| /* |
| * TI EDMA DMA engine driver |
| * |
| * Copyright 2012 Texas Instruments |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation version 2. |
| * |
| * This program is distributed "as is" WITHOUT ANY WARRANTY of any |
| * kind, whether express or implied; without even the implied warranty |
| * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/edma.h> |
| #include <linux/err.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/of.h> |
| #include <linux/of_dma.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_address.h> |
| #include <linux/of_device.h> |
| #include <linux/pm_runtime.h> |
| |
| #include <linux/platform_data/edma.h> |
| |
| #include "dmaengine.h" |
| #include "virt-dma.h" |
| |
| /* Offsets matching "struct edmacc_param" */ |
| #define PARM_OPT 0x00 |
| #define PARM_SRC 0x04 |
| #define PARM_A_B_CNT 0x08 |
| #define PARM_DST 0x0c |
| #define PARM_SRC_DST_BIDX 0x10 |
| #define PARM_LINK_BCNTRLD 0x14 |
| #define PARM_SRC_DST_CIDX 0x18 |
| #define PARM_CCNT 0x1c |
| |
| #define PARM_SIZE 0x20 |
| |
| /* Offsets for EDMA CC global channel registers and their shadows */ |
| #define SH_ER 0x00 /* 64 bits */ |
| #define SH_ECR 0x08 /* 64 bits */ |
| #define SH_ESR 0x10 /* 64 bits */ |
| #define SH_CER 0x18 /* 64 bits */ |
| #define SH_EER 0x20 /* 64 bits */ |
| #define SH_EECR 0x28 /* 64 bits */ |
| #define SH_EESR 0x30 /* 64 bits */ |
| #define SH_SER 0x38 /* 64 bits */ |
| #define SH_SECR 0x40 /* 64 bits */ |
| #define SH_IER 0x50 /* 64 bits */ |
| #define SH_IECR 0x58 /* 64 bits */ |
| #define SH_IESR 0x60 /* 64 bits */ |
| #define SH_IPR 0x68 /* 64 bits */ |
| #define SH_ICR 0x70 /* 64 bits */ |
| #define SH_IEVAL 0x78 |
| #define SH_QER 0x80 |
| #define SH_QEER 0x84 |
| #define SH_QEECR 0x88 |
| #define SH_QEESR 0x8c |
| #define SH_QSER 0x90 |
| #define SH_QSECR 0x94 |
| #define SH_SIZE 0x200 |
| |
| /* Offsets for EDMA CC global registers */ |
| #define EDMA_REV 0x0000 |
| #define EDMA_CCCFG 0x0004 |
| #define EDMA_QCHMAP 0x0200 /* 8 registers */ |
| #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */ |
| #define EDMA_QDMAQNUM 0x0260 |
| #define EDMA_QUETCMAP 0x0280 |
| #define EDMA_QUEPRI 0x0284 |
| #define EDMA_EMR 0x0300 /* 64 bits */ |
| #define EDMA_EMCR 0x0308 /* 64 bits */ |
| #define EDMA_QEMR 0x0310 |
| #define EDMA_QEMCR 0x0314 |
| #define EDMA_CCERR 0x0318 |
| #define EDMA_CCERRCLR 0x031c |
| #define EDMA_EEVAL 0x0320 |
| #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/ |
| #define EDMA_QRAE 0x0380 /* 4 registers */ |
| #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */ |
| #define EDMA_QSTAT 0x0600 /* 2 registers */ |
| #define EDMA_QWMTHRA 0x0620 |
| #define EDMA_QWMTHRB 0x0624 |
| #define EDMA_CCSTAT 0x0640 |
| |
| #define EDMA_M 0x1000 /* global channel registers */ |
| #define EDMA_ECR 0x1008 |
| #define EDMA_ECRH 0x100C |
| #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */ |
| #define EDMA_PARM 0x4000 /* PaRAM entries */ |
| |
| #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5)) |
| |
| #define EDMA_DCHMAP 0x0100 /* 64 registers */ |
| |
| /* CCCFG register */ |
| #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */ |
| #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */ |
| #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */ |
| #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */ |
| #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */ |
| #define CHMAP_EXIST BIT(24) |
| |
| /* CCSTAT register */ |
| #define EDMA_CCSTAT_ACTV BIT(4) |
| |
| /* |
| * Max of 20 segments per channel to conserve PaRAM slots |
| * Also note that MAX_NR_SG should be atleast the no.of periods |
| * that are required for ASoC, otherwise DMA prep calls will |
| * fail. Today davinci-pcm is the only user of this driver and |
| * requires atleast 17 slots, so we setup the default to 20. |
| */ |
| #define MAX_NR_SG 20 |
| #define EDMA_MAX_SLOTS MAX_NR_SG |
| #define EDMA_DESCRIPTORS 16 |
| |
| #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */ |
| #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */ |
| #define EDMA_CONT_PARAMS_ANY 1001 |
| #define EDMA_CONT_PARAMS_FIXED_EXACT 1002 |
| #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003 |
| |
| /* PaRAM slots are laid out like this */ |
| struct edmacc_param { |
| u32 opt; |
| u32 src; |
| u32 a_b_cnt; |
| u32 dst; |
| u32 src_dst_bidx; |
| u32 link_bcntrld; |
| u32 src_dst_cidx; |
| u32 ccnt; |
| } __packed; |
| |
| /* fields in edmacc_param.opt */ |
| #define SAM BIT(0) |
| #define DAM BIT(1) |
| #define SYNCDIM BIT(2) |
| #define STATIC BIT(3) |
| #define EDMA_FWID (0x07 << 8) |
| #define TCCMODE BIT(11) |
| #define EDMA_TCC(t) ((t) << 12) |
| #define TCINTEN BIT(20) |
| #define ITCINTEN BIT(21) |
| #define TCCHEN BIT(22) |
| #define ITCCHEN BIT(23) |
| |
| struct edma_pset { |
| u32 len; |
| dma_addr_t addr; |
| struct edmacc_param param; |
| }; |
| |
| struct edma_desc { |
| struct virt_dma_desc vdesc; |
| struct list_head node; |
| enum dma_transfer_direction direction; |
| int cyclic; |
| int absync; |
| int pset_nr; |
| struct edma_chan *echan; |
| int processed; |
| |
| /* |
| * The following 4 elements are used for residue accounting. |
| * |
| * - processed_stat: the number of SG elements we have traversed |
| * so far to cover accounting. This is updated directly to processed |
| * during edma_callback and is always <= processed, because processed |
| * refers to the number of pending transfer (programmed to EDMA |
| * controller), where as processed_stat tracks number of transfers |
| * accounted for so far. |
| * |
| * - residue: The amount of bytes we have left to transfer for this desc |
| * |
| * - residue_stat: The residue in bytes of data we have covered |
| * so far for accounting. This is updated directly to residue |
| * during callbacks to keep it current. |
| * |
| * - sg_len: Tracks the length of the current intermediate transfer, |
| * this is required to update the residue during intermediate transfer |
| * completion callback. |
| */ |
| int processed_stat; |
| u32 sg_len; |
| u32 residue; |
| u32 residue_stat; |
| |
| struct edma_pset pset[0]; |
| }; |
| |
| struct edma_cc; |
| |
| struct edma_tc { |
| struct device_node *node; |
| u16 id; |
| }; |
| |
| struct edma_chan { |
| struct virt_dma_chan vchan; |
| struct list_head node; |
| struct edma_desc *edesc; |
| struct edma_cc *ecc; |
| struct edma_tc *tc; |
| int ch_num; |
| bool alloced; |
| bool hw_triggered; |
| int slot[EDMA_MAX_SLOTS]; |
| int missed; |
| struct dma_slave_config cfg; |
| }; |
| |
| struct edma_cc { |
| struct device *dev; |
| struct edma_soc_info *info; |
| void __iomem *base; |
| int id; |
| bool legacy_mode; |
| |
| /* eDMA3 resource information */ |
| unsigned num_channels; |
| unsigned num_qchannels; |
| unsigned num_region; |
| unsigned num_slots; |
| unsigned num_tc; |
| bool chmap_exist; |
