| /************************************************************ |
| * EFI GUID Partition Table handling |
| * |
| * http://www.uefi.org/specs/ |
| * http://www.intel.com/technology/efi/ |
| * |
| * efi.[ch] by Matt Domsch <Matt_Domsch@dell.com> |
| * Copyright 2000,2001,2002,2004 Dell Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| * |
| * TODO: |
| * |
| * Changelog: |
| * Mon August 5th, 2013 Davidlohr Bueso <davidlohr@hp.com> |
| * - detect hybrid MBRs, tighter pMBR checking & cleanups. |
| * |
| * Mon Nov 09 2004 Matt Domsch <Matt_Domsch@dell.com> |
| * - test for valid PMBR and valid PGPT before ever reading |
| * AGPT, allow override with 'gpt' kernel command line option. |
| * - check for first/last_usable_lba outside of size of disk |
| * |
| * Tue Mar 26 2002 Matt Domsch <Matt_Domsch@dell.com> |
| * - Ported to 2.5.7-pre1 and 2.5.7-dj2 |
| * - Applied patch to avoid fault in alternate header handling |
| * - cleaned up find_valid_gpt |
| * - On-disk structure and copy in memory is *always* LE now - |
| * swab fields as needed |
| * - remove print_gpt_header() |
| * - only use first max_p partition entries, to keep the kernel minor number |
| * and partition numbers tied. |
| * |
| * Mon Feb 04 2002 Matt Domsch <Matt_Domsch@dell.com> |
| * - Removed __PRIPTR_PREFIX - not being used |
| * |
| * Mon Jan 14 2002 Matt Domsch <Matt_Domsch@dell.com> |
| * - Ported to 2.5.2-pre11 + library crc32 patch Linus applied |
| * |
| * Thu Dec 6 2001 Matt Domsch <Matt_Domsch@dell.com> |
| * - Added compare_gpts(). |
| * - moved le_efi_guid_to_cpus() back into this file. GPT is the only |
| * thing that keeps EFI GUIDs on disk. |
| * - Changed gpt structure names and members to be simpler and more Linux-like. |
| * |
| * Wed Oct 17 2001 Matt Domsch <Matt_Domsch@dell.com> |
| * - Removed CONFIG_DEVFS_VOLUMES_UUID code entirely per Martin Wilck |
| * |
| * Wed Oct 10 2001 Matt Domsch <Matt_Domsch@dell.com> |
| * - Changed function comments to DocBook style per Andreas Dilger suggestion. |
| * |
| * Mon Oct 08 2001 Matt Domsch <Matt_Domsch@dell.com> |
| * - Change read_lba() to use the page cache per Al Viro's work. |
| * - print u64s properly on all architectures |
| * - fixed debug_printk(), now Dprintk() |
| * |
| * Mon Oct 01 2001 Matt Domsch <Matt_Domsch@dell.com> |
| * - Style cleanups |
| * - made most functions static |
| * - Endianness addition |
| * - remove test for second alternate header, as it's not per spec, |
| * and is unnecessary. There's now a method to read/write the last |
| * sector of an odd-sized disk from user space. No tools have ever |
| * been released which used this code, so it's effectively dead. |
| * - Per Asit Mallick of Intel, added a test for a valid PMBR. |
| * - Added kernel command line option 'gpt' to override valid PMBR test. |
| * |
| * Wed Jun 6 2001 Martin Wilck <Martin.Wilck@Fujitsu-Siemens.com> |
| * - added devfs volume UUID support (/dev/volumes/uuids) for |
| * mounting file systems by the partition GUID. |
| * |
| * Tue Dec 5 2000 Matt Domsch <Matt_Domsch@dell.com> |
| * - Moved crc32() to linux/lib, added efi_crc32(). |
| * |
| * Thu Nov 30 2000 Matt Domsch <Matt_Domsch@dell.com> |
| * - Replaced Intel's CRC32 function with an equivalent |
| * non-license-restricted version. |
| * |
| * Wed Oct 25 2000 Matt Domsch <Matt_Domsch@dell.com> |
