blob: dcae14aef3763cd416c2f6e3d807d44e7c5b4624 [file] [log] [blame]
/*
* Stuff used by all variants of the driver
*
* Copyright (c) 2001 by Stefan Eilers,
* Hansjoerg Lipp <hjlipp@web.de>,
* Tilman Schmidt <tilman@imap.cc>.
*
* =====================================================================
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
* =====================================================================
*/
#include <linux/export.h>
#include "gigaset.h"
/* ========================================================== */
/* bit masks for pending commands */
#define PC_DIAL 0x001
#define PC_HUP 0x002
#define PC_INIT 0x004
#define PC_DLE0 0x008
#define PC_DLE1 0x010
#define PC_SHUTDOWN 0x020
#define PC_ACCEPT 0x040
#define PC_CID 0x080
#define PC_NOCID 0x100
#define PC_CIDMODE 0x200
#define PC_UMMODE 0x400
/* types of modem responses */
#define RT_NOTHING 0
#define RT_ZSAU 1
#define RT_RING 2
#define RT_NUMBER 3
#define RT_STRING 4
#define RT_ZCAU 6
/* Possible ASCII responses */
#define RSP_OK 0
#define RSP_ERROR 1
#define RSP_ZGCI 3
#define RSP_RING 4
#define RSP_ZVLS 5
#define RSP_ZCAU 6
/* responses with values to store in at_state */
/* - numeric */
#define RSP_VAR 100
#define RSP_ZSAU (RSP_VAR + VAR_ZSAU)
#define RSP_ZDLE (RSP_VAR + VAR_ZDLE)
#define RSP_ZCTP (RSP_VAR + VAR_ZCTP)
/* - string */
#define RSP_STR (RSP_VAR + VAR_NUM)
#define RSP_NMBR (RSP_STR + STR_NMBR)
#define RSP_ZCPN (RSP_STR + STR_ZCPN)
#define RSP_ZCON (RSP_STR + STR_ZCON)
#define RSP_ZBC (RSP_STR + STR_ZBC)
#define RSP_ZHLC (RSP_STR + STR_ZHLC)
#define RSP_WRONG_CID -2 /* unknown cid in cmd */
#define RSP_INVAL -6 /* invalid response */
#define RSP_NODEV -9 /* device not connected */
#define RSP_NONE -19
#define RSP_STRING -20
#define RSP_NULL -21
#define RSP_INIT -27
#define RSP_ANY -26
#define RSP_LAST -28
/* actions for process_response */
#define ACT_NOTHING 0
#define ACT_SETDLE1 1
#define ACT_SETDLE0 2
#define ACT_FAILINIT 3
#define ACT_HUPMODEM 4
#define ACT_CONFIGMODE 5
#define ACT_INIT 6
#define ACT_DLE0 7
#define ACT_DLE1 8
#define ACT_FAILDLE0 9
#define ACT_FAILDLE1 10
#define ACT_RING 11
#define ACT_CID 12
#define ACT_FAILCID 13
#define ACT_SDOWN 14
#define ACT_FAILSDOWN 15
#define ACT_DEBUG 16
#define ACT_WARN 17
#define ACT_DIALING 18
#define ACT_ABORTDIAL 19
#define ACT_DISCONNECT 20
#define ACT_CONNECT 21
#define ACT_REMOTEREJECT 22
#define ACT_CONNTIMEOUT 23
#define ACT_REMOTEHUP 24
#define ACT_ABORTHUP 25
#define ACT_ICALL 26
#define ACT_ACCEPTED 27
#define ACT_ABORTACCEPT 28
#define ACT_TIMEOUT 29
#define ACT_GETSTRING 30
#define ACT_SETVER 31
#define ACT_FAILVER 32
#define ACT_GOTVER 33
#define ACT_TEST 34
#define ACT_ERROR 35
#define ACT_ABORTCID 36
#define ACT_ZCAU 37
#define ACT_NOTIFY_BC_DOWN 38
#define ACT_NOTIFY_BC_UP 39
#define ACT_DIAL 40
#define ACT_ACCEPT 41
#define ACT_HUP 43
#define ACT_IF_LOCK 44
#define ACT_START 45
#define ACT_STOP 46
#define ACT_FAKEDLE0 47
#define ACT_FAKEHUP 48
#define ACT_FAKESDOWN 49
#define ACT_SHUTDOWN 50
#define ACT_PROC_CIDMODE 51
#define ACT_UMODESET 52
#define ACT_FAILUMODE 53
#define ACT_CMODESET 54
#define ACT_FAILCMODE 55
#define ACT_IF_VER 56
#define ACT_CMD 100
/* at command sequences */
#define SEQ_NONE 0
#define SEQ_INIT 100
#define SEQ_DLE0 200
#define SEQ_DLE1 250
#define SEQ_CID 300
#define SEQ_NOCID 350
#define SEQ_HUP 400
#define SEQ_DIAL 600
#define SEQ_ACCEPT 720
#define SEQ_SHUTDOWN 500
#define SEQ_CIDMODE 10
#define SEQ_UMMODE 11
/* 100: init, 200: dle0, 250:dle1, 300: get cid (dial), 350: "hup" (no cid),
* 400: hup, 500: reset, 600: dial, 700: ring */
struct reply_t gigaset_tab_nocid[] =
{
/* resp_code, min_ConState, max_ConState, parameter, new_ConState, timeout,
* action, command */
/* initialize device, set cid mode if possible */
{RSP_INIT, -1, -1, SEQ_INIT, 100, 1, {ACT_TIMEOUT} },
{EV_TIMEOUT, 100, 100, -1, 101, 3, {0}, "Z\r"},
{RSP_OK, 101, 103, -1, 120, 5, {ACT_GETSTRING},
"+GMR\r"},
{EV_TIMEOUT, 101, 101, -1, 102, 5, {0}, "Z\r"},
{RSP_ERROR, 101, 101, -1, 102, 5, {0}, "Z\r"},
{EV_TIMEOUT, 102, 102, -1, 108, 5, {ACT_SETDLE1},
"^SDLE=0\r"},
{RSP_OK, 108, 108, -1, 104, -1},
{RSP_ZDLE, 104, 104, 0, 103, 5, {0}, "Z\r"},
{EV_TIMEOUT, 104, 104, -1, 0, 0, {ACT_FAILINIT} },
{RSP_ERROR, 108, 108, -1, 0, 0, {ACT_FAILINIT} },
{EV_TIMEOUT, 108, 108, -1, 105, 2, {ACT_SETDLE0,
ACT_HUPMODEM,
ACT_TIMEOUT} },
{EV_TIMEOUT, 105, 105, -1, 103, 5, {0}, "Z\r"},
{RSP_ERROR, 102, 102, -1, 107, 5, {0}, "^GETPRE\r"},
{RSP_OK, 107, 107, -1, 0, 0, {ACT_CONFIGMODE} },
{RSP_ERROR, 107, 107, -1, 0, 0, {ACT_FAILINIT} },
{EV_TIMEOUT, 107, 107, -1, 0, 0, {ACT_FAILINIT} },
{RSP_ERROR, 103, 103, -1, 0, 0, {ACT_FAILINIT} },
{EV_TIMEOUT, 103, 103, -1, 0, 0, {ACT_FAILINIT} },
{RSP_STRING, 120, 120, -1, 121, -1, {ACT_SETVER} },
{EV_TIMEOUT, 120, 121, -1, 0, 0, {ACT_FAILVER,
ACT_INIT} },
{RSP_ERROR, 120, 121, -1, 0, 0, {ACT_FAILVER,
ACT_INIT} },
{RSP_OK, 121, 121, -1, 0, 0, {ACT_GOTVER,
ACT_INIT} },
{RSP_NONE, 121, 121, -1, 120, 0, {ACT_GETSTRING} },
/* leave dle mode */
{RSP_INIT, 0, 0, SEQ_DLE0, 201, 5, {0}, "^SDLE=0\r"},
{RSP_OK, 201, 201, -1, 202, -1},
{RSP_ZDLE, 202, 202, 0, 0, 0, {ACT_DLE0} },
{RSP_NODEV, 200, 249, -1, 0, 0, {ACT_FAKEDLE0} },
{RSP_ERROR, 200, 249, -1, 0, 0, {ACT_FAILDLE0} },
{EV_TIMEOUT, 200, 249, -1, 0, 0, {ACT_FAILDLE0} },
/* enter dle mode */
{RSP_INIT, 0, 0, SEQ_DLE1, 251, 5, {0}, "^SDLE=1\r"},