| enum dma_event_q default_queue; |
| |
| unsigned int ccint; |
| unsigned int ccerrint; |
| |
| /* |
| * The slot_inuse bit for each PaRAM slot is clear unless the slot is |
| * in use by Linux or if it is allocated to be used by DSP. |
| */ |
| unsigned long *slot_inuse; |
| |
| struct dma_device dma_slave; |
| struct dma_device *dma_memcpy; |
| struct edma_chan *slave_chans; |
| struct edma_tc *tc_list; |
| int dummy_slot; |
| }; |
| |
| /* dummy param set used to (re)initialize parameter RAM slots */ |
| static const struct edmacc_param dummy_paramset = { |
| .link_bcntrld = 0xffff, |
| .ccnt = 1, |
| }; |
| |
| #define EDMA_BINDING_LEGACY 0 |
| #define EDMA_BINDING_TPCC 1 |
| static const u32 edma_binding_type[] = { |
| [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY, |
| [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC, |
| }; |
| |
| static const struct of_device_id edma_of_ids[] = { |
| { |
| .compatible = "ti,edma3", |
| .data = &edma_binding_type[EDMA_BINDING_LEGACY], |
| }, |
| { |
| .compatible = "ti,edma3-tpcc", |
| .data = &edma_binding_type[EDMA_BINDING_TPCC], |
| }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, edma_of_ids); |
| |
| static const struct of_device_id edma_tptc_of_ids[] = { |
| { .compatible = "ti,edma3-tptc", }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, edma_tptc_of_ids); |
| |
| static inline unsigned int edma_read(struct edma_cc *ecc, int offset) |
| { |
| return (unsigned int)__raw_readl(ecc->base + offset); |
| } |
| |
| static inline void edma_write(struct edma_cc *ecc, int offset, int val) |
| { |
| __raw_writel(val, ecc->base + offset); |
| } |
| |
| static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and, |
| unsigned or) |
| { |
| unsigned val = edma_read(ecc, offset); |
| |
| val &= and; |
| val |= or; |
| edma_write(ecc, offset, val); |
| } |
| |
| static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and) |
| { |
| unsigned val = edma_read(ecc, offset); |
| |
| val &= and; |
| edma_write(ecc, offset, val); |
| } |
| |
| static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or) |
| { |
| unsigned val = edma_read(ecc, offset); |
| |
| val |= or; |
| edma_write(ecc, offset, val); |
| } |
| |
| static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset, |
| int i) |
| { |
| return edma_read(ecc, offset + (i << 2)); |
| } |
| |
| static inline void edma_write_array(struct edma_cc *ecc, int offset, int i, |
| unsigned val) |
| { |
| edma_write(ecc, offset + (i << 2), val); |
| } |
| |
| static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i, |
| unsigned and, unsigned or) |
| { |
| edma_modify(ecc, offset + (i << 2), and, or); |
| } |
| |
| static inline void edma_or_array(struct edma_cc *ecc, int offset, int i, |
| unsigned or) |
| { |
| edma_or(ecc, offset + (i << 2), or); |
| } |
| |
| static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j, |
| unsigned or) |
| { |
| edma_or(ecc, offset + ((i * 2 + j) << 2), or); |
| } |
| |
| static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i, |
| int j, unsigned val) |
| { |
| edma_write(ecc, offset + ((i * 2 + j) << 2), val); |
| } |
| |
| static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset) |
| { |
| return edma_read(ecc, EDMA_SHADOW0 + offset); |
| } |
| |
| static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc, |
| int offset, int i) |
| { |
| return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2)); |
| } |
| |
| static inline void edma_shadow0_write(struct edma_cc *ecc, int offset, |
| unsigned val) |
| { |
| edma_write(ecc, EDMA_SHADOW0 + offset, val); |
| } |
| |
| static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset, |
| int i, unsigned val) |
| { |
| edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val); |
| } |
| |
| static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset, |
| int param_no) |
| { |
| return edma_read(ecc, EDMA_PARM + offset + (param_no << 5)); |
| } |
| |
| static inline void edma_param_write(struct edma_cc *ecc, int offset, |
| int param_no, unsigned val) |
| { |
| edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val); |
| } |
| |
| static inline void edma_param_modify(struct edma_cc *ecc, int offset, |
| int param_no, unsigned and, unsigned or) |
| { |
| edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or); |
| } |
| |
| static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no, |
| unsigned and) |
| { |
| edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and); |
| } |
| |
| static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no, |
| unsigned or) |
| { |
| edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or); |
| } |
| |
| static inline void edma_set_bits(int offset, int len, unsigned long *p) |
| { |
| for (; len > 0; len--) |
| set_bit(offset + (len - 1), p); |
| } |
| |
| static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no, |
| int priority) |
| { |
| int bit = queue_no * 4; |
| |
| edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit)); |
| } |
| |
| static void edma_set_chmap(struct edma_chan *echan, int slot) |
| { |
| struct edma_cc *ecc = echan->ecc; |
| int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| |
| if (ecc->chmap_exist) { |
| slot = EDMA_CHAN_SLOT(slot); |
| edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5)); |
| } |
| } |
| |
| static void edma_setup_interrupt(struct edma_chan *echan, bool enable) |
| { |
| struct edma_cc *ecc = echan->ecc; |
| int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| |
| if (enable) { |
| edma_shadow0_write_array(ecc, SH_ICR, channel >> 5, |
| BIT(channel & 0x1f)); |
| edma_shadow0_write_array(ecc, SH_IESR, channel >> 5, |
| BIT(channel & 0x1f)); |
| } else { |
| edma_shadow0_write_array(ecc, SH_IECR, channel >> 5, |
| BIT(channel & 0x1f)); |
| } |
| } |
| |
| /* |
| * paRAM slot management functions |
| */ |
| static void edma_write_slot(struct edma_cc *ecc, unsigned slot, |
| const struct edmacc_param *param) |
| { |
| slot = EDMA_CHAN_SLOT(slot); |
| if (slot >= ecc->num_slots) |
| return; |
| memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE); |
| } |
| |
| static int edma_read_slot(struct edma_cc *ecc, unsigned slot, |
| struct edmacc_param *param) |
| { |
| slot = EDMA_CHAN_SLOT(slot); |
| if (slot >= ecc->num_slots) |
| return -EINVAL; |
| memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE); |
| |
| return 0; |
| } |
| |
| /** |
| * edma_alloc_slot - allocate DMA parameter RAM |
| * @ecc: pointer to edma_cc struct |
| * @slot: specific slot to allocate; negative for "any unused slot" |
| * |
| * This allocates a parameter RAM slot, initializing it to hold a |
| * dummy transfer. Slots allocated using this routine have not been |
| * mapped to a hardware DMA channel, and will normally be used by |
| * linking to them from a slot associated with a DMA channel. |
| * |
| * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific |
| * slots may be allocated on behalf of DSP firmware. |
| * |
| * Returns the number of the slot, else negative errno. |
| */ |
| static int edma_alloc_slot(struct edma_cc *ecc, int slot) |
| { |
| if (slot >= 0) { |
| slot = EDMA_CHAN_SLOT(slot); |
| /* Requesting entry paRAM slot for a HW triggered channel. */ |
| if (ecc->chmap_exist && slot < ecc->num_channels) |
| slot = EDMA_SLOT_ANY; |
| } |
| |
| if (slot < 0) { |
| if (ecc->chmap_exist) |
| slot = 0; |
| else |
| slot = ecc->num_channels; |
| for (;;) { |
| slot = find_next_zero_bit(ecc->slot_inuse, |
| ecc->num_slots, |
| slot); |
| if (slot == ecc->num_slots) |
| return -ENOMEM; |
| if (!test_and_set_bit(slot, ecc->slot_inuse)) |
| break; |
| } |
| } else if (slot >= ecc->num_slots) { |
| return -EINVAL; |
| } else if (test_and_set_bit(slot, ecc->slot_inuse)) { |
| return -EBUSY; |
| } |
| |
| edma_write_slot(ecc, slot, &dummy_paramset); |
| |
| return EDMA_CTLR_CHAN(ecc->id, slot); |
| } |
| |
| static void edma_free_slot(struct edma_cc *ecc, unsigned slot) |
| { |
| slot = EDMA_CHAN_SLOT(slot); |
| if (slot >= ecc->num_slots) |
| return; |
| |
| edma_write_slot(ecc, slot, &dummy_paramset); |
| clear_bit(slot, ecc->slot_inuse); |
| } |
| |
| /** |
| * edma_link - link one parameter RAM slot to another |
| * @ecc: pointer to edma_cc struct |
| * @from: parameter RAM slot originating the link |
| * @to: parameter RAM slot which is the link target |
| * |
| * The originating slot should not be part of any active DMA transfer. |
| */ |
| static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to) |
| { |
| if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to))) |
| dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n"); |
| |
| from = EDMA_CHAN_SLOT(from); |
| to = EDMA_CHAN_SLOT(to); |
| if (from >= ecc->num_slots || to >= ecc->num_slots) |
| return; |
| |
| edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000, |
| PARM_OFFSET(to)); |
| } |
| |
| /** |
| * edma_get_position - returns the current transfer point |
| * @ecc: pointer to edma_cc struct |
| * @slot: parameter RAM slot being examined |
| * @dst: true selects the dest position, false the source |
| * |
| * Returns the position of the current active slot |
| */ |
| static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot, |
| bool dst) |
| { |
| u32 offs; |
| |
| slot = EDMA_CHAN_SLOT(slot); |
| offs = PARM_OFFSET(slot); |
| offs += dst ? PARM_DST : PARM_SRC; |
| |
| return edma_read(ecc, offs); |
| } |
| |
| /* |
| * Channels with event associations will be triggered by their hardware |
| * events, and channels without such associations will be triggered by |
| * software. (At this writing there is no interface for using software |
| * triggers except with channels that don't support hardware triggers.) |
| */ |
| static void edma_start(struct edma_chan *echan) |
| { |
| struct edma_cc *ecc = echan->ecc; |
| int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| int j = (channel >> 5); |
| unsigned int mask = BIT(channel & 0x1f); |
| |
| if (!echan->hw_triggered) { |
| /* EDMA channels without event association */ |
| dev_dbg(ecc->dev, "ESR%d %08x\n", j, |
| edma_shadow0_read_array(ecc, SH_ESR, j)); |
| edma_shadow0_write_array(ecc, SH_ESR, j, mask); |
| } else { |
| /* EDMA channel with event association */ |
| dev_dbg(ecc->dev, "ER%d %08x\n", j, |
| edma_shadow0_read_array(ecc, SH_ER, j)); |
| /* Clear any pending event or error */ |
| edma_write_array(ecc, EDMA_ECR, j, mask); |
| edma_write_array(ecc, EDMA_EMCR, j, mask); |
| /* Clear any SER */ |
| edma_shadow0_write_array(ecc, SH_SECR, j, mask); |
| edma_shadow0_write_array(ecc, SH_EESR, j, mask); |
| dev_dbg(ecc->dev, "EER%d %08x\n", j, |
| edma_shadow0_read_array(ecc, SH_EER, j)); |
| } |
| } |
| |
| static void edma_stop(struct edma_chan *echan) |
| { |
| struct edma_cc *ecc = echan->ecc; |
| int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| int j = (channel >> 5); |
| unsigned int mask = BIT(channel & 0x1f); |
| |
| edma_shadow0_write_array(ecc, SH_EECR, j, mask); |
| edma_shadow0_write_array(ecc, SH_ECR, j, mask); |
| edma_shadow0_write_array(ecc, SH_SECR, j, mask); |
| edma_write_array(ecc, EDMA_EMCR, j, mask); |
| |
| /* clear possibly pending completion interrupt */ |
| edma_shadow0_write_array(ecc, SH_ICR, j, mask); |
| |
| dev_dbg(ecc->dev, "EER%d %08x\n", j, |
| edma_shadow0_read_array(ecc, SH_EER, j)); |
| |
| /* REVISIT: consider guarding against inappropriate event |
| * chaining by overwriting with dummy_paramset. |
| */ |
| } |
| |
| /* |
| * Temporarily disable EDMA hardware events on the specified channel, |
| * preventing them from triggering new transfers |
| */ |
| static void edma_pause(struct edma_chan *echan) |
| { |
| int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| unsigned int mask = BIT(channel & 0x1f); |
| |
| edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask); |
| } |
| |
| /* Re-enable EDMA hardware events on the specified channel. */ |
| static void edma_resume(struct edma_chan *echan) |
| { |
| int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| unsigned int mask = BIT(channel & 0x1f); |
| |
| edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask); |
| } |
| |
| static void edma_trigger_channel(struct edma_chan *echan) |
| { |
| struct edma_cc *ecc = echan->ecc; |
| int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| unsigned int mask = BIT(channel & 0x1f); |
| |
| edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask); |
| |
| dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5), |
| edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5))); |
| } |
| |
| static void edma_clean_channel(struct edma_chan *echan) |
| { |
| struct edma_cc *ecc = echan->ecc; |
| int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| int j = (channel >> 5); |
| unsigned int mask = BIT(channel & 0x1f); |
| |
| dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j)); |
| edma_shadow0_write_array(ecc, SH_ECR, j, mask); |
| /* Clear the corresponding EMR bits */ |
| edma_write_array(ecc, EDMA_EMCR, j, mask); |
| /* Clear any SER */ |
| edma_shadow0_write_array(ecc, SH_SECR, j, mask); |
| edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0)); |
| } |
| |
| /* Move channel to a specific event queue */ |
| static void edma_assign_channel_eventq(struct edma_chan *echan, |
| enum dma_event_q eventq_no) |
| { |
| struct edma_cc *ecc = echan->ecc; |
| int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| int bit = (channel & 0x7) * 4; |
| |
| /* default to low priority queue */ |
| if (eventq_no == EVENTQ_DEFAULT) |
| eventq_no = ecc->default_queue; |
| if (eventq_no >= ecc->num_tc) |
| return; |
| |
| eventq_no &= 7; |
| edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit), |
| eventq_no << bit); |
| } |
| |
| static int edma_alloc_channel(struct edma_chan *echan, |