| * - Fixed the last_lba() call to return the proper last block |
| * |
| * Thu Oct 12 2000 Matt Domsch <Matt_Domsch@dell.com> |
| * - Thanks to Andries Brouwer for his debugging assistance. |
| * - Code works, detects all the partitions. |
| * |
| ************************************************************/ |
| #include <linux/crc32.h> |
| #include <linux/ctype.h> |
| #include <linux/math64.h> |
| #include <linux/slab.h> |
| #include "check.h" |
| #include "efi.h" |
| |
| /* This allows a kernel command line option 'gpt' to override |
| * the test for invalid PMBR. Not __initdata because reloading |
| * the partition tables happens after init too. |
| */ |
| static int force_gpt; |
| static int __init |
| force_gpt_fn(char *str) |
| { |
| force_gpt = 1; |
| return 1; |
| } |
| __setup("gpt", force_gpt_fn); |
| |
| |
| /** |
| * efi_crc32() - EFI version of crc32 function |
| * @buf: buffer to calculate crc32 of |
| * @len - length of buf |
| * |
| * Description: Returns EFI-style CRC32 value for @buf |
| * |
| * This function uses the little endian Ethernet polynomial |
| * but seeds the function with ~0, and xor's with ~0 at the end. |
| * Note, the EFI Specification, v1.02, has a reference to |
| * Dr. Dobbs Journal, May 1994 (actually it's in May 1992). |
| */ |
| static inline u32 |
| efi_crc32(const void *buf, unsigned long len) |
| { |
| return (crc32(~0L, buf, len) ^ ~0L); |
| } |
| |
| /** |
| * last_lba(): return number of last logical block of device |
| * @bdev: block device |
| * |
| * Description: Returns last LBA value on success, 0 on error. |
| * This is stored (by sd and ide-geometry) in |
| * the part[0] entry for this disk, and is the number of |
| * physical sectors available on the disk. |
| */ |
| static u64 last_lba(struct block_device *bdev) |
| { |
| if (!bdev || !bdev->bd_inode) |
| return 0; |
| return div_u64(bdev->bd_inode->i_size, |
| bdev_logical_block_size(bdev)) - 1ULL; |
| } |
| |
| static inline int pmbr_part_valid(gpt_mbr_record *part) |
| { |
| if (part->os_type != EFI_PMBR_OSTYPE_EFI_GPT) |
| goto invalid; |
| |
| /* set to 0x00000001 (i.e., the LBA of the GPT Partition Header) */ |
| if (le32_to_cpu(part->starting_lba) != GPT_PRIMARY_PARTITION_TABLE_LBA) |
| goto invalid; |
| |
| return GPT_MBR_PROTECTIVE; |
| invalid: |
| return 0; |
| } |
| |
| /** |
| * is_pmbr_valid(): test Protective MBR for validity |
| * @mbr: pointer to a legacy mbr structure |
| * @total_sectors: amount of sectors in the device |
| * |
| * Description: Checks for a valid protective or hybrid |
| * master boot record (MBR). The validity of a pMBR depends |
| * on all of the following properties: |
| * 1) MSDOS signature is in the last two bytes of the MBR |
| * 2) One partition of type 0xEE is found |
| * |
| * In addition, a hybrid MBR will have up to three additional |
| * primary partitions, which point to the same space that's |
| * marked out by up to three GPT partitions. |
| * |
| * Returns 0 upon invalid MBR, or GPT_MBR_PROTECTIVE or |
| * GPT_MBR_HYBRID depending on the device layout. |
| */ |
| static int is_pmbr_valid(legacy_mbr *mbr, sector_t total_sectors) |
| { |
| uint32_t sz = 0; |
| int i, part = 0, ret = 0; /* invalid by default */ |
| |
| if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) |
| goto done; |
| |
| for (i = 0; i < 4; i++) { |
| ret = pmbr_part_valid(&mbr->partition_record[i]); |