{RSP_OK, 251, 251, -1, 252, -1},
{RSP_ZDLE, 252, 252, 1, 0, 0, {ACT_DLE1} },
{RSP_ERROR, 250, 299, -1, 0, 0, {ACT_FAILDLE1} },
{EV_TIMEOUT, 250, 299, -1, 0, 0, {ACT_FAILDLE1} },
/* incoming call */
{RSP_RING, -1, -1, -1, -1, -1, {ACT_RING} },
/* get cid */
{RSP_INIT, 0, 0, SEQ_CID, 301, 5, {0}, "^SGCI?\r"},
{RSP_OK, 301, 301, -1, 302, -1},
{RSP_ZGCI, 302, 302, -1, 0, 0, {ACT_CID} },
{RSP_ERROR, 301, 349, -1, 0, 0, {ACT_FAILCID} },
{EV_TIMEOUT, 301, 349, -1, 0, 0, {ACT_FAILCID} },
/* enter cid mode */
{RSP_INIT, 0, 0, SEQ_CIDMODE, 150, 5, {0}, "^SGCI=1\r"},
{RSP_OK, 150, 150, -1, 0, 0, {ACT_CMODESET} },
{RSP_ERROR, 150, 150, -1, 0, 0, {ACT_FAILCMODE} },
{EV_TIMEOUT, 150, 150, -1, 0, 0, {ACT_FAILCMODE} },
/* leave cid mode */
{RSP_INIT, 0, 0, SEQ_UMMODE, 160, 5, {0}, "Z\r"},
{RSP_OK, 160, 160, -1, 0, 0, {ACT_UMODESET} },
{RSP_ERROR, 160, 160, -1, 0, 0, {ACT_FAILUMODE} },
{EV_TIMEOUT, 160, 160, -1, 0, 0, {ACT_FAILUMODE} },
/* abort getting cid */
{RSP_INIT, 0, 0, SEQ_NOCID, 0, 0, {ACT_ABORTCID} },
/* reset */
{RSP_INIT, 0, 0, SEQ_SHUTDOWN, 504, 5, {0}, "Z\r"},
{RSP_OK, 504, 504, -1, 0, 0, {ACT_SDOWN} },
{RSP_ERROR, 501, 599, -1, 0, 0, {ACT_FAILSDOWN} },
{EV_TIMEOUT, 501, 599, -1, 0, 0, {ACT_FAILSDOWN} },
{RSP_NODEV, 501, 599, -1, 0, 0, {ACT_FAKESDOWN} },
{EV_PROC_CIDMODE, -1, -1, -1, -1, -1, {ACT_PROC_CIDMODE} },
{EV_IF_LOCK, -1, -1, -1, -1, -1, {ACT_IF_LOCK} },
{EV_IF_VER, -1, -1, -1, -1, -1, {ACT_IF_VER} },
{EV_START, -1, -1, -1, -1, -1, {ACT_START} },
{EV_STOP, -1, -1, -1, -1, -1, {ACT_STOP} },
{EV_SHUTDOWN, -1, -1, -1, -1, -1, {ACT_SHUTDOWN} },
/* misc. */
{RSP_ERROR, -1, -1, -1, -1, -1, {ACT_ERROR} },
{RSP_ZCAU, -1, -1, -1, -1, -1, {ACT_ZCAU} },
{RSP_NONE, -1, -1, -1, -1, -1, {ACT_DEBUG} },
{RSP_ANY, -1, -1, -1, -1, -1, {ACT_WARN} },
{RSP_LAST}
};
/* 600: start dialing, 650: dial in progress, 800: connection is up, 700: ring,
* 400: hup, 750: accepted icall */
struct reply_t gigaset_tab_cid[] =
{
/* resp_code, min_ConState, max_ConState, parameter, new_ConState, timeout,
* action, command */
/* dial */
{EV_DIAL, -1, -1, -1, -1, -1, {ACT_DIAL} },
{RSP_INIT, 0, 0, SEQ_DIAL, 601, 5, {ACT_CMD + AT_BC} },
{RSP_OK, 601, 601, -1, 603, 5, {ACT_CMD + AT_PROTO} },
{RSP_OK, 603, 603, -1, 604, 5, {ACT_CMD + AT_TYPE} },
{RSP_OK, 604, 604, -1, 605, 5, {ACT_CMD + AT_MSN} },
{RSP_NULL, 605, 605, -1, 606, 5, {ACT_CMD + AT_CLIP} },
{RSP_OK, 605, 605, -1, 606, 5, {ACT_CMD + AT_CLIP} },
{RSP_NULL, 606, 606, -1, 607, 5, {ACT_CMD + AT_ISO} },
{RSP_OK, 606, 606, -1, 607, 5, {ACT_CMD + AT_ISO} },
{RSP_OK, 607, 607, -1, 608, 5, {0}, "+VLS=17\r"},
{RSP_OK, 608, 608, -1, 609, -1},
{RSP_ZSAU, 609, 609, ZSAU_PROCEEDING, 610, 5, {ACT_CMD + AT_DIAL} },
{RSP_OK, 610, 610, -1, 650, 0, {ACT_DIALING} },
{RSP_ERROR, 601, 610, -1, 0, 0, {ACT_ABORTDIAL} },
{EV_TIMEOUT, 601, 610, -1, 0, 0, {ACT_ABORTDIAL} },
/* optional dialing responses */
{EV_BC_OPEN, 650, 650, -1, 651, -1},
{RSP_ZVLS, 609, 651, 17, -1, -1, {ACT_DEBUG} },
{RSP_ZCTP, 610, 651, -1, -1, -1, {ACT_DEBUG} },
{RSP_ZCPN, 610, 651, -1, -1, -1, {ACT_DEBUG} },
{RSP_ZSAU, 650, 651, ZSAU_CALL_DELIVERED, -1, -1, {ACT_DEBUG} },
/* connect */
{RSP_ZSAU, 650, 650, ZSAU_ACTIVE, 800, -1, {ACT_CONNECT} },
{RSP_ZSAU, 651, 651, ZSAU_ACTIVE, 800, -1, {ACT_CONNECT,
ACT_NOTIFY_BC_UP} },
{RSP_ZSAU, 750, 750, ZSAU_ACTIVE, 800, -1, {ACT_CONNECT} },
{RSP_ZSAU, 751, 751, ZSAU_ACTIVE, 800, -1, {ACT_CONNECT,
ACT_NOTIFY_BC_UP} },
{EV_BC_OPEN, 800, 800, -1, 800, -1, {ACT_NOTIFY_BC_UP} },
/* remote hangup */
{RSP_ZSAU, 650, 651, ZSAU_DISCONNECT_IND, 0, 0, {ACT_REMOTEREJECT} },
{RSP_ZSAU, 750, 751, ZSAU_DISCONNECT_IND, 0, 0, {ACT_REMOTEHUP} },
{RSP_ZSAU, 800, 800, ZSAU_DISCONNECT_IND, 0, 0, {ACT_REMOTEHUP} },
/* hangup */
{EV_HUP, -1, -1, -1, -1, -1, {ACT_HUP} },
{RSP_INIT, -1, -1, SEQ_HUP, 401, 5, {0}, "+VLS=0\r"},
{RSP_OK, 401, 401, -1, 402, 5},
{RSP_ZVLS, 402, 402, 0, 403, 5},
{RSP_ZSAU, 403, 403, ZSAU_DISCONNECT_REQ, -1, -1, {ACT_DEBUG} },
{RSP_ZSAU, 403, 403, ZSAU_NULL, 0, 0, {ACT_DISCONNECT} },
{RSP_NODEV, 401, 403, -1, 0, 0, {ACT_FAKEHUP} },
{RSP_ERROR, 401, 401, -1, 0, 0, {ACT_ABORTHUP} },
{EV_TIMEOUT, 401, 403, -1, 0, 0, {ACT_ABORTHUP} },
{EV_BC_CLOSED, 0, 0, -1, 0, -1, {ACT_NOTIFY_BC_DOWN} },
/* ring */
{RSP_ZBC, 700, 700, -1, -1, -1, {0} },
{RSP_ZHLC, 700, 700, -1, -1, -1, {0} },
{RSP_NMBR, 700, 700, -1, -1, -1, {0} },
{RSP_ZCPN, 700, 700, -1, -1, -1, {0} },
{RSP_ZCTP, 700, 700, -1, -1, -1, {0} },
{EV_TIMEOUT, 700, 700, -1, 720, 720, {ACT_ICALL} },
{EV_BC_CLOSED, 720, 720, -1, 0, -1, {ACT_NOTIFY_BC_DOWN} },
/*accept icall*/
{EV_ACCEPT, -1, -1, -1, -1, -1, {ACT_ACCEPT} },
{RSP_INIT, 720, 720, SEQ_ACCEPT, 721, 5, {ACT_CMD + AT_PROTO} },
{RSP_OK, 721, 721, -1, 722, 5, {ACT_CMD + AT_ISO} },
{RSP_OK, 722, 722, -1, 723, 5, {0}, "+VLS=17\r"},
{RSP_OK, 723, 723, -1, 724, 5, {0} },
{RSP_ZVLS, 724, 724, 17, 750, 50, {ACT_ACCEPTED} },
{RSP_ERROR, 721, 729, -1, 0, 0, {ACT_ABORTACCEPT} },
{EV_TIMEOUT, 721, 729, -1, 0, 0, {ACT_ABORTACCEPT} },
{RSP_ZSAU, 700, 729, ZSAU_NULL, 0, 0, {ACT_ABORTACCEPT} },
{RSP_ZSAU, 700, 729, ZSAU_ACTIVE, 0, 0, {ACT_ABORTACCEPT} },
{RSP_ZSAU, 700, 729, ZSAU_DISCONNECT_IND, 0, 0, {ACT_ABORTACCEPT} },
{EV_BC_OPEN, 750, 750, -1, 751, -1},
{EV_TIMEOUT, 750, 751, -1, 0, 0, {ACT_CONNTIMEOUT} },
/* B channel closed (general case) */
{EV_BC_CLOSED, -1, -1, -1, -1, -1, {ACT_NOTIFY_BC_DOWN} },
/* misc. */
{RSP_ZCON, -1, -1, -1, -1, -1, {ACT_DEBUG} },