| enum dma_event_q eventq_no) |
| { |
| struct edma_cc *ecc = echan->ecc; |
| int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| |
| /* ensure access through shadow region 0 */ |
| edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f)); |
| |
| /* ensure no events are pending */ |
| edma_stop(echan); |
| |
| edma_setup_interrupt(echan, true); |
| |
| edma_assign_channel_eventq(echan, eventq_no); |
| |
| return 0; |
| } |
| |
| static void edma_free_channel(struct edma_chan *echan) |
| { |
| /* ensure no events are pending */ |
| edma_stop(echan); |
| /* REVISIT should probably take out of shadow region 0 */ |
| edma_setup_interrupt(echan, false); |
| } |
| |
| static inline struct edma_cc *to_edma_cc(struct dma_device *d) |
| { |
| return container_of(d, struct edma_cc, dma_slave); |
| } |
| |
| static inline struct edma_chan *to_edma_chan(struct dma_chan *c) |
| { |
| return container_of(c, struct edma_chan, vchan.chan); |
| } |
| |
| static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx) |
| { |
| return container_of(tx, struct edma_desc, vdesc.tx); |
| } |
| |
| static void edma_desc_free(struct virt_dma_desc *vdesc) |
| { |
| kfree(container_of(vdesc, struct edma_desc, vdesc)); |
| } |
| |
| /* Dispatch a queued descriptor to the controller (caller holds lock) */ |
| static void edma_execute(struct edma_chan *echan) |
| { |
| struct edma_cc *ecc = echan->ecc; |
| struct virt_dma_desc *vdesc; |
| struct edma_desc *edesc; |
| struct device *dev = echan->vchan.chan.device->dev; |
| int i, j, left, nslots; |
| |
| if (!echan->edesc) { |
| /* Setup is needed for the first transfer */ |
| vdesc = vchan_next_desc(&echan->vchan); |
| if (!vdesc) |
| return; |
| list_del(&vdesc->node); |
| echan->edesc = to_edma_desc(&vdesc->tx); |
| } |
| |
| edesc = echan->edesc; |
| |
| /* Find out how many left */ |
| left = edesc->pset_nr - edesc->processed; |
| nslots = min(MAX_NR_SG, left); |
| edesc->sg_len = 0; |
| |
| /* Write descriptor PaRAM set(s) */ |
| for (i = 0; i < nslots; i++) { |
| j = i + edesc->processed; |
| edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param); |
| edesc->sg_len += edesc->pset[j].len; |
| dev_vdbg(dev, |
| "\n pset[%d]:\n" |
| " chnum\t%d\n" |
| " slot\t%d\n" |
| " opt\t%08x\n" |
| " src\t%08x\n" |
| " dst\t%08x\n" |
| " abcnt\t%08x\n" |
| " ccnt\t%08x\n" |
| " bidx\t%08x\n" |
| " cidx\t%08x\n" |
| " lkrld\t%08x\n", |
| j, echan->ch_num, echan->slot[i], |
| edesc->pset[j].param.opt, |
| edesc->pset[j].param.src, |
| edesc->pset[j].param.dst, |
| edesc->pset[j].param.a_b_cnt, |
| edesc->pset[j].param.ccnt, |
| edesc->pset[j].param.src_dst_bidx, |
| edesc->pset[j].param.src_dst_cidx, |
| edesc->pset[j].param.link_bcntrld); |
| /* Link to the previous slot if not the last set */ |
| if (i != (nslots - 1)) |
| edma_link(ecc, echan->slot[i], echan->slot[i + 1]); |
| } |
| |
| edesc->processed += nslots; |
| |
| /* |
| * If this is either the last set in a set of SG-list transactions |
| * then setup a link to the dummy slot, this results in all future |
| * events being absorbed and that's OK because we're done |
| */ |
| if (edesc->processed == edesc->pset_nr) { |
| if (edesc->cyclic) |
| edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]); |
| else |
| edma_link(ecc, echan->slot[nslots - 1], |
| echan->ecc->dummy_slot); |
| } |
| |
| if (echan->missed) { |
| /* |
| * This happens due to setup times between intermediate |
| * transfers in long SG lists which have to be broken up into |
| * transfers of MAX_NR_SG |
| */ |
| dev_dbg(dev, "missed event on channel %d\n", echan->ch_num); |
| edma_clean_channel(echan); |
| edma_stop(echan); |
| edma_start(echan); |
| edma_trigger_channel(echan); |
| echan->missed = 0; |
| } else if (edesc->processed <= MAX_NR_SG) { |
| dev_dbg(dev, "first transfer starting on channel %d\n", |
| echan->ch_num); |
| edma_start(echan); |
| } else { |
| dev_dbg(dev, "chan: %d: completed %d elements, resuming\n", |
| echan->ch_num, edesc->processed); |
| edma_resume(echan); |
| } |
| } |
| |
| static int edma_terminate_all(struct dma_chan *chan) |
| { |
| struct edma_chan *echan = to_edma_chan(chan); |
| unsigned long flags; |
| LIST_HEAD(head); |
| |
| spin_lock_irqsave(&echan->vchan.lock, flags); |
| |
| /* |
| * Stop DMA activity: we assume the callback will not be called |
| * after edma_dma() returns (even if it does, it will see |
| * echan->edesc is NULL and exit.) |
| */ |
| if (echan->edesc) { |
| edma_stop(echan); |
| /* Move the cyclic channel back to default queue */ |
| if (!echan->tc && echan->edesc->cyclic) |
| edma_assign_channel_eventq(echan, EVENTQ_DEFAULT); |
| /* |
| * free the running request descriptor |
| * since it is not in any of the vdesc lists |
| */ |
| edma_desc_free(&echan->edesc->vdesc); |
| echan->edesc = NULL; |
| } |
| |
| vchan_get_all_descriptors(&echan->vchan, &head); |
| spin_unlock_irqrestore(&echan->vchan.lock, flags); |
| vchan_dma_desc_free_list(&echan->vchan, &head); |
| |
| return 0; |
| } |
| |
| static void edma_synchronize(struct dma_chan *chan) |
| { |
| struct edma_chan *echan = to_edma_chan(chan); |
| |
| vchan_synchronize(&echan->vchan); |
| } |
| |
| static int edma_slave_config(struct dma_chan *chan, |
| struct dma_slave_config *cfg) |
| { |
| struct edma_chan *echan = to_edma_chan(chan); |
| |
| if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || |
| cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) |
| return -EINVAL; |
| |
| memcpy(&echan->cfg, cfg, sizeof(echan->cfg)); |
| |
| return 0; |
| } |
| |
| static int edma_dma_pause(struct dma_chan *chan) |
| { |
| struct edma_chan *echan = to_edma_chan(chan); |
| |
| if (!echan->edesc) |
| return -EINVAL; |
| |
| edma_pause(echan); |
| return 0; |
| } |
| |
| static int edma_dma_resume(struct dma_chan *chan) |
| { |
| struct edma_chan *echan = to_edma_chan(chan); |
| |
| edma_resume(echan); |
| return 0; |
| } |
| |
| /* |
| * A PaRAM set configuration abstraction used by other modes |
| * @chan: Channel who's PaRAM set we're configuring |
| * @pset: PaRAM set to initialize and setup. |
| * @src_addr: Source address of the DMA |
| * @dst_addr: Destination address of the DMA |
| * @burst: In units of dev_width, how much to send |
| * @dev_width: How much is the dev_width |
| * @dma_length: Total length of the DMA transfer |
| * @direction: Direction of the transfer |
| */ |
| static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset, |
| dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst, |
| unsigned int acnt, unsigned int dma_length, |
| enum dma_transfer_direction direction) |
| { |
| struct edma_chan *echan = to_edma_chan(chan); |
| struct device *dev = chan->device->dev; |
| struct edmacc_param *param = &epset->param; |
| int bcnt, ccnt, cidx; |
| int src_bidx, dst_bidx, src_cidx, dst_cidx; |
| int absync; |
| |
