| |
| if (!n_supported) |
| goto use_legacy; |
| |
| if (test_sta_flag(sinfo, WLAN_STA_SHORT_PREAMBLE)) |
| mi->cck_supported_short |= mi->cck_supported_short << 4; |
| |
| /* create an initial rate table with the lowest supported rates */ |
| minstrel_ht_update_stats(mp, mi); |
| minstrel_ht_update_rates(mp, mi); |
| |
| return; |
| |
| use_legacy: |
| msp->is_ht = false; |
| memset(&msp->legacy, 0, sizeof(msp->legacy)); |
| msp->legacy.r = msp->ratelist; |
| msp->legacy.sample_table = msp->sample_table; |
| return mac80211_minstrel.rate_init(priv, sband, chandef, sta, |
| &msp->legacy); |
| } |
| |
| static void |
| minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband, |
| struct cfg80211_chan_def *chandef, |
| struct ieee80211_sta *sta, void *priv_sta) |
| { |
| minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta); |
| } |
| |
| static void |
| minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband, |
| struct cfg80211_chan_def *chandef, |
| struct ieee80211_sta *sta, void *priv_sta, |
| u32 changed) |
| { |
| minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta); |
| } |
| |
| static void * |
| minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp) |
| { |
| struct ieee80211_supported_band *sband; |
| struct minstrel_ht_sta_priv *msp; |
| struct minstrel_priv *mp = priv; |
| struct ieee80211_hw *hw = mp->hw; |
| int max_rates = 0; |
| int i; |
| |
| for (i = 0; i < NUM_NL80211_BANDS; i++) { |
| sband = hw->wiphy->bands[i]; |
| if (sband && sband->n_bitrates > max_rates) |
| max_rates = sband->n_bitrates; |
| } |
| |
| msp = kzalloc(sizeof(*msp), gfp); |
| if (!msp) |
| return NULL; |
| |
| msp->ratelist = kzalloc(sizeof(struct minstrel_rate) * max_rates, gfp); |
| if (!msp->ratelist) |
| goto error; |
| |
| msp->sample_table = kmalloc(SAMPLE_COLUMNS * max_rates, gfp); |
| if (!msp->sample_table) |
| goto error1; |
| |
| return msp; |
| |
| error1: |
| kfree(msp->ratelist); |
| error: |
| kfree(msp); |
| return NULL; |
| } |
| |
| static void |
| minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta) |
| { |
| struct minstrel_ht_sta_priv *msp = priv_sta; |
| |
| kfree(msp->sample_table); |
| kfree(msp->ratelist); |
| kfree(msp); |
| } |
| |
| static void * |
| minstrel_ht_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir) |
| { |
| return mac80211_minstrel.alloc(hw, debugfsdir); |
| } |
| |
| static void |
| minstrel_ht_free(void *priv) |
| { |
| mac80211_minstrel.free(priv); |
| } |
| |
| static u32 minstrel_ht_get_expected_throughput(void *priv_sta) |
| { |
| struct minstrel_ht_sta_priv *msp = priv_sta; |
| struct minstrel_ht_sta *mi = &msp->ht; |
| int i, j, prob, tp_avg; |
| |
| if (!msp->is_ht) |
| return mac80211_minstrel.get_expected_throughput(priv_sta); |
| |
| i = mi->max_tp_rate[0] / MCS_GROUP_RATES; |
| j = mi->max_tp_rate[0] % MCS_GROUP_RATES; |
| prob = mi->groups[i].rates[j].prob_ewma; |
| |
| /* convert tp_avg from pkt per second in kbps */ |
| tp_avg = minstrel_ht_get_tp_avg(mi, i, j, prob) * 10; |
| tp_avg = tp_avg * AVG_PKT_SIZE * 8 / 1024; |
| |
| return tp_avg; |
| } |
| |
| static const struct rate_control_ops mac80211_minstrel_ht = { |
| .name = "minstrel_ht", |
| .tx_status_noskb = minstrel_ht_tx_status, |
| .get_rate = minstrel_ht_get_rate, |
| .rate_init = minstrel_ht_rate_init, |
| .rate_update = minstrel_ht_rate_update, |
| .alloc_sta = minstrel_ht_alloc_sta, |
| .free_sta = minstrel_ht_free_sta, |
| .alloc = minstrel_ht_alloc, |
| .free = minstrel_ht_free, |
| #ifdef CONFIG_MAC80211_DEBUGFS |
| .add_sta_debugfs = minstrel_ht_add_sta_debugfs, |
| .remove_sta_debugfs = minstrel_ht_remove_sta_debugfs, |
| #endif |
| .get_expected_throughput = minstrel_ht_get_expected_throughput, |
| }; |
| |
| |
| static void __init init_sample_table(void) |
| { |
| int col, i, new_idx; |
| u8 rnd[MCS_GROUP_RATES]; |
| |
| memset(sample_table, 0xff, sizeof(sample_table)); |
| for (col = 0; col < SAMPLE_COLUMNS; col++) { |
| prandom_bytes(rnd, sizeof(rnd)); |
| for (i = 0; i < MCS_GROUP_RATES; i++) { |
| new_idx = (i + rnd[i]) % MCS_GROUP_RATES; |
| while (sample_table[col][new_idx] != 0xff) |
| new_idx = (new_idx + 1) % MCS_GROUP_RATES; |
| |
| sample_table[col][new_idx] = i; |
| } |
| } |
| } |
| |
| int __init |
| rc80211_minstrel_ht_init(void) |
| { |
| init_sample_table(); |
| return ieee80211_rate_control_register(&mac80211_minstrel_ht); |
| } |
| |
| void |
| rc80211_minstrel_ht_exit(void) |
| { |
| ieee80211_rate_control_unregister(&mac80211_minstrel_ht); |
| } |