{RSP_ZCAU, -1, -1, -1, -1, -1, {ACT_ZCAU} },
{RSP_NONE, -1, -1, -1, -1, -1, {ACT_DEBUG} },
{RSP_ANY, -1, -1, -1, -1, -1, {ACT_WARN} },
{RSP_LAST}
};
static const struct resp_type_t {
char *response;
int resp_code;
int type;
}
resp_type[] =
{
{"OK", RSP_OK, RT_NOTHING},
{"ERROR", RSP_ERROR, RT_NOTHING},
{"ZSAU", RSP_ZSAU, RT_ZSAU},
{"ZCAU", RSP_ZCAU, RT_ZCAU},
{"RING", RSP_RING, RT_RING},
{"ZGCI", RSP_ZGCI, RT_NUMBER},
{"ZVLS", RSP_ZVLS, RT_NUMBER},
{"ZCTP", RSP_ZCTP, RT_NUMBER},
{"ZDLE", RSP_ZDLE, RT_NUMBER},
{"ZHLC", RSP_ZHLC, RT_STRING},
{"ZBC", RSP_ZBC, RT_STRING},
{"NMBR", RSP_NMBR, RT_STRING},
{"ZCPN", RSP_ZCPN, RT_STRING},
{"ZCON", RSP_ZCON, RT_STRING},
{NULL, 0, 0}
};
static const struct zsau_resp_t {
char *str;
int code;
}
zsau_resp[] =
{
{"OUTGOING_CALL_PROCEEDING", ZSAU_PROCEEDING},
{"CALL_DELIVERED", ZSAU_CALL_DELIVERED},
{"ACTIVE", ZSAU_ACTIVE},
{"DISCONNECT_IND", ZSAU_DISCONNECT_IND},
{"NULL", ZSAU_NULL},
{"DISCONNECT_REQ", ZSAU_DISCONNECT_REQ},
{NULL, ZSAU_UNKNOWN}
};
/* retrieve CID from parsed response
* returns 0 if no CID, -1 if invalid CID, or CID value 1..65535
*/
static int cid_of_response(char *s)
{
int cid;
int rc;
if (s[-1] != ';')
return 0; /* no CID separator */
rc = kstrtoint(s, 10, &cid);
if (rc)
return 0; /* CID not numeric */
if (cid < 1 || cid > 65535)
return -1; /* CID out of range */
return cid;
}
/**
* gigaset_handle_modem_response() - process received modem response
* @cs: device descriptor structure.
*
* Called by asyncdata/isocdata if a block of data received from the
* device must be processed as a modem command response. The data is
* already in the cs structure.
*/
void gigaset_handle_modem_response(struct cardstate *cs)
{
unsigned char *argv[MAX_REC_PARAMS + 1];
int params;
int i, j;
const struct resp_type_t *rt;
const struct zsau_resp_t *zr;
int curarg;
unsigned long flags;
unsigned next, tail, head;
struct event_t *event;
int resp_code;
int param_type;
int abort;
size_t len;
int cid;
int rawstring;
len = cs->cbytes;
if (!len) {
/* ignore additional LFs/CRs (M10x config mode or cx100) */
gig_dbg(DEBUG_MCMD, "skipped EOL [%02X]", cs->respdata[0]);
return;
}
cs->respdata[len] = 0;
argv[0] = cs->respdata;
params = 1;
if (cs->at_state.getstring) {
/* getstring only allowed without cid at the moment */
cs->at_state.getstring = 0;
rawstring = 1;
cid = 0;
} else {
/* parse line */
for (i = 0; i < len; i++)
switch (cs->respdata[i]) {
case ';':
case ',':
case '=':
if (params > MAX_REC_PARAMS) {
dev_warn(cs->dev,
"too many parameters in response\n");
/* need last parameter (might be CID) */
params--;
}
argv[params++] = cs->respdata + i + 1;
}
rawstring = 0;
cid = params > 1 ? cid_of_response(argv[params - 1]) : 0;
if (cid < 0) {
gigaset_add_event(cs, &cs->at_state, RSP_INVAL,
NULL, 0, NULL);
return;
}
for (j = 1; j < params; ++j)
argv[j][-1] = 0;
gig_dbg(DEBUG_EVENT, "CMD received: %s", argv[0]);
if (cid) {
--params;
gig_dbg(DEBUG_EVENT, "CID: %s", argv[params]);
}
gig_dbg(DEBUG_EVENT, "available params: %d", params - 1);
for (j = 1; j < params; j++)
gig_dbg(DEBUG_EVENT, "param %d: %s", j, argv[j]);
}
spin_lock_irqsave(&cs->ev_lock, flags);
head = cs->ev_head;
tail = cs->ev_tail;
abort = 1;
curarg = 0;
while (curarg < params) {
next = (tail + 1) % MAX_EVENTS;
if (unlikely(next == head)) {
dev_err(cs->dev, "event queue full\n");
break;
}
event = cs->events + tail;
event->at_state = NULL;
event->cid = cid;
event->ptr = NULL;
event->arg = NULL;
tail = next;
if (rawstring) {
resp_code = RSP_STRING;
param_type = RT_STRING;
} else {
for (rt = resp_type; rt->response; ++rt)
if (!strcmp(argv[curarg], rt->response))
break;
if (!rt->response) {
event->type = RSP_NONE;
gig_dbg(DEBUG_EVENT,
"unknown modem response: '%s'\n",
argv[curarg]);
break;
}
resp_code = rt->resp_code;
param_type = rt->type;
++curarg;
}
event->type = resp_code;
switch (param_type) {
case RT_NOTHING:
break;
case RT_RING:
if (!cid) {
dev_err(cs->dev,
"received RING without CID!\n");
event->type = RSP_INVAL;
abort = 1;
} else {
event->cid = 0;
event->parameter = cid;
abort = 0;
}
break;
case RT_ZSAU:
if (curarg >= params) {
event->parameter = ZSAU_NONE;
break;
}
for (zr = zsau_resp; zr->str; ++zr)
if (!strcmp(argv[curarg], zr->str))
break;
event->parameter = zr->code;
if (!zr->str)
dev_warn(cs->dev,
"%s: unknown parameter %s after ZSAU\n",
__func__, argv[curarg]);
++curarg;
break;
case RT_STRING:
if (curarg < params) {
event->ptr = kstrdup(argv[curarg], GFP_ATOMIC);
if (!event->ptr)
dev_err(cs->dev, "out of memory\n");
++curarg;
}
gig_dbg(DEBUG_EVENT, "string==%s",
event->ptr ? (char *) event->ptr : "NULL");
break;
case RT_ZCAU:
event->parameter = -1;
if (curarg + 1 < params) {
u8 type, value;
i = kstrtou8(argv[curarg++], 16, &type);
j = kstrtou8(argv[curarg++], 16, &value);
if (i == 0 && j == 0)
event->parameter = (type << 8) | value;
} else
curarg = params - 1;
break;
case RT_NUMBER:
if (curarg >= params ||
kstrtoint(argv[curarg++], 10, &event->parameter))
event->parameter = -1;
gig_dbg(DEBUG_EVENT, "parameter==%d", event->parameter);
break;
}
if (resp_code == RSP_ZDLE)
cs->dle = event->parameter;
if (abort)
break;
}
cs->ev_tail = tail;
spin_unlock_irqrestore(&cs->ev_lock, flags);
if (curarg != params)
gig_dbg(DEBUG_EVENT,
"invalid number of processed parameters: %d/%d",
curarg, params);
}
EXPORT_SYMBOL_GPL(gigaset_handle_modem_response);
/* disconnect