| /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */ |
| if (!burst) |
| burst = 1; |
| /* |
| * If the maxburst is equal to the fifo width, use |
| * A-synced transfers. This allows for large contiguous |
| * buffer transfers using only one PaRAM set. |
| */ |
| if (burst == 1) { |
| /* |
| * For the A-sync case, bcnt and ccnt are the remainder |
| * and quotient respectively of the division of: |
| * (dma_length / acnt) by (SZ_64K -1). This is so |
| * that in case bcnt over flows, we have ccnt to use. |
| * Note: In A-sync tranfer only, bcntrld is used, but it |
| * only applies for sg_dma_len(sg) >= SZ_64K. |
| * In this case, the best way adopted is- bccnt for the |
| * first frame will be the remainder below. Then for |
| * every successive frame, bcnt will be SZ_64K-1. This |
| * is assured as bcntrld = 0xffff in end of function. |
| */ |
| absync = false; |
| ccnt = dma_length / acnt / (SZ_64K - 1); |
| bcnt = dma_length / acnt - ccnt * (SZ_64K - 1); |
| /* |
| * If bcnt is non-zero, we have a remainder and hence an |
| * extra frame to transfer, so increment ccnt. |
| */ |
| if (bcnt) |
| ccnt++; |
| else |
| bcnt = SZ_64K - 1; |
| cidx = acnt; |
| } else { |
| /* |
| * If maxburst is greater than the fifo address_width, |
| * use AB-synced transfers where A count is the fifo |
| * address_width and B count is the maxburst. In this |
| * case, we are limited to transfers of C count frames |
| * of (address_width * maxburst) where C count is limited |
| * to SZ_64K-1. This places an upper bound on the length |
| * of an SG segment that can be handled. |
| */ |
| absync = true; |
| bcnt = burst; |
| ccnt = dma_length / (acnt * bcnt); |
| if (ccnt > (SZ_64K - 1)) { |
| dev_err(dev, "Exceeded max SG segment size\n"); |
| return -EINVAL; |
| } |
| cidx = acnt * bcnt; |
| } |
| |
| epset->len = dma_length; |
| |
| if (direction == DMA_MEM_TO_DEV) { |
| src_bidx = acnt; |
| src_cidx = cidx; |
| dst_bidx = 0; |
| dst_cidx = 0; |
| epset->addr = src_addr; |
| } else if (direction == DMA_DEV_TO_MEM) { |
| src_bidx = 0; |
| src_cidx = 0; |
| dst_bidx = acnt; |
| dst_cidx = cidx; |
| epset->addr = dst_addr; |
| } else if (direction == DMA_MEM_TO_MEM) { |
| src_bidx = acnt; |
| src_cidx = cidx; |
| dst_bidx = acnt; |
| dst_cidx = cidx; |
| } else { |
| dev_err(dev, "%s: direction not implemented yet\n", __func__); |
| return -EINVAL; |
| } |
| |
| param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); |
| /* Configure A or AB synchronized transfers */ |
| if (absync) |
| param->opt |= SYNCDIM; |
| |
| param->src = src_addr; |
| param->dst = dst_addr; |
| |
| param->src_dst_bidx = (dst_bidx << 16) | src_bidx; |
| param->src_dst_cidx = (dst_cidx << 16) | src_cidx; |
| |
| param->a_b_cnt = bcnt << 16 | acnt; |
| param->ccnt = ccnt; |
| /* |
| * Only time when (bcntrld) auto reload is required is for |
| * A-sync case, and in this case, a requirement of reload value |
| * of SZ_64K-1 only is assured. 'link' is initially set to NULL |
| * and then later will be populated by edma_execute. |
| */ |
| param->link_bcntrld = 0xffffffff; |
| return absync; |
| } |
| |
| static struct dma_async_tx_descriptor *edma_prep_slave_sg( |
| struct dma_chan *chan, struct scatterlist *sgl, |
| unsigned int sg_len, enum dma_transfer_direction direction, |
| unsigned long tx_flags, void *context) |
| { |
| struct edma_chan *echan = to_edma_chan(chan); |
| struct device *dev = chan->device->dev; |
| struct edma_desc *edesc; |
| dma_addr_t src_addr = 0, dst_addr = 0; |
| enum dma_slave_buswidth dev_width; |
| u32 burst; |
| struct scatterlist *sg; |
| int i, nslots, ret; |
| |
| if (unlikely(!echan || !sgl || !sg_len)) |
| return NULL; |
| |
| if (direction == DMA_DEV_TO_MEM) { |
| src_addr = echan->cfg.src_addr; |
| dev_width = echan->cfg.src_addr_width; |
| burst = echan->cfg.src_maxburst; |
| } else if (direction == DMA_MEM_TO_DEV) { |
| dst_addr = echan->cfg.dst_addr; |
| dev_width = echan->cfg.dst_addr_width; |
| burst = echan->cfg.dst_maxburst; |
| } else { |
| dev_err(dev, "%s: bad direction: %d\n", __func__, direction); |
| return NULL; |
| } |
| |
| if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { |
| dev_err(dev, "%s: Undefined slave buswidth\n", __func__); |
| return NULL; |
| } |
| |
| edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]), |
| GFP_ATOMIC); |
| if (!edesc) |
| return NULL; |
| |
| edesc->pset_nr = sg_len; |
| edesc->residue = 0; |
| edesc->direction = direction; |
| edesc->echan = echan; |
| |
| /* Allocate a PaRAM slot, if needed */ |
| nslots = min_t(unsigned, MAX_NR_SG, sg_len); |
| |
| for (i = 0; i < nslots; i++) { |
| if (echan->slot[i] < 0) { |
| echan->slot[i] = |
| edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); |
| if (echan->slot[i] < 0) { |
| kfree(edesc); |
| dev_err(dev, "%s: Failed to allocate slot\n", |
| __func__); |
| return NULL; |
| } |
| } |
| } |
| |
| /* Configure PaRAM sets for each SG */ |
| for_each_sg(sgl, sg, sg_len, i) { |
| /* Get address for each SG */ |
| if (direction == DMA_DEV_TO_MEM) |
| dst_addr = sg_dma_address(sg); |
| else |
| src_addr = sg_dma_address(sg); |
| |
| ret = edma_config_pset(chan, &edesc->pset[i], src_addr, |
| dst_addr, burst, dev_width, |
| sg_dma_len(sg), direction); |
| if (ret < 0) { |
| kfree(edesc); |
| return NULL; |
| } |
| |
| edesc->absync = ret; |
| edesc->residue += sg_dma_len(sg); |
| |
| if (i == sg_len - 1) |
| /* Enable completion interrupt */ |
| edesc->pset[i].param.opt |= TCINTEN; |
| else if (!((i+1) % MAX_NR_SG)) |
| /* |
| * Enable early completion interrupt for the |
| * intermediateset. In this case the driver will be |
| * notified when the paRAM set is submitted to TC. This |
| * will allow more time to set up the next set of slots. |
| */ |
| edesc->pset[i].param.opt |= (TCINTEN | TCCMODE); |
| } |
| edesc->residue_stat = edesc->residue; |
| |
| return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); |
| } |
| |
| static struct dma_async_tx_descriptor *edma_prep_dma_memcpy( |
| struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, |
| size_t len, unsigned long tx_flags) |
| { |
| int ret, nslots; |
| struct edma_desc *edesc; |
| struct device *dev = chan->device->dev; |
| struct edma_chan *echan = to_edma_chan(chan); |
| unsigned int width, pset_len; |
| |
| if (unlikely(!echan || !len)) |
| return NULL; |
| |
| if (len < SZ_64K) { |
| /* |
| * Transfer size less than 64K can be handled with one paRAM |
| * slot and with one burst. |
| * ACNT = length |
| */ |
| width = len; |
| pset_len = len; |
| nslots = 1; |
| } else { |
| /* |
| * Transfer size bigger than 64K will be handled with maximum of |
| * two paRAM slots. |
| * slot1: (full_length / 32767) times 32767 bytes bursts. |
| * ACNT = 32767, length1: (full_length / 32767) * 32767 |
| * slot2: the remaining amount of data after slot1. |
| * ACNT = full_length - length1, length2 = ACNT |