| if (ret == GPT_MBR_PROTECTIVE) { |
| part = i; |
| /* |
| * Ok, we at least know that there's a protective MBR, |
| * now check if there are other partition types for |
| * hybrid MBR. |
| */ |
| goto check_hybrid; |
| } |
| } |
| |
| if (ret != GPT_MBR_PROTECTIVE) |
| goto done; |
| check_hybrid: |
| for (i = 0; i < 4; i++) |
| if ((mbr->partition_record[i].os_type != |
| EFI_PMBR_OSTYPE_EFI_GPT) && |
| (mbr->partition_record[i].os_type != 0x00)) |
| ret = GPT_MBR_HYBRID; |
| |
| /* |
| * Protective MBRs take up the lesser of the whole disk |
| * or 2 TiB (32bit LBA), ignoring the rest of the disk. |
| * Some partitioning programs, nonetheless, choose to set |
| * the size to the maximum 32-bit limitation, disregarding |
| * the disk size. |
| * |
| * Hybrid MBRs do not necessarily comply with this. |
| * |
| * Consider a bad value here to be a warning to support dd'ing |
| * an image from a smaller disk to a larger disk. |
| */ |
| if (ret == GPT_MBR_PROTECTIVE) { |
| sz = le32_to_cpu(mbr->partition_record[part].size_in_lba); |
| if (sz != (uint32_t) total_sectors - 1 && sz != 0xFFFFFFFF) |
| pr_debug("GPT: mbr size in lba (%u) different than whole disk (%u).\n", |
| sz, min_t(uint32_t, |
| total_sectors - 1, 0xFFFFFFFF)); |
| } |
| done: |
| return ret; |
| } |
| |
| /** |
| * read_lba(): Read bytes from disk, starting at given LBA |
| * @state |
| * @lba |
| * @buffer |
| * @size_t |
| * |
| * Description: Reads @count bytes from @state->bdev into @buffer. |
| * Returns number of bytes read on success, 0 on error. |
| */ |
| static size_t read_lba(struct parsed_partitions *state, |
| u64 lba, u8 *buffer, size_t count) |
| { |
| size_t totalreadcount = 0; |
| struct block_device *bdev = state->bdev; |
| sector_t n = lba * (bdev_logical_block_size(bdev) / 512); |
| |
| if (!buffer || lba > last_lba(bdev)) |
| return 0; |
| |
| while (count) { |
| int copied = 512; |
| Sector sect; |
| unsigned char *data = read_part_sector(state, n++, §); |
| if (!data) |
| break; |
| if (copied > count) |
| copied = count; |
| memcpy(buffer, data, copied); |
| put_dev_sector(sect); |
| buffer += copied; |
| totalreadcount +=copied; |
| count -= copied; |
| } |
| return totalreadcount; |
| } |
| |
| /** |
| * alloc_read_gpt_entries(): reads partition entries from disk |
| * @state |
| * @gpt - GPT header |
| * |
| * Description: Returns ptes on success, NULL on error. |
| * Allocates space for PTEs based on information found in @gpt. |
| * Notes: remember to free pte when you're done! |
| */ |
| static gpt_entry *alloc_read_gpt_entries(struct parsed_partitions *state, |
| gpt_header *gpt) |
| { |
| size_t count; |
| gpt_entry *pte; |
| |
| if (!gpt) |
| return NULL; |
| |
| count = le32_to_cpu(gpt->num_partition_entries) * |
| le32_to_cpu(gpt->sizeof_partition_entry); |
| if (!count) |
| return NULL; |
| pte = kmalloc(count, GFP_KERNEL); |
| if (!pte) |
| return NULL; |
| |
| if (read_lba(state, le64_to_cpu(gpt->partition_entry_lba), |
| (u8 *) pte, count) < count) { |
| kfree(pte); |
| pte=NULL; |
| return NULL; |
| } |
| return pte; |
| } |
| |
| /** |
| * alloc_read_gpt_header(): Allocates GPT header, reads into it from disk |
| * @state |
| * @lba is the Logical Block Address of the partition table |
| * |
| * Description: returns GPT header on success, NULL on error. Allocates |