* process closing of connection associated with given AT state structure
*/
static void disconnect(struct at_state_t **at_state_p)
{
unsigned long flags;
struct bc_state *bcs = (*at_state_p)->bcs;
struct cardstate *cs = (*at_state_p)->cs;
spin_lock_irqsave(&cs->lock, flags);
++(*at_state_p)->seq_index;
/* revert to selected idle mode */
if (!cs->cidmode) {
cs->at_state.pending_commands |= PC_UMMODE;
gig_dbg(DEBUG_EVENT, "Scheduling PC_UMMODE");
cs->commands_pending = 1;
}
spin_unlock_irqrestore(&cs->lock, flags);
if (bcs) {
/* B channel assigned: invoke hardware specific handler */
cs->ops->close_bchannel(bcs);
/* notify LL */
if (bcs->chstate & (CHS_D_UP | CHS_NOTIFY_LL)) {
bcs->chstate &= ~(CHS_D_UP | CHS_NOTIFY_LL);
gigaset_isdn_hupD(bcs);
}
} else {
/* no B channel assigned: just deallocate */
spin_lock_irqsave(&cs->lock, flags);
list_del(&(*at_state_p)->list);
kfree(*at_state_p);
*at_state_p = NULL;
spin_unlock_irqrestore(&cs->lock, flags);
}
}
/* get_free_channel
* get a free AT state structure: either one of those associated with the
* B channels of the Gigaset device, or if none of those is available,
* a newly allocated one with bcs=NULL
* The structure should be freed by calling disconnect() after use.
*/
static inline struct at_state_t *get_free_channel(struct cardstate *cs,
int cid)
/* cids: >0: siemens-cid
* 0: without cid
* -1: no cid assigned yet
*/
{
unsigned long flags;
int i;
struct at_state_t *ret;
for (i = 0; i < cs->channels; ++i)
if (gigaset_get_channel(cs->bcs + i) >= 0) {
ret = &cs->bcs[i].at_state;
ret->cid = cid;
return ret;
}
spin_lock_irqsave(&cs->lock, flags);
ret = kmalloc(sizeof(struct at_state_t), GFP_ATOMIC);
if (ret) {
gigaset_at_init(ret, NULL, cs, cid);
list_add(&ret->list, &cs->temp_at_states);
}
spin_unlock_irqrestore(&cs->lock, flags);
return ret;
}
static void init_failed(struct cardstate *cs, int mode)
{
int i;
struct at_state_t *at_state;
cs->at_state.pending_commands &= ~PC_INIT;
cs->mode = mode;
cs->mstate = MS_UNINITIALIZED;
gigaset_free_channels(cs);
for (i = 0; i < cs->channels; ++i) {
at_state = &cs->bcs[i].at_state;
if (at_state->pending_commands & PC_CID) {
at_state->pending_commands &= ~PC_CID;
at_state->pending_commands |= PC_NOCID;
cs->commands_pending = 1;
}
}
}
static void schedule_init(struct cardstate *cs, int state)
{
if (cs->at_state.pending_commands & PC_INIT) {
gig_dbg(DEBUG_EVENT, "not scheduling PC_INIT again");
return;
}
cs->mstate = state;
cs->mode = M_UNKNOWN;
gigaset_block_channels(cs);
cs->at_state.pending_commands |= PC_INIT;
gig_dbg(DEBUG_EVENT, "Scheduling PC_INIT");
cs->commands_pending = 1;
}
/* send an AT command
* adding the "AT" prefix, cid and DLE encapsulation as appropriate
*/
static void send_command(struct cardstate *cs, const char *cmd,
struct at_state_t *at_state)
{
int cid = at_state->cid;
struct cmdbuf_t *cb;
size_t buflen;
buflen = strlen(cmd) + 12; /* DLE ( A T 1 2 3 4 5 <cmd> DLE ) \0 */
cb = kmalloc(sizeof(struct cmdbuf_t) + buflen, GFP_ATOMIC);
if (!cb) {
dev_err(cs->dev, "%s: out of memory\n", __func__);
return;
}
if (cid > 0 && cid <= 65535)
cb->len = snprintf(cb->buf, buflen,
cs->dle ? "\020(AT%d%s\020)" : "AT%d%s",
cid, cmd);
else
cb->len = snprintf(cb->buf, buflen,
cs->dle ? "\020(AT%s\020)" : "AT%s",
cmd);
cb->offset = 0;
cb->next = NULL;
cb->wake_tasklet = NULL;
cs->ops->write_cmd(cs, cb);
}
static struct at_state_t *at_state_from_cid(struct cardstate *cs, int cid)
{
struct at_state_t *at_state;
int i;
unsigned long flags;
if (cid == 0)
return &cs->at_state;
for (i = 0; i < cs->channels; ++i)
if (cid == cs->bcs[i].at_state.cid)
return &cs->bcs[i].at_state;
spin_lock_irqsave(&cs->lock, flags);
list_for_each_entry(at_state, &cs->temp_at_states, list)
if (cid == at_state->cid) {
spin_unlock_irqrestore(&cs->lock, flags);
return at_state;
}
spin_unlock_irqrestore(&cs->lock, flags);
return NULL;
}
static void bchannel_down(struct bc_state *bcs)
{
if (bcs->chstate & CHS_B_UP) {
bcs->chstate &= ~CHS_B_UP;
gigaset_isdn_hupB(bcs);
}
if (bcs->chstate & (CHS_D_UP | CHS_NOTIFY_LL)) {
bcs->chstate &= ~(CHS_D_UP | CHS_NOTIFY_LL);
gigaset_isdn_hupD(bcs);
}
gigaset_free_channel(bcs);
gigaset_bcs_reinit(bcs);
}
static void bchannel_up(struct bc_state *bcs)
{
if (bcs->chstate & CHS_B_UP) {
dev_notice(bcs->cs->dev, "%s: B channel already up\n",
__func__);
return;
}
bcs->chstate |= CHS_B_UP;
gigaset_isdn_connB(bcs);
}
static void start_dial(struct at_state_t *at_state, void *data,
unsigned seq_index)
{
struct bc_state *bcs = at_state->bcs;
struct cardstate *cs = at_state->cs;
char **commands = data;
unsigned long flags;
int i;
bcs->chstate |= CHS_NOTIFY_LL;
spin_lock_irqsave(&cs->lock, flags);
if (at_state->seq_index != seq_index) {
spin_unlock_irqrestore(&cs->lock, flags);
goto error;
}
spin_unlock_irqrestore(&cs->lock, flags);
for (i = 0; i < AT_NUM; ++i) {
kfree(bcs->commands[i]);
bcs->commands[i] = commands[i];
}
at_state->pending_commands |= PC_CID;
gig_dbg(DEBUG_EVENT, "Scheduling PC_CID");
cs->commands_pending = 1;
return;
error:
for (i = 0; i < AT_NUM; ++i) {
kfree(commands[i]);
commands[i] = NULL;
}
at_state->pending_commands |= PC_NOCID;
gig_dbg(DEBUG_EVENT, "Scheduling PC_NOCID");
cs->commands_pending = 1;
return;
}
static void start_accept(struct at_state_t *at_state)
{
struct cardstate *cs = at_state->cs;
struct bc_state *bcs = at_state->bcs;
int i;
for (i = 0; i < AT_NUM; ++i) {