| * |
| * When the full_length is multibple of 32767 one slot can be |
| * used to complete the transfer. |
| */ |
| width = SZ_32K - 1; |
| pset_len = rounddown(len, width); |
| /* One slot is enough for lengths multiple of (SZ_32K -1) */ |
| if (unlikely(pset_len == len)) |
| nslots = 1; |
| else |
| nslots = 2; |
| } |
| |
| edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]), |
| GFP_ATOMIC); |
| if (!edesc) |
| return NULL; |
| |
| edesc->pset_nr = nslots; |
| edesc->residue = edesc->residue_stat = len; |
| edesc->direction = DMA_MEM_TO_MEM; |
| edesc->echan = echan; |
| |
| ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1, |
| width, pset_len, DMA_MEM_TO_MEM); |
| if (ret < 0) { |
| kfree(edesc); |
| return NULL; |
| } |
| |
| edesc->absync = ret; |
| |
| edesc->pset[0].param.opt |= ITCCHEN; |
| if (nslots == 1) { |
| /* Enable transfer complete interrupt */ |
| edesc->pset[0].param.opt |= TCINTEN; |
| } else { |
| /* Enable transfer complete chaining for the first slot */ |
| edesc->pset[0].param.opt |= TCCHEN; |
| |
| if (echan->slot[1] < 0) { |
| echan->slot[1] = edma_alloc_slot(echan->ecc, |
| EDMA_SLOT_ANY); |
| if (echan->slot[1] < 0) { |
| kfree(edesc); |
| dev_err(dev, "%s: Failed to allocate slot\n", |
| __func__); |
| return NULL; |
| } |
| } |
| dest += pset_len; |
| src += pset_len; |
| pset_len = width = len % (SZ_32K - 1); |
| |
| ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1, |
| width, pset_len, DMA_MEM_TO_MEM); |
| if (ret < 0) { |
| kfree(edesc); |
| return NULL; |
| } |
| |
| edesc->pset[1].param.opt |= ITCCHEN; |
| edesc->pset[1].param.opt |= TCINTEN; |
| } |
| |
| return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); |
| } |
| |
| static struct dma_async_tx_descriptor *edma_prep_dma_cyclic( |
| struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, |
| size_t period_len, enum dma_transfer_direction direction, |
| unsigned long tx_flags) |
| { |
| struct edma_chan *echan = to_edma_chan(chan); |
| struct device *dev = chan->device->dev; |
| struct edma_desc *edesc; |
| dma_addr_t src_addr, dst_addr; |
| enum dma_slave_buswidth dev_width; |
| bool use_intermediate = false; |
| u32 burst; |
| int i, ret, nslots; |
| |
| if (unlikely(!echan || !buf_len || !period_len)) |
| return NULL; |
| |
| if (direction == DMA_DEV_TO_MEM) { |
| src_addr = echan->cfg.src_addr; |
| dst_addr = buf_addr; |
| dev_width = echan->cfg.src_addr_width; |
| burst = echan->cfg.src_maxburst; |
| } else if (direction == DMA_MEM_TO_DEV) { |
| src_addr = buf_addr; |
| dst_addr = echan->cfg.dst_addr; |
| dev_width = echan->cfg.dst_addr_width; |
| burst = echan->cfg.dst_maxburst; |
| } else { |
| dev_err(dev, "%s: bad direction: %d\n", __func__, direction); |
| return NULL; |
| } |
| |
| if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { |
| dev_err(dev, "%s: Undefined slave buswidth\n", __func__); |
| return NULL; |
| } |
| |
| if (unlikely(buf_len % period_len)) { |
| dev_err(dev, "Period should be multiple of Buffer length\n"); |
| return NULL; |
| } |
| |
| nslots = (buf_len / period_len) + 1; |
| |
| /* |
| * Cyclic DMA users such as audio cannot tolerate delays introduced |
| * by cases where the number of periods is more than the maximum |
| * number of SGs the EDMA driver can handle at a time. For DMA types |
| * such as Slave SGs, such delays are tolerable and synchronized, |
| * but the synchronization is difficult to achieve with Cyclic and |
| * cannot be guaranteed, so we error out early. |
| */ |
| if (nslots > MAX_NR_SG) { |
| /* |
| * If the burst and period sizes are the same, we can put |
| * the full buffer into a single period and activate |
| * intermediate interrupts. This will produce interrupts |
| * after each burst, which is also after each desired period. |
| */ |
| if (burst == period_len) { |
| period_len = buf_len; |
| nslots = 2; |
| use_intermediate = true; |
| } else { |
| return NULL; |
| } |
| } |
| |
| edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]), |
| GFP_ATOMIC); |
| if (!edesc) |
| return NULL; |
| |
| edesc->cyclic = 1; |
| edesc->pset_nr = nslots; |
| edesc->residue = edesc->residue_stat = buf_len; |
| edesc->direction = direction; |
| edesc->echan = echan; |
| |
| dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n", |
| __func__, echan->ch_num, nslots, period_len, buf_len); |
| |
| for (i = 0; i < nslots; i++) { |
| /* Allocate a PaRAM slot, if needed */ |
| if (echan->slot[i] < 0) { |
| echan->slot[i] = |
| edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); |
| if (echan->slot[i] < 0) { |
| kfree(edesc); |
| dev_err(dev, "%s: Failed to allocate slot\n", |
| __func__); |
| return NULL; |
| } |
| } |
| |
| if (i == nslots - 1) { |
| memcpy(&edesc->pset[i], &edesc->pset[0], |
| sizeof(edesc->pset[0])); |
| break; |
| } |
| |
| ret = edma_config_pset(chan, &edesc->pset[i], src_addr, |
| dst_addr, burst, dev_width, period_len, |
| direction); |
| if (ret < 0) { |
| kfree(edesc); |
| return NULL; |
| } |
| |
| if (direction == DMA_DEV_TO_MEM) |
| dst_addr += period_len; |
| else |
| src_addr += period_len; |
| |
| dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i); |
| dev_vdbg(dev, |
| "\n pset[%d]:\n" |
| " chnum\t%d\n" |
| " slot\t%d\n" |
| " opt\t%08x\n" |
| " src\t%08x\n" |
| " dst\t%08x\n" |
| " abcnt\t%08x\n" |
| " ccnt\t%08x\n" |
| " bidx\t%08x\n" |
| " cidx\t%08x\n" |
| " lkrld\t%08x\n", |
| i, echan->ch_num, echan->slot[i], |
| edesc->pset[i].param.opt, |
| edesc->pset[i].param.src, |
| edesc->pset[i].param.dst, |
| edesc->pset[i].param.a_b_cnt, |
| edesc->pset[i].param.ccnt, |
| edesc->pset[i].param.src_dst_bidx, |
| edesc->pset[i].param.src_dst_cidx, |
| edesc->pset[i].param.link_bcntrld); |
| |
| edesc->absync = ret; |
| |
| /* |
| * Enable period interrupt only if it is requested |
| */ |
| if (tx_flags & DMA_PREP_INTERRUPT) { |
| edesc->pset[i].param.opt |= TCINTEN; |
| |
| /* Also enable intermediate interrupts if necessary */ |
| if (use_intermediate) |
| edesc->pset[i].param.opt |= ITCINTEN; |
| } |
| } |
| |
| /* Place the cyclic channel to highest priority queue */ |
| if (!echan->tc) |
| edma_assign_channel_eventq(echan, EVENTQ_0); |
| |
| return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); |
| } |
| |
| static void edma_completion_handler(struct edma_chan *echan) |
| { |
| struct device *dev = echan->vchan.chan.device->dev; |
| struct edma_desc *edesc; |
| |
| spin_lock(&echan->vchan.lock); |
| edesc = echan->edesc; |
| if (edesc) { |
| if (edesc->cyclic) { |
| vchan_cyclic_callback(&edesc->vdesc); |
| spin_unlock(&echan->vchan.lock); |
| return; |
| } else if (edesc->processed == edesc->pset_nr) { |
| edesc->residue = 0; |
| edma_stop(echan); |
| vchan_cookie_complete(&edesc->vdesc); |
| echan->edesc = NULL; |
| |
| dev_dbg(dev, "Transfer completed on channel %d\n", |
| echan->ch_num); |
| } else { |