| * and fills a GPT header starting at @ from @state->bdev. |
| * Note: remember to free gpt when finished with it. |
| */ |
| static gpt_header *alloc_read_gpt_header(struct parsed_partitions *state, |
| u64 lba) |
| { |
| gpt_header *gpt; |
| unsigned ssz = bdev_logical_block_size(state->bdev); |
| |
| gpt = kmalloc(ssz, GFP_KERNEL); |
| if (!gpt) |
| return NULL; |
| |
| if (read_lba(state, lba, (u8 *) gpt, ssz) < ssz) { |
| kfree(gpt); |
| gpt=NULL; |
| return NULL; |
| } |
| |
| return gpt; |
| } |
| |
| /** |
| * is_gpt_valid() - tests one GPT header and PTEs for validity |
| * @state |
| * @lba is the logical block address of the GPT header to test |
| * @gpt is a GPT header ptr, filled on return. |
| * @ptes is a PTEs ptr, filled on return. |
| * |
| * Description: returns 1 if valid, 0 on error. |
| * If valid, returns pointers to newly allocated GPT header and PTEs. |
| */ |
| static int is_gpt_valid(struct parsed_partitions *state, u64 lba, |
| gpt_header **gpt, gpt_entry **ptes) |
| { |
| u32 crc, origcrc; |
| u64 lastlba; |
| |
| if (!ptes) |
| return 0; |
| if (!(*gpt = alloc_read_gpt_header(state, lba))) |
| return 0; |
| |
| /* Check the GUID Partition Table signature */ |
| if (le64_to_cpu((*gpt)->signature) != GPT_HEADER_SIGNATURE) { |
| pr_debug("GUID Partition Table Header signature is wrong:" |
| "%lld != %lld\n", |
| (unsigned long long)le64_to_cpu((*gpt)->signature), |
| (unsigned long long)GPT_HEADER_SIGNATURE); |
| goto fail; |
| } |
| |
| /* Check the GUID Partition Table header size is too big */ |
| if (le32_to_cpu((*gpt)->header_size) > |
| bdev_logical_block_size(state->bdev)) { |
| pr_debug("GUID Partition Table Header size is too large: %u > %u\n", |
| le32_to_cpu((*gpt)->header_size), |
| bdev_logical_block_size(state->bdev)); |
| goto fail; |
| } |
| |
| /* Check the GUID Partition Table header size is too small */ |
| if (le32_to_cpu((*gpt)->header_size) < sizeof(gpt_header)) { |
| pr_debug("GUID Partition Table Header size is too small: %u < %zu\n", |
| le32_to_cpu((*gpt)->header_size), |
| sizeof(gpt_header)); |
| goto fail; |
| } |
| |
| /* Check the GUID Partition Table CRC */ |
| origcrc = le32_to_cpu((*gpt)->header_crc32); |
| (*gpt)->header_crc32 = 0; |
| crc = efi_crc32((const unsigned char *) (*gpt), le32_to_cpu((*gpt)->header_size)); |
| |
| if (crc != origcrc) { |
| pr_debug("GUID Partition Table Header CRC is wrong: %x != %x\n", |
| crc, origcrc); |
| goto fail; |
| } |
| (*gpt)->header_crc32 = cpu_to_le32(origcrc); |
| |
| /* Check that the my_lba entry points to the LBA that contains |
| * the GUID Partition Table */ |
| if (le64_to_cpu((*gpt)->my_lba) != lba) { |
| pr_debug("GPT my_lba incorrect: %lld != %lld\n", |
| (unsigned long long)le64_to_cpu((*gpt)->my_lba), |
| (unsigned long long)lba); |
| goto fail; |
| } |
| |
| /* Check the first_usable_lba and last_usable_lba are |
| * within the disk. |
| */ |
| lastlba = last_lba(state->bdev); |
| if (le64_to_cpu((*gpt)->first_usable_lba) > lastlba) { |
| pr_debug("GPT: first_usable_lba incorrect: %lld > %lld\n", |
| (unsigned long long)le64_to_cpu((*gpt)->first_usable_lba), |
| (unsigned long long)lastlba); |
| goto fail; |
| } |
| if (le64_to_cpu((*gpt)->last_usable_lba) > lastlba) { |
| pr_debug("GPT: last_usable_lba incorrect: %lld > %lld\n", |
| (unsigned long long)le64_to_cpu((*gpt)->last_usable_lba), |