kfree(bcs->commands[i]);
bcs->commands[i] = NULL;
}
bcs->commands[AT_PROTO] = kmalloc(9, GFP_ATOMIC);
bcs->commands[AT_ISO] = kmalloc(9, GFP_ATOMIC);
if (!bcs->commands[AT_PROTO] || !bcs->commands[AT_ISO]) {
dev_err(at_state->cs->dev, "out of memory\n");
/* error reset */
at_state->pending_commands |= PC_HUP;
gig_dbg(DEBUG_EVENT, "Scheduling PC_HUP");
cs->commands_pending = 1;
return;
}
snprintf(bcs->commands[AT_PROTO], 9, "^SBPR=%u\r", bcs->proto2);
snprintf(bcs->commands[AT_ISO], 9, "^SISO=%u\r", bcs->channel + 1);
at_state->pending_commands |= PC_ACCEPT;
gig_dbg(DEBUG_EVENT, "Scheduling PC_ACCEPT");
cs->commands_pending = 1;
}
static void do_start(struct cardstate *cs)
{
gigaset_free_channels(cs);
if (cs->mstate != MS_LOCKED)
schedule_init(cs, MS_INIT);
cs->isdn_up = 1;
gigaset_isdn_start(cs);
cs->waiting = 0;
wake_up(&cs->waitqueue);
}
static void finish_shutdown(struct cardstate *cs)
{
if (cs->mstate != MS_LOCKED) {
cs->mstate = MS_UNINITIALIZED;
cs->mode = M_UNKNOWN;
}
/* Tell the LL that the device is not available .. */
if (cs->isdn_up) {
cs->isdn_up = 0;
gigaset_isdn_stop(cs);
}
/* The rest is done by cleanup_cs() in process context. */
cs->cmd_result = -ENODEV;
cs->waiting = 0;
wake_up(&cs->waitqueue);
}
static void do_shutdown(struct cardstate *cs)
{
gigaset_block_channels(cs);
if (cs->mstate == MS_READY) {
cs->mstate = MS_SHUTDOWN;
cs->at_state.pending_commands |= PC_SHUTDOWN;
gig_dbg(DEBUG_EVENT, "Scheduling PC_SHUTDOWN");
cs->commands_pending = 1;
} else
finish_shutdown(cs);
}
static void do_stop(struct cardstate *cs)
{
unsigned long flags;
spin_lock_irqsave(&cs->lock, flags);
cs->connected = 0;
spin_unlock_irqrestore(&cs->lock, flags);
do_shutdown(cs);
}
/* Entering cid mode or getting a cid failed:
* try to initialize the device and try again.
*
* channel >= 0: getting cid for the channel failed
* channel < 0: entering cid mode failed
*
* returns 0 on success, <0 on failure
*/
static int reinit_and_retry(struct cardstate *cs, int channel)
{
int i;
if (--cs->retry_count <= 0)
return -EFAULT;
for (i = 0; i < cs->channels; ++i)
if (cs->bcs[i].at_state.cid > 0)
return -EBUSY;
if (channel < 0)
dev_warn(cs->dev,
"Could not enter cid mode. Reinit device and try again.\n");
else {
dev_warn(cs->dev,
"Could not get a call id. Reinit device and try again.\n");
cs->bcs[channel].at_state.pending_commands |= PC_CID;
}
schedule_init(cs, MS_INIT);
return 0;
}
static int at_state_invalid(struct cardstate *cs,
struct at_state_t *test_ptr)
{
unsigned long flags;
unsigned channel;
struct at_state_t *at_state;
int retval = 0;
spin_lock_irqsave(&cs->lock, flags);
if (test_ptr == &cs->at_state)
goto exit;
list_for_each_entry(at_state, &cs->temp_at_states, list)
if (at_state == test_ptr)
goto exit;
for (channel = 0; channel < cs->channels; ++channel)
if (&cs->bcs[channel].at_state == test_ptr)
goto exit;
retval = 1;
exit:
spin_unlock_irqrestore(&cs->lock, flags);
return retval;
}
static void handle_icall(struct cardstate *cs, struct bc_state *bcs,
struct at_state_t *at_state)
{
int retval;
retval = gigaset_isdn_icall(at_state);
switch (retval) {
case ICALL_ACCEPT:
break;
default:
dev_err(cs->dev, "internal error: disposition=%d\n", retval);
/* --v-- fall through --v-- */
case ICALL_IGNORE:
case ICALL_REJECT:
/* hang up actively
* Device doc says that would reject the call.
* In fact it doesn't.
*/
at_state->pending_commands |= PC_HUP;
cs->commands_pending = 1;
break;
}
}
static int do_lock(struct cardstate *cs)
{
int mode;
int i;
switch (cs->mstate) {
case MS_UNINITIALIZED:
case MS_READY:
if (cs->cur_at_seq || !list_empty(&cs->temp_at_states) ||
cs->at_state.pending_commands)
return -EBUSY;
for (i = 0; i < cs->channels; ++i)
if (cs->bcs[i].at_state.pending_commands)
return -EBUSY;
if (gigaset_get_channels(cs) < 0)
return -EBUSY;
break;
case MS_LOCKED:
break;
default:
return -EBUSY;
}
mode = cs->mode;
cs->mstate = MS_LOCKED;
cs->mode = M_UNKNOWN;
return mode;
}
static int do_unlock(struct cardstate *cs)
{
if (cs->mstate != MS_LOCKED)
return -EINVAL;
cs->mstate = MS_UNINITIALIZED;
cs->mode = M_UNKNOWN;
gigaset_free_channels(cs);
if (cs->connected)
schedule_init(cs, MS_INIT);
return 0;
}
static void do_action(int action, struct cardstate *cs,
struct bc_state *bcs,
struct at_state_t **p_at_state, char **pp_command,
int *p_genresp, int *p_resp_code,
struct event_t *ev)
{
struct at_state_t *at_state = *p_at_state;
struct at_state_t *at_state2;
unsigned long flags;
int channel;
unsigned char *s, *e;
int i;
unsigned long val;
switch (action) {
case ACT_NOTHING:
break;
case ACT_TIMEOUT:
at_state->waiting = 1;
break;
case ACT_INIT:
cs->at_state.pending_commands &= ~PC_INIT;
cs->cur_at_seq = SEQ_NONE;
cs->mode = M_UNIMODEM;
spin_lock_irqsave(&cs->lock, flags);
if (!cs->cidmode) {
spin_unlock_irqrestore(&cs->lock, flags);
gigaset_free_channels(cs);
cs->mstate = MS_READY;
break;
}
spin_unlock_irqrestore(&cs->lock, flags);
cs->at_state.pending_commands |= PC_CIDMODE;
gig_dbg(DEBUG_EVENT, "Scheduling PC_CIDMODE");
cs->commands_pending = 1;
break;
case ACT_FAILINIT:
dev_warn(cs->dev, "Could not initialize the device.\n");
cs->dle = 0;
init_failed(cs, M_UNKNOWN);
cs->cur_at_seq = SEQ_NONE;
break;
case ACT_CONFIGMODE:
init_failed(cs, M_CONFIG);
cs->cur_at_seq = SEQ_NONE;
break;
case ACT_SETDLE1:
cs->dle = 1;
/* cs->inbuf[0].inputstate |= INS_command | INS_DLE_command; */
cs->inbuf[0].inputstate &=