| dev_dbg(dev, "Sub transfer completed on channel %d\n", |
| echan->ch_num); |
| |
| edma_pause(echan); |
| |
| /* Update statistics for tx_status */ |
| edesc->residue -= edesc->sg_len; |
| edesc->residue_stat = edesc->residue; |
| edesc->processed_stat = edesc->processed; |
| } |
| edma_execute(echan); |
| } |
| |
| spin_unlock(&echan->vchan.lock); |
| } |
| |
| /* eDMA interrupt handler */ |
| static irqreturn_t dma_irq_handler(int irq, void *data) |
| { |
| struct edma_cc *ecc = data; |
| int ctlr; |
| u32 sh_ier; |
| u32 sh_ipr; |
| u32 bank; |
| |
| ctlr = ecc->id; |
| if (ctlr < 0) |
| return IRQ_NONE; |
| |
| dev_vdbg(ecc->dev, "dma_irq_handler\n"); |
| |
| sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0); |
| if (!sh_ipr) { |
| sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1); |
| if (!sh_ipr) |
| return IRQ_NONE; |
| sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1); |
| bank = 1; |
| } else { |
| sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0); |
| bank = 0; |
| } |
| |
| do { |
| u32 slot; |
| u32 channel; |
| |
| slot = __ffs(sh_ipr); |
| sh_ipr &= ~(BIT(slot)); |
| |
| if (sh_ier & BIT(slot)) { |
| channel = (bank << 5) | slot; |
| /* Clear the corresponding IPR bits */ |
| edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot)); |
| edma_completion_handler(&ecc->slave_chans[channel]); |
| } |
| } while (sh_ipr); |
| |
| edma_shadow0_write(ecc, SH_IEVAL, 1); |
| return IRQ_HANDLED; |
| } |
| |
| static void edma_error_handler(struct edma_chan *echan) |
| { |
| struct edma_cc *ecc = echan->ecc; |
| struct device *dev = echan->vchan.chan.device->dev; |
| struct edmacc_param p; |
| int err; |
| |
| if (!echan->edesc) |
| return; |
| |
| spin_lock(&echan->vchan.lock); |
| |
| err = edma_read_slot(ecc, echan->slot[0], &p); |
| |
| /* |
| * Issue later based on missed flag which will be sure |
| * to happen as: |
| * (1) we finished transmitting an intermediate slot and |
| * edma_execute is coming up. |
| * (2) or we finished current transfer and issue will |
| * call edma_execute. |
| * |
| * Important note: issuing can be dangerous here and |
| * lead to some nasty recursion when we are in a NULL |
| * slot. So we avoid doing so and set the missed flag. |
| */ |
| if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) { |
| dev_dbg(dev, "Error on null slot, setting miss\n"); |
| echan->missed = 1; |
| } else { |
| /* |
| * The slot is already programmed but the event got |
| * missed, so its safe to issue it here. |
| */ |
| dev_dbg(dev, "Missed event, TRIGGERING\n"); |
| edma_clean_channel(echan); |
| edma_stop(echan); |
| edma_start(echan); |
| edma_trigger_channel(echan); |
| } |
| spin_unlock(&echan->vchan.lock); |
| } |
| |
| static inline bool edma_error_pending(struct edma_cc *ecc) |
| { |
| if (edma_read_array(ecc, EDMA_EMR, 0) || |
| edma_read_array(ecc, EDMA_EMR, 1) || |
| edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR)) |
| return true; |
| |
| return false; |
| } |
| |
| /* eDMA error interrupt handler */ |
| static irqreturn_t dma_ccerr_handler(int irq, void *data) |
| { |
| struct edma_cc *ecc = data; |
| int i, j; |
| int ctlr; |
| unsigned int cnt = 0; |
| unsigned int val; |
| |
| ctlr = ecc->id; |
| if (ctlr < 0) |
| return IRQ_NONE; |
| |
| dev_vdbg(ecc->dev, "dma_ccerr_handler\n"); |
| |
| if (!edma_error_pending(ecc)) { |
| /* |
| * The registers indicate no pending error event but the irq |
| * handler has been called. |
| * Ask eDMA to re-evaluate the error registers. |
| */ |
| dev_err(ecc->dev, "%s: Error interrupt without error event!\n", |
| __func__); |
| edma_write(ecc, EDMA_EEVAL, 1); |
| return IRQ_NONE; |
| } |
| |
| while (1) { |
| /* Event missed register(s) */ |
| for (j = 0; j < 2; j++) { |
| unsigned long emr; |
| |
| val = edma_read_array(ecc, EDMA_EMR, j); |
| if (!val) |
| continue; |
| |
| dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val); |
| emr = val; |
| for (i = find_next_bit(&emr, 32, 0); i < 32; |
| i = find_next_bit(&emr, 32, i + 1)) { |
| int k = (j << 5) + i; |
| |
| /* Clear the corresponding EMR bits */ |
| edma_write_array(ecc, EDMA_EMCR, j, BIT(i)); |
| /* Clear any SER */ |
| edma_shadow0_write_array(ecc, SH_SECR, j, |
| BIT(i)); |
| edma_error_handler(&ecc->slave_chans[k]); |
| } |
| } |
| |
| val = edma_read(ecc, EDMA_QEMR); |
| if (val) { |
| dev_dbg(ecc->dev, "QEMR 0x%02x\n", val); |
| /* Not reported, just clear the interrupt reason. */ |
| edma_write(ecc, EDMA_QEMCR, val); |
| edma_shadow0_write(ecc, SH_QSECR, val); |
| } |
| |
| val = edma_read(ecc, EDMA_CCERR); |
| if (val) { |
| dev_warn(ecc->dev, "CCERR 0x%08x\n", val); |
| /* Not reported, just clear the interrupt reason. */ |
| edma_write(ecc, EDMA_CCERRCLR, val); |
| } |
| |
| if (!edma_error_pending(ecc)) |
| break; |
| cnt++; |
| if (cnt > 10) |
| break; |
| } |
| edma_write(ecc, EDMA_EEVAL, 1); |
| return IRQ_HANDLED; |
| } |
| |
| /* Alloc channel resources */ |
| static int edma_alloc_chan_resources(struct dma_chan *chan) |
| { |
| struct edma_chan *echan = to_edma_chan(chan); |
| struct edma_cc *ecc = echan->ecc; |
| struct device *dev = ecc->dev; |
| enum dma_event_q eventq_no = EVENTQ_DEFAULT; |
| int ret; |
| |
| if (echan->tc) { |
| eventq_no = echan->tc->id; |
| } else if (ecc->tc_list) { |
| /* memcpy channel */ |
| echan->tc = &ecc->tc_list[ecc->info->default_queue]; |
| eventq_no = echan->tc->id; |
| } |
| |
| ret = edma_alloc_channel(echan, eventq_no); |
| if (ret) |
| return ret; |
| |
| echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num); |
| if (echan->slot[0] < 0) { |
| dev_err(dev, "Entry slot allocation failed for channel %u\n", |
| EDMA_CHAN_SLOT(echan->ch_num)); |
| goto err_slot; |
| } |
| |
| /* Set up channel -> slot mapping for the entry slot */ |
| edma_set_chmap(echan, echan->slot[0]); |
| echan->alloced = true; |
| |
| dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n", |
| EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id, |
| echan->hw_triggered ? "HW" : "SW"); |
| |
| return 0; |
| |
| err_slot: |
| edma_free_channel(echan); |
| return ret; |
| } |
| |
| /* Free channel resources */ |
| static void edma_free_chan_resources(struct dma_chan *chan) |
| { |
| struct edma_chan *echan = to_edma_chan(chan); |
| struct device *dev = echan->ecc->dev; |
| int i; |
| |
| /* Terminate transfers */ |
| edma_stop(echan); |
| |
| vchan_free_chan_resources(&echan->vchan); |
| |
| /* Free EDMA PaRAM slots */ |
| for (i = 0; i < EDMA_MAX_SLOTS; i++) { |
| if (echan->slot[i] >= 0) { |
| edma_free_slot(echan->ecc, echan->slot[i]); |
| echan->slot[i] = -1; |
| } |
| } |
| |
| /* Set entry slot to the dummy slot */ |
| edma_set_chmap(echan, echan->ecc->dummy_slot); |
| |
| /* Free EDMA channel */ |
| if (echan->alloced) { |
| edma_free_channel(echan); |
| echan->alloced = false; |
| } |
| |
| echan->tc = NULL; |
| echan->hw_triggered = false; |