| (unsigned long long)lastlba); |
| goto fail; |
| } |
| if (le64_to_cpu((*gpt)->last_usable_lba) < le64_to_cpu((*gpt)->first_usable_lba)) { |
| pr_debug("GPT: last_usable_lba incorrect: %lld > %lld\n", |
| (unsigned long long)le64_to_cpu((*gpt)->last_usable_lba), |
| (unsigned long long)le64_to_cpu((*gpt)->first_usable_lba)); |
| goto fail; |
| } |
| /* Check that sizeof_partition_entry has the correct value */ |
| if (le32_to_cpu((*gpt)->sizeof_partition_entry) != sizeof(gpt_entry)) { |
| pr_debug("GUID Partitition Entry Size check failed.\n"); |
| goto fail; |
| } |
| |
| if (!(*ptes = alloc_read_gpt_entries(state, *gpt))) |
| goto fail; |
| |
| /* Check the GUID Partition Entry Array CRC */ |
| crc = efi_crc32((const unsigned char *) (*ptes), |
| le32_to_cpu((*gpt)->num_partition_entries) * |
| le32_to_cpu((*gpt)->sizeof_partition_entry)); |
| |
| if (crc != le32_to_cpu((*gpt)->partition_entry_array_crc32)) { |
| pr_debug("GUID Partitition Entry Array CRC check failed.\n"); |
| goto fail_ptes; |
| } |
| |
| /* We're done, all's well */ |
| return 1; |
| |
| fail_ptes: |
| kfree(*ptes); |
| *ptes = NULL; |
| fail: |
| kfree(*gpt); |
| *gpt = NULL; |
| return 0; |
| } |
| |
| /** |
| * is_pte_valid() - tests one PTE for validity |
| * @pte is the pte to check |
| * @lastlba is last lba of the disk |
| * |
| * Description: returns 1 if valid, 0 on error. |
| */ |
| static inline int |
| is_pte_valid(const gpt_entry *pte, const u64 lastlba) |
| { |
| if ((!efi_guidcmp(pte->partition_type_guid, NULL_GUID)) || |
| le64_to_cpu(pte->starting_lba) > lastlba || |
| le64_to_cpu(pte->ending_lba) > lastlba) |
| return 0; |
| return 1; |
| } |
| |
| /** |
| * compare_gpts() - Search disk for valid GPT headers and PTEs |
| * @pgpt is the primary GPT header |
| * @agpt is the alternate GPT header |
| * @lastlba is the last LBA number |
| * Description: Returns nothing. Sanity checks pgpt and agpt fields |
| * and prints warnings on discrepancies. |
| * |
| */ |
| static void |
| compare_gpts(gpt_header *pgpt, gpt_header *agpt, u64 lastlba) |
| { |
| int error_found = 0; |
| if (!pgpt || !agpt) |
| return; |
| if (le64_to_cpu(pgpt->my_lba) != le64_to_cpu(agpt->alternate_lba)) { |
| pr_warn("GPT:Primary header LBA != Alt. header alternate_lba\n"); |
| pr_warn("GPT:%lld != %lld\n", |
| (unsigned long long)le64_to_cpu(pgpt->my_lba), |
| (unsigned long long)le64_to_cpu(agpt->alternate_lba)); |
| error_found++; |
| } |
| if (le64_to_cpu(pgpt->alternate_lba) != le64_to_cpu(agpt->my_lba)) { |
| pr_warn("GPT:Primary header alternate_lba != Alt. header my_lba\n"); |
| pr_warn("GPT:%lld != %lld\n", |
| (unsigned long long)le64_to_cpu(pgpt->alternate_lba), |
| (unsigned long long)le64_to_cpu(agpt->my_lba)); |
| error_found++; |
| } |
| if (le64_to_cpu(pgpt->first_usable_lba) != |
| le64_to_cpu(agpt->first_usable_lba)) { |
| pr_warn("GPT:first_usable_lbas don't match.\n"); |
| pr_warn("GPT:%lld != %lld\n", |
| (unsigned long long)le64_to_cpu(pgpt->first_usable_lba), |
| (unsigned long long)le64_to_cpu(agpt->first_usable_lba)); |
| error_found++; |
| } |
| if (le64_to_cpu(pgpt->last_usable_lba) != |
| le64_to_cpu(agpt->last_usable_lba)) { |
| pr_warn("GPT:last_usable_lbas don't match.\n"); |
| pr_warn("GPT:%lld != %lld\n", |
| (unsigned long long)le64_to_cpu(pgpt->last_usable_lba), |
| (unsigned long long)le64_to_cpu(agpt->last_usable_lba)); |