~(INS_command | INS_DLE_command);
break;
case ACT_SETDLE0:
cs->dle = 0;
cs->inbuf[0].inputstate =
(cs->inbuf[0].inputstate & ~INS_DLE_command)
| INS_command;
break;
case ACT_CMODESET:
if (cs->mstate == MS_INIT || cs->mstate == MS_RECOVER) {
gigaset_free_channels(cs);
cs->mstate = MS_READY;
}
cs->mode = M_CID;
cs->cur_at_seq = SEQ_NONE;
break;
case ACT_UMODESET:
cs->mode = M_UNIMODEM;
cs->cur_at_seq = SEQ_NONE;
break;
case ACT_FAILCMODE:
cs->cur_at_seq = SEQ_NONE;
if (cs->mstate == MS_INIT || cs->mstate == MS_RECOVER) {
init_failed(cs, M_UNKNOWN);
break;
}
if (reinit_and_retry(cs, -1) < 0)
schedule_init(cs, MS_RECOVER);
break;
case ACT_FAILUMODE:
cs->cur_at_seq = SEQ_NONE;
schedule_init(cs, MS_RECOVER);
break;
case ACT_HUPMODEM:
/* send "+++" (hangup in unimodem mode) */
if (cs->connected) {
struct cmdbuf_t *cb;
cb = kmalloc(sizeof(struct cmdbuf_t) + 3, GFP_ATOMIC);
if (!cb) {
dev_err(cs->dev, "%s: out of memory\n",
__func__);
return;
}
memcpy(cb->buf, "+++", 3);
cb->len = 3;
cb->offset = 0;
cb->next = NULL;
cb->wake_tasklet = NULL;
cs->ops->write_cmd(cs, cb);
}
break;
case ACT_RING:
/* get fresh AT state structure for new CID */
at_state2 = get_free_channel(cs, ev->parameter);
if (!at_state2) {
dev_warn(cs->dev,
"RING ignored: could not allocate channel structure\n");
break;
}
/* initialize AT state structure
* note that bcs may be NULL if no B channel is free
*/
at_state2->ConState = 700;
for (i = 0; i < STR_NUM; ++i) {
kfree(at_state2->str_var[i]);
at_state2->str_var[i] = NULL;
}
at_state2->int_var[VAR_ZCTP] = -1;
spin_lock_irqsave(&cs->lock, flags);
at_state2->timer_expires = RING_TIMEOUT;
at_state2->timer_active = 1;
spin_unlock_irqrestore(&cs->lock, flags);
break;
case ACT_ICALL:
handle_icall(cs, bcs, at_state);
break;
case ACT_FAILSDOWN:
dev_warn(cs->dev, "Could not shut down the device.\n");
/* fall through */
case ACT_FAKESDOWN:
case ACT_SDOWN:
cs->cur_at_seq = SEQ_NONE;
finish_shutdown(cs);
break;
case ACT_CONNECT:
if (cs->onechannel) {
at_state->pending_commands |= PC_DLE1;
cs->commands_pending = 1;
break;
}
bcs->chstate |= CHS_D_UP;
gigaset_isdn_connD(bcs);
cs->ops->init_bchannel(bcs);
break;
case ACT_DLE1:
cs->cur_at_seq = SEQ_NONE;
bcs = cs->bcs + cs->curchannel;
bcs->chstate |= CHS_D_UP;
gigaset_isdn_connD(bcs);
cs->ops->init_bchannel(bcs);
break;
case ACT_FAKEHUP:
at_state->int_var[VAR_ZSAU] = ZSAU_NULL;
/* fall through */
case ACT_DISCONNECT:
cs->cur_at_seq = SEQ_NONE;
at_state->cid = -1;
if (bcs && cs->onechannel && cs->dle) {
/* Check for other open channels not needed:
* DLE only used for M10x with one B channel.
*/
at_state->pending_commands |= PC_DLE0;
cs->commands_pending = 1;
} else
disconnect(p_at_state);
break;
case ACT_FAKEDLE0:
at_state->int_var[VAR_ZDLE] = 0;
cs->dle = 0;
/* fall through */
case ACT_DLE0:
cs->cur_at_seq = SEQ_NONE;
at_state2 = &cs->bcs[cs->curchannel].at_state;
disconnect(&at_state2);
break;
case ACT_ABORTHUP:
cs->cur_at_seq = SEQ_NONE;
dev_warn(cs->dev, "Could not hang up.\n");
at_state->cid = -1;
if (bcs && cs->onechannel)
at_state->pending_commands |= PC_DLE0;
else
disconnect(p_at_state);
schedule_init(cs, MS_RECOVER);
break;
case ACT_FAILDLE0:
cs->cur_at_seq = SEQ_NONE;
dev_warn(cs->dev, "Error leaving DLE mode.\n");
cs->dle = 0;
at_state2 = &cs->bcs[cs->curchannel].at_state;
disconnect(&at_state2);
schedule_init(cs, MS_RECOVER);
break;
case ACT_FAILDLE1:
cs->cur_at_seq = SEQ_NONE;
dev_warn(cs->dev,
"Could not enter DLE mode. Trying to hang up.\n");
channel = cs->curchannel;
cs->bcs[channel].at_state.pending_commands |= PC_HUP;
cs->commands_pending = 1;
break;
case ACT_CID: /* got cid; start dialing */
cs->cur_at_seq = SEQ_NONE;
channel = cs->curchannel;
if (ev->parameter > 0 && ev->parameter <= 65535) {
cs->bcs[channel].at_state.cid = ev->parameter;
cs->bcs[channel].at_state.pending_commands |=
PC_DIAL;
cs->commands_pending = 1;
break;
}
/* bad cid: fall through */
case ACT_FAILCID:
cs->cur_at_seq = SEQ_NONE;
channel = cs->curchannel;
if (reinit_and_retry(cs, channel) < 0) {
dev_warn(cs->dev,
"Could not get a call ID. Cannot dial.\n");
at_state2 = &cs->bcs[channel].at_state;
disconnect(&at_state2);
}
break;
case ACT_ABORTCID:
cs->cur_at_seq = SEQ_NONE;
at_state2 = &cs->bcs[cs->curchannel].at_state;
disconnect(&at_state2);
break;
case ACT_DIALING:
case ACT_ACCEPTED:
cs->cur_at_seq = SEQ_NONE;
break;
case ACT_ABORTACCEPT: /* hangup/error/timeout during ICALL procssng */
disconnect(p_at_state);
break;
case ACT_ABORTDIAL: /* error/timeout during dial preparation */
cs->cur_at_seq = SEQ_NONE;
at_state->pending_commands |= PC_HUP;
cs->commands_pending = 1;
break;
case ACT_REMOTEREJECT: /* DISCONNECT_IND after dialling */
case ACT_CONNTIMEOUT: /* timeout waiting for ZSAU=ACTIVE */
case ACT_REMOTEHUP: /* DISCONNECT_IND with established connection */
at_state->pending_commands |= PC_HUP;
cs->commands_pending = 1;
break;
case ACT_GETSTRING: /* warning: RING, ZDLE, ...
are not handled properly anymore */
at_state->getstring = 1;
break;
case ACT_SETVER:
if (!ev->ptr) {
*p_genresp = 1;
*p_resp_code = RSP_ERROR;
break;
}
s = ev->ptr;
if (!strcmp(s, "OK")) {
/* OK without version string: assume old response */
*p_genresp = 1;
*p_resp_code = RSP_NONE;
break;
}
for (i = 0; i < 4; ++i) {
val = simple_strtoul(s, (char **) &e, 10);
if (val > INT_MAX || e == s)
break;
if (i == 3) {
if (*e)
break;
} else if (*e != '.')