| |
| dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n", |
| EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id); |
| } |
| |
| /* Send pending descriptor to hardware */ |
| static void edma_issue_pending(struct dma_chan *chan) |
| { |
| struct edma_chan *echan = to_edma_chan(chan); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&echan->vchan.lock, flags); |
| if (vchan_issue_pending(&echan->vchan) && !echan->edesc) |
| edma_execute(echan); |
| spin_unlock_irqrestore(&echan->vchan.lock, flags); |
| } |
| |
| /* |
| * This limit exists to avoid a possible infinite loop when waiting for proof |
| * that a particular transfer is completed. This limit can be hit if there |
| * are large bursts to/from slow devices or the CPU is never able to catch |
| * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART |
| * RX-FIFO, as many as 55 loops have been seen. |
| */ |
| #define EDMA_MAX_TR_WAIT_LOOPS 1000 |
| |
| static u32 edma_residue(struct edma_desc *edesc) |
| { |
| bool dst = edesc->direction == DMA_DEV_TO_MEM; |
| int loop_count = EDMA_MAX_TR_WAIT_LOOPS; |
| struct edma_chan *echan = edesc->echan; |
| struct edma_pset *pset = edesc->pset; |
| dma_addr_t done, pos; |
| int i; |
| |
| /* |
| * We always read the dst/src position from the first RamPar |
| * pset. That's the one which is active now. |
| */ |
| pos = edma_get_position(echan->ecc, echan->slot[0], dst); |
| |
| /* |
| * "pos" may represent a transfer request that is still being |
| * processed by the EDMACC or EDMATC. We will busy wait until |
| * any one of the situations occurs: |
| * 1. the DMA hardware is idle |
| * 2. a new transfer request is setup |
| * 3. we hit the loop limit |
| */ |
| while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) { |
| /* check if a new transfer request is setup */ |
| if (edma_get_position(echan->ecc, |
| echan->slot[0], dst) != pos) { |
| break; |
| } |
| |
| if (!--loop_count) { |
| dev_dbg_ratelimited(echan->vchan.chan.device->dev, |
| "%s: timeout waiting for PaRAM update\n", |
| __func__); |
| break; |
| } |
| |
| cpu_relax(); |
| } |
| |
| /* |
| * Cyclic is simple. Just subtract pset[0].addr from pos. |
| * |
| * We never update edesc->residue in the cyclic case, so we |
| * can tell the remaining room to the end of the circular |
| * buffer. |
| */ |
| if (edesc->cyclic) { |
| done = pos - pset->addr; |
| edesc->residue_stat = edesc->residue - done; |
| return edesc->residue_stat; |
| } |
| |
| /* |
| * For SG operation we catch up with the last processed |
| * status. |
| */ |
| pset += edesc->processed_stat; |
| |
| for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) { |
| /* |
| * If we are inside this pset address range, we know |
| * this is the active one. Get the current delta and |
| * stop walking the psets. |
| */ |
| if (pos >= pset->addr && pos < pset->addr + pset->len) |
| return edesc->residue_stat - (pos - pset->addr); |
| |
| /* Otherwise mark it done and update residue_stat. */ |
| edesc->processed_stat++; |
| edesc->residue_stat -= pset->len; |
| } |
| return edesc->residue_stat; |
| } |
| |
| /* Check request completion status */ |
| static enum dma_status edma_tx_status(struct dma_chan *chan, |
| dma_cookie_t cookie, |
| struct dma_tx_state *txstate) |
| { |
| struct edma_chan *echan = to_edma_chan(chan); |
| struct virt_dma_desc *vdesc; |
| enum dma_status ret; |
| unsigned long flags; |
| |
| ret = dma_cookie_status(chan, cookie, txstate); |
| if (ret == DMA_COMPLETE || !txstate) |
| return ret; |
| |
| spin_lock_irqsave(&echan->vchan.lock, flags); |
| if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) |
| txstate->residue = edma_residue(echan->edesc); |
| else if ((vdesc = vchan_find_desc(&echan->vchan, cookie))) |
| txstate->residue = to_edma_desc(&vdesc->tx)->residue; |
| spin_unlock_irqrestore(&echan->vchan.lock, flags); |
| |
| return ret; |
| } |
| |
| static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels) |
| { |
| if (!memcpy_channels) |
| return false; |
| while (*memcpy_channels != -1) { |
| if (*memcpy_channels == ch_num) |
| return true; |
| memcpy_channels++; |
| } |
| return false; |
| } |
| |
| #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) |
| |
| static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode) |
| { |
| struct dma_device *s_ddev = &ecc->dma_slave; |
| struct dma_device *m_ddev = NULL; |
| s32 *memcpy_channels = ecc->info->memcpy_channels; |
| int i, j; |
| |
| dma_cap_zero(s_ddev->cap_mask); |
| dma_cap_set(DMA_SLAVE, s_ddev->cap_mask); |
| dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask); |
| if (ecc->legacy_mode && !memcpy_channels) { |
| dev_warn(ecc->dev, |
| "Legacy memcpy is enabled, things might not work\n"); |
| |
| dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask); |
| s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; |
| s_ddev->directions = BIT(DMA_MEM_TO_MEM); |
| } |
| |
| s_ddev->device_prep_slave_sg = edma_prep_slave_sg; |
| s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic; |
| s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; |
| s_ddev->device_free_chan_resources = edma_free_chan_resources; |
| s_ddev->device_issue_pending = edma_issue_pending; |
| s_ddev->device_tx_status = edma_tx_status; |
| s_ddev->device_config = edma_slave_config; |
| s_ddev->device_pause = edma_dma_pause; |
| s_ddev->device_resume = edma_dma_resume; |
| s_ddev->device_terminate_all = edma_terminate_all; |
| s_ddev->device_synchronize = edma_synchronize; |
| |
| s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; |
| s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; |
| s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV)); |
| s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; |
| |
| s_ddev->dev = ecc->dev; |
| INIT_LIST_HEAD(&s_ddev->channels); |
| |
| if (memcpy_channels) { |
| m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL); |
| ecc->dma_memcpy = m_ddev; |
| |
| dma_cap_zero(m_ddev->cap_mask); |
| dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask); |
| |
| m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; |
| m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; |
| m_ddev->device_free_chan_resources = edma_free_chan_resources; |
| m_ddev->device_issue_pending = edma_issue_pending; |
| m_ddev->device_tx_status = edma_tx_status; |
| m_ddev->device_config = edma_slave_config; |
| m_ddev->device_pause = edma_dma_pause; |
| m_ddev->device_resume = edma_dma_resume; |
| m_ddev->device_terminate_all = edma_terminate_all; |
| m_ddev->device_synchronize = edma_synchronize; |
| |
| m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; |
| m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; |
| m_ddev->directions = BIT(DMA_MEM_TO_MEM); |
| m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; |
| |
| m_ddev->dev = ecc->dev; |
| INIT_LIST_HEAD(&m_ddev->channels); |