| error_found++; |
| } |
| if (efi_guidcmp(pgpt->disk_guid, agpt->disk_guid)) { |
| pr_warn("GPT:disk_guids don't match.\n"); |
| error_found++; |
| } |
| if (le32_to_cpu(pgpt->num_partition_entries) != |
| le32_to_cpu(agpt->num_partition_entries)) { |
| pr_warn("GPT:num_partition_entries don't match: " |
| "0x%x != 0x%x\n", |
| le32_to_cpu(pgpt->num_partition_entries), |
| le32_to_cpu(agpt->num_partition_entries)); |
| error_found++; |
| } |
| if (le32_to_cpu(pgpt->sizeof_partition_entry) != |
| le32_to_cpu(agpt->sizeof_partition_entry)) { |
| pr_warn("GPT:sizeof_partition_entry values don't match: " |
| "0x%x != 0x%x\n", |
| le32_to_cpu(pgpt->sizeof_partition_entry), |
| le32_to_cpu(agpt->sizeof_partition_entry)); |
| error_found++; |
| } |
| if (le32_to_cpu(pgpt->partition_entry_array_crc32) != |
| le32_to_cpu(agpt->partition_entry_array_crc32)) { |
| pr_warn("GPT:partition_entry_array_crc32 values don't match: " |
| "0x%x != 0x%x\n", |
| le32_to_cpu(pgpt->partition_entry_array_crc32), |
| le32_to_cpu(agpt->partition_entry_array_crc32)); |
| error_found++; |
| } |
| if (le64_to_cpu(pgpt->alternate_lba) != lastlba) { |
| pr_warn("GPT:Primary header thinks Alt. header is not at the end of the disk.\n"); |
| pr_warn("GPT:%lld != %lld\n", |
| (unsigned long long)le64_to_cpu(pgpt->alternate_lba), |
| (unsigned long long)lastlba); |
| error_found++; |
| } |
| |
| if (le64_to_cpu(agpt->my_lba) != lastlba) { |
| pr_warn("GPT:Alternate GPT header not at the end of the disk.\n"); |
| pr_warn("GPT:%lld != %lld\n", |
| (unsigned long long)le64_to_cpu(agpt->my_lba), |
| (unsigned long long)lastlba); |
| error_found++; |
| } |
| |
| if (error_found) |
| pr_warn("GPT: Use GNU Parted to correct GPT errors.\n"); |
| return; |
| } |
| |
| /** |
| * find_valid_gpt() - Search disk for valid GPT headers and PTEs |
| * @state |
| * @gpt is a GPT header ptr, filled on return. |
| * @ptes is a PTEs ptr, filled on return. |
| * Description: Returns 1 if valid, 0 on error. |
| * If valid, returns pointers to newly allocated GPT header and PTEs. |
| * Validity depends on PMBR being valid (or being overridden by the |
| * 'gpt' kernel command line option) and finding either the Primary |
| * GPT header and PTEs valid, or the Alternate GPT header and PTEs |
| * valid. If the Primary GPT header is not valid, the Alternate GPT header |
| * is not checked unless the 'gpt' kernel command line option is passed. |
| * This protects against devices which misreport their size, and forces |
| * the user to decide to use the Alternate GPT. |
| */ |
| static int find_valid_gpt(struct parsed_partitions *state, gpt_header **gpt, |
| gpt_entry **ptes) |
| { |
| int good_pgpt = 0, good_agpt = 0, good_pmbr = 0; |
| gpt_header *pgpt = NULL, *agpt = NULL; |
| gpt_entry *pptes = NULL, *aptes = NULL; |
| legacy_mbr *legacymbr; |
| sector_t total_sectors = i_size_read(state->bdev->bd_inode) >> 9; |
| u64 lastlba; |
| |
| if (!ptes) |
| return 0; |
| |
| lastlba = last_lba(state->bdev); |
| if (!force_gpt) { |
| /* This will be added to the EFI Spec. per Intel after v1.02. */ |
| legacymbr = kzalloc(sizeof(*legacymbr), GFP_KERNEL); |
| if (!legacymbr) |
| goto fail; |
| |
| read_lba(state, 0, (u8 *)legacymbr, sizeof(*legacymbr)); |
| good_pmbr = is_pmbr_valid(legacymbr, total_sectors); |
| kfree(legacymbr); |
| |
| if (!good_pmbr) |