break;
else
s = e + 1;
cs->fwver[i] = val;
}
if (i != 4) {
*p_genresp = 1;
*p_resp_code = RSP_ERROR;
break;
}
cs->gotfwver = 0;
break;
case ACT_GOTVER:
if (cs->gotfwver == 0) {
cs->gotfwver = 1;
gig_dbg(DEBUG_EVENT,
"firmware version %02d.%03d.%02d.%02d",
cs->fwver[0], cs->fwver[1],
cs->fwver[2], cs->fwver[3]);
break;
}
/* fall through */
case ACT_FAILVER:
cs->gotfwver = -1;
dev_err(cs->dev, "could not read firmware version.\n");
break;
case ACT_ERROR:
gig_dbg(DEBUG_ANY, "%s: ERROR response in ConState %d",
__func__, at_state->ConState);
cs->cur_at_seq = SEQ_NONE;
break;
case ACT_DEBUG:
gig_dbg(DEBUG_ANY, "%s: resp_code %d in ConState %d",
__func__, ev->type, at_state->ConState);
break;
case ACT_WARN:
dev_warn(cs->dev, "%s: resp_code %d in ConState %d!\n",
__func__, ev->type, at_state->ConState);
break;
case ACT_ZCAU:
dev_warn(cs->dev, "cause code %04x in connection state %d.\n",
ev->parameter, at_state->ConState);
break;
/* events from the LL */
case ACT_DIAL:
start_dial(at_state, ev->ptr, ev->parameter);
break;
case ACT_ACCEPT:
start_accept(at_state);
break;
case ACT_HUP:
at_state->pending_commands |= PC_HUP;
gig_dbg(DEBUG_EVENT, "Scheduling PC_HUP");
cs->commands_pending = 1;
break;
/* hotplug events */
case ACT_STOP:
do_stop(cs);
break;
case ACT_START:
do_start(cs);
break;
/* events from the interface */
case ACT_IF_LOCK:
cs->cmd_result = ev->parameter ? do_lock(cs) : do_unlock(cs);
cs->waiting = 0;
wake_up(&cs->waitqueue);
break;
case ACT_IF_VER:
if (ev->parameter != 0)
cs->cmd_result = -EINVAL;
else if (cs->gotfwver != 1) {
cs->cmd_result = -ENOENT;
} else {
memcpy(ev->arg, cs->fwver, sizeof cs->fwver);
cs->cmd_result = 0;
}
cs->waiting = 0;
wake_up(&cs->waitqueue);
break;
/* events from the proc file system */
case ACT_PROC_CIDMODE:
spin_lock_irqsave(&cs->lock, flags);
if (ev->parameter != cs->cidmode) {
cs->cidmode = ev->parameter;
if (ev->parameter) {
cs->at_state.pending_commands |= PC_CIDMODE;
gig_dbg(DEBUG_EVENT, "Scheduling PC_CIDMODE");
} else {
cs->at_state.pending_commands |= PC_UMMODE;
gig_dbg(DEBUG_EVENT, "Scheduling PC_UMMODE");
}
cs->commands_pending = 1;
}
spin_unlock_irqrestore(&cs->lock, flags);
cs->waiting = 0;
wake_up(&cs->waitqueue);
break;
/* events from the hardware drivers */
case ACT_NOTIFY_BC_DOWN:
bchannel_down(bcs);
break;
case ACT_NOTIFY_BC_UP:
bchannel_up(bcs);
break;
case ACT_SHUTDOWN:
do_shutdown(cs);
break;
default:
if (action >= ACT_CMD && action < ACT_CMD + AT_NUM) {
*pp_command = at_state->bcs->commands[action - ACT_CMD];
if (!*pp_command) {
*p_genresp = 1;
*p_resp_code = RSP_NULL;
}
} else
dev_err(cs->dev, "%s: action==%d!\n", __func__, action);
}
}
/* State machine to do the calling and hangup procedure */
static void process_event(struct cardstate *cs, struct event_t *ev)
{
struct bc_state *bcs;
char *p_command = NULL;
struct reply_t *rep;
int rcode;
int genresp = 0;
int resp_code = RSP_ERROR;
struct at_state_t *at_state;
int index;
int curact;
unsigned long flags;
if (ev->cid >= 0) {
at_state = at_state_from_cid(cs, ev->cid);
if (!at_state) {
gig_dbg(DEBUG_EVENT, "event %d for invalid cid %d",
ev->type, ev->cid);
gigaset_add_event(cs, &cs->at_state, RSP_WRONG_CID,
NULL, 0, NULL);
return;
}
} else {
at_state = ev->at_state;
if (at_state_invalid(cs, at_state)) {
gig_dbg(DEBUG_EVENT, "event for invalid at_state %p",
at_state);
return;
}
}
gig_dbg(DEBUG_EVENT, "connection state %d, event %d",
at_state->ConState, ev->type);
bcs = at_state->bcs;
/* Setting the pointer to the dial array */
rep = at_state->replystruct;
spin_lock_irqsave(&cs->lock, flags);
if (ev->type == EV_TIMEOUT) {
if (ev->parameter != at_state->timer_index
|| !at_state->timer_active) {
ev->type = RSP_NONE; /* old timeout */
gig_dbg(DEBUG_EVENT, "old timeout");
} else {
if (at_state->waiting)
gig_dbg(DEBUG_EVENT, "stopped waiting");
else
gig_dbg(DEBUG_EVENT, "timeout occurred");
}
}
spin_unlock_irqrestore(&cs->lock, flags);
/* if the response belongs to a variable in at_state->int_var[VAR_XXXX]
or at_state->str_var[STR_XXXX], set it */
if (ev->type >= RSP_VAR && ev->type < RSP_VAR + VAR_NUM) {
index = ev->type - RSP_VAR;
at_state->int_var[index] = ev->parameter;
} else if (ev->type >= RSP_STR && ev->type < RSP_STR + STR_NUM) {
index = ev->type - RSP_STR;
kfree(at_state->str_var[index]);
at_state->str_var[index] = ev->ptr;
ev->ptr = NULL; /* prevent process_events() from
deallocating ptr */
}
if (ev->type == EV_TIMEOUT || ev->type == RSP_STRING)
at_state->getstring = 0;
/* Search row in dial array which matches modem response and current
constate */
for (;; rep++) {
rcode = rep->resp_code;
if (rcode == RSP_LAST) {
/* found nothing...*/
dev_warn(cs->dev, "%s: rcode=RSP_LAST: "
"resp_code %d in ConState %d!\n",
__func__, ev->type, at_state->ConState);
return;
}
if ((rcode == RSP_ANY || rcode == ev->type)
&& ((int) at_state->ConState >= rep->min_ConState)
&& (rep->max_ConState < 0
|| (int) at_state->ConState <= rep->max_ConState)
&& (rep->parameter < 0 || rep->parameter == ev->parameter))
break;
}
p_command = rep->command;
at_state->waiting = 0;
for (curact = 0; curact < MAXACT; ++curact) {
/* The row tells us what we should do ..
*/
do_action(rep->action[curact], cs, bcs, &at_state, &p_command,
&genresp, &resp_code, ev);
if (!at_state)
/* at_state destroyed by disconnect */
return;
}
/* Jump to the next con-state regarding the array */
if (rep->new_ConState >= 0)
at_state->ConState = rep->new_ConState;
if (genresp) {
spin_lock_irqsave(&cs->lock, flags);
at_state->timer_expires = 0;
at_state->timer_active = 0;
spin_unlock_irqrestore(&cs->lock, flags);
gigaset_add_event(cs, at_state, resp_code, NULL, 0, NULL);
} else {
/* Send command to modem if not NULL... */
if (p_command) {
if (cs->connected)
send_command(cs, p_command, at_state);
else
gigaset_add_event(cs, at_state, RSP_NODEV,
NULL, 0, NULL);
}
spin_lock_irqsave(&cs->lock, flags);
if (!rep->timeout) {
at_state->timer_expires = 0;
at_state->timer_active = 0;
} else if (rep->timeout > 0) { /* new timeout */
at_state->timer_expires = rep->timeout * 10;
at_state->timer_active = 1;
++at_state->timer_index;
}
spin_unlock_irqrestore(&cs->lock, flags);
}
}
static void schedule_sequence(struct cardstate *cs,
struct at_state_t *at_state, int sequence)
{
cs->cur_at_seq = sequence;
gigaset_add_event(cs, at_state, RSP_INIT, NULL, sequence, NULL);
}
static void process_command_flags(struct cardstate *cs)
{
struct at_state_t *at_state = NULL;
struct bc_state *bcs;
int i;
int sequence;
unsigned long flags;
cs->commands_pending = 0;
if (cs->cur_at_seq) {
gig_dbg(DEBUG_EVENT, "not searching scheduled commands: busy");
return;
}
gig_dbg(DEBUG_EVENT, "searching scheduled commands");
sequence = SEQ_NONE;
/* clear pending_commands and hangup channels on shutdown */
if (cs->at_state.pending_commands & PC_SHUTDOWN) {
cs->at_state.pending_commands &= ~PC_CIDMODE;
for (i = 0; i < cs->channels; ++i) {
bcs = cs->bcs + i;
at_state = &bcs->at_state;
at_state->pending_commands &=
~(PC_DLE1 | PC_ACCEPT | PC_DIAL);
if (at_state->cid > 0)
at_state->pending_commands |= PC_HUP;
if (at_state->pending_commands & PC_CID) {
at_state->pending_commands |= PC_NOCID;
at_state->pending_commands &= ~PC_CID;
}
}
}
/* clear pending_commands and hangup channels on reset */
if (cs->at_state.pending_commands & PC_INIT) {
cs->at_state.pending_commands &= ~PC_CIDMODE;
for (i = 0; i < cs->channels; ++i) {
bcs = cs->bcs + i;
at_state = &bcs->at_state;
at_state->pending_commands &=
~(PC_DLE1 | PC_ACCEPT | PC_DIAL);
if (at_state->cid > 0)
at_state->pending_commands |= PC_HUP;
if (cs->mstate == MS_RECOVER) {
if (at_state->pending_commands & PC_CID) {
at_state->pending_commands |= PC_NOCID;
at_state->pending_commands &= ~PC_CID;
}
}
}
}
/* only switch back to unimodem mode if no commands are pending and
* no channels are up */
spin_lock_irqsave(&cs->lock, flags);
if (cs->at_state.pending_commands == PC_UMMODE
&& !cs->cidmode
&& list_empty(&cs->temp_at_states)
&& cs->mode == M_CID) {
sequence = SEQ_UMMODE;
at_state = &cs->at_state;
for (i = 0; i < cs->channels; ++i) {
bcs = cs->bcs + i;
if (bcs->at_state.pending_commands ||
bcs->at_state.cid > 0) {
sequence = SEQ_NONE;
break;
}
}
}
spin_unlock_irqrestore(&cs->lock, flags);
cs->at_state.pending_commands &= ~PC_UMMODE;
if (sequence != SEQ_NONE) {
schedule_sequence(cs, at_state, sequence);
return;
}
for (i = 0; i < cs->channels; ++i) {
bcs = cs->bcs + i;
if (bcs->at_state.pending_commands & PC_HUP) {
if (cs->dle) {
cs->curchannel = bcs->channel;
schedule_sequence(cs, &cs->at_state, SEQ_DLE0);
return;
}
bcs->at_state.pending_commands &= ~PC_HUP;
if (bcs->at_state.pending_commands & PC_CID) {
/* not yet dialing: PC_NOCID is sufficient */
bcs->at_state.pending_commands |= PC_NOCID;
bcs->at_state.pending_commands &= ~PC_CID;
} else {
schedule_sequence(cs, &bcs->at_state, SEQ_HUP);
return;
}
}
if (bcs->at_state.pending_commands & PC_NOCID) {
bcs->at_state.pending_commands &= ~PC_NOCID;
cs->curchannel = bcs->channel;
schedule_sequence(cs, &cs->at_state, SEQ_NOCID);
return;
} else if (bcs->at_state.pending_commands & PC_DLE0) {
bcs->at_state.pending_commands &= ~PC_DLE0;
cs->curchannel = bcs->channel;
schedule_sequence(cs, &cs->at_state, SEQ_DLE0);
return;
}
}
list_for_each_entry(at_state, &cs->temp_at_states, list)
if (at_state->pending_commands & PC_HUP) {
at_state->pending_commands &= ~PC_HUP;
schedule_sequence(cs, at_state, SEQ_HUP);
return;
}
if (cs->at_state.pending_commands & PC_INIT) {
cs->at_state.pending_commands &= ~PC_INIT;
cs->dle = 0;
cs->inbuf->inputstate = INS_command;
schedule_sequence(cs, &cs->at_state, SEQ_INIT);
return;
}
if (cs->at_state.pending_commands & PC_SHUTDOWN) {
cs->at_state.pending_commands &= ~PC_SHUTDOWN;
schedule_sequence(cs, &cs->at_state, SEQ_SHUTDOWN);
return;
}
if (cs->at_state.pending_commands & PC_CIDMODE) {
cs->at_state.pending_commands &= ~PC_CIDMODE;
if (cs->mode == M_UNIMODEM) {
cs->retry_count = 1;
schedule_sequence(cs, &cs->at_state, SEQ_CIDMODE);
return;
}
}
for (i = 0; i < cs->channels; ++i) {
bcs = cs->bcs + i;
if (bcs->at_state.pending_commands & PC_DLE1) {
bcs->at_state.pending_commands &= ~PC_DLE1;
cs->curchannel = bcs->channel;
schedule_sequence(cs, &cs->at_state, SEQ_DLE1);
return;
}
if (bcs->at_state.pending_commands & PC_ACCEPT) {
bcs->at_state.pending_commands &= ~PC_ACCEPT;
schedule_sequence(cs, &bcs->at_state, SEQ_ACCEPT);
return;
}
if (bcs->at_state.pending_commands & PC_DIAL) {
bcs->at_state.pending_commands &= ~PC_DIAL;
schedule_sequence(cs, &bcs->at_state, SEQ_DIAL);
return;
}
if (bcs->at_state.pending_commands & PC_CID) {
switch (cs->mode) {
case M_UNIMODEM:
cs->at_state.pending_commands |= PC_CIDMODE;
gig_dbg(DEBUG_EVENT, "Scheduling PC_CIDMODE");
cs->commands_pending = 1;
return;
case M_UNKNOWN:
schedule_init(cs, MS_INIT);
return;
}
bcs->at_state.pending_commands &= ~PC_CID;
cs->curchannel = bcs->channel;
cs->retry_count = 2;
schedule_sequence(cs, &cs->at_state, SEQ_CID);
return;
}
}
}
static void process_events(struct cardstate *cs)
{
struct event_t *ev;
unsigned head, tail;
int i;
int check_flags = 0;
int was_busy;
unsigned long flags;
spin_lock_irqsave(&cs->ev_lock, flags);
head = cs->ev_head;
for (i = 0; i < 2 * MAX_EVENTS; ++i) {
tail = cs->ev_tail;
if (tail == head) {
if (!check_flags && !cs->commands_pending)
break;
check_flags = 0;
spin_unlock_irqrestore(&cs->ev_lock, flags);
process_command_flags(cs);
spin_lock_irqsave(&cs->ev_lock, flags);
tail = cs->ev_tail;
if (tail == head) {
if (!cs->commands_pending)
break;
continue;
}
}
ev = cs->events + head;
was_busy = cs->cur_at_seq != SEQ_NONE;
spin_unlock_irqrestore(&cs->ev_lock, flags);
process_event(cs, ev);
spin_lock_irqsave(&cs->ev_lock, flags);
kfree(ev->ptr);
ev->ptr = NULL;
if (was_busy && cs->cur_at_seq == SEQ_NONE)
check_flags = 1;
head = (head + 1) % MAX_EVENTS;
cs->ev_head = head;
}
spin_unlock_irqrestore(&cs->ev_lock, flags);
if (i == 2 * MAX_EVENTS) {
dev_err(cs->dev,
"infinite loop in process_events; aborting.\n");
}
}
/* tasklet scheduled on any event received from the Gigaset device
* parameter:
* data ISDN controller state structure
*/
void gigaset_handle_event(unsigned long data)
{
struct cardstate *cs = (struct cardstate *) data;
/* handle incoming data on control/common channel */
if (cs->inbuf->head != cs->inbuf->tail) {
gig_dbg(DEBUG_INTR, "processing new data");
cs->ops->handle_input(cs->inbuf);
}
process_events(cs);
}