| goto fail; |
| |
| pr_debug("Device has a %s MBR\n", |
| good_pmbr == GPT_MBR_PROTECTIVE ? |
| "protective" : "hybrid"); |
| } |
| |
| good_pgpt = is_gpt_valid(state, GPT_PRIMARY_PARTITION_TABLE_LBA, |
| &pgpt, &pptes); |
| if (good_pgpt) |
| good_agpt = is_gpt_valid(state, |
| le64_to_cpu(pgpt->alternate_lba), |
| &agpt, &aptes); |
| if (!good_agpt && force_gpt) |
| good_agpt = is_gpt_valid(state, lastlba, &agpt, &aptes); |
| |
| /* The obviously unsuccessful case */ |
| if (!good_pgpt && !good_agpt) |
| goto fail; |
| |
| compare_gpts(pgpt, agpt, lastlba); |
| |
| /* The good cases */ |
| if (good_pgpt) { |
| *gpt = pgpt; |
| *ptes = pptes; |
| kfree(agpt); |
| kfree(aptes); |
| if (!good_agpt) |
| pr_warn("Alternate GPT is invalid, using primary GPT.\n"); |
| return 1; |
| } |
| else if (good_agpt) { |
| *gpt = agpt; |
| *ptes = aptes; |
| kfree(pgpt); |
| kfree(pptes); |
| pr_warn("Primary GPT is invalid, using alternate GPT.\n"); |
| return 1; |
| } |
| |
| fail: |
| kfree(pgpt); |
| kfree(agpt); |
| kfree(pptes); |
| kfree(aptes); |
| *gpt = NULL; |
| *ptes = NULL; |
| return 0; |
| } |
| |
| /** |
| * efi_partition(struct parsed_partitions *state) |
| * @state |
| * |
| * Description: called from check.c, if the disk contains GPT |
| * partitions, sets up partition entries in the kernel. |
| * |
| * If the first block on the disk is a legacy MBR, |
| * it will get handled by msdos_partition(). |
| * If it's a Protective MBR, we'll handle it here. |
| * |
| * We do not create a Linux partition for GPT, but |
| * only for the actual data partitions. |
| * Returns: |
| * -1 if unable to read the partition table |
| * 0 if this isn't our partition table |
| * 1 if successful |
| * |
| */ |
| int efi_partition(struct parsed_partitions *state) |
| { |
| gpt_header *gpt = NULL; |
| gpt_entry *ptes = NULL; |
| u32 i; |
| unsigned ssz = bdev_logical_block_size(state->bdev) / 512; |
| |
| if (!find_valid_gpt(state, &gpt, &ptes) || !gpt || !ptes) { |
| kfree(gpt); |
| kfree(ptes); |
| return 0; |
| } |
| |
| pr_debug("GUID Partition Table is valid! Yea!\n"); |
| |
| for (i = 0; i < le32_to_cpu(gpt->num_partition_entries) && i < state->limit-1; i++) { |
| struct partition_meta_info *info; |
| unsigned label_count = 0; |
| unsigned label_max; |
| u64 start = le64_to_cpu(ptes[i].starting_lba); |
| u64 size = le64_to_cpu(ptes[i].ending_lba) - |
| le64_to_cpu(ptes[i].starting_lba) + 1ULL; |
| |
| if (!is_pte_valid(&ptes[i], last_lba(state->bdev))) |
| continue; |
| |
| put_partition(state, i+1, start * ssz, size * ssz); |
| |
| /* If this is a RAID volume, tell md */ |
| if (!efi_guidcmp(ptes[i].partition_type_guid, PARTITION_LINUX_RAID_GUID)) |
| state->parts[i + 1].flags = ADDPART_FLAG_RAID; |
| |
| info = &state->parts[i + 1].info; |
| efi_guid_unparse(&ptes[i].unique_partition_guid, info->uuid); |
| |
| /* Naively convert UTF16-LE to 7 bits. */ |
| label_max = min(sizeof(info->volname) - 1, |
| sizeof(ptes[i].partition_name)); |
| info->volname[label_max] = 0; |
| while (label_count < label_max) { |
| u8 c = ptes[i].partition_name[label_count] & 0xff; |
| if (c && !isprint(c)) |
| c = '!'; |
| info->volname[label_count] = c; |
| label_count++; |
| } |
| state->parts[i + 1].has_info = true; |
| } |
| kfree(ptes); |
| kfree(gpt); |
| strlcat(state->pp_buf, "\n", PAGE_SIZE); |
| return 1; |
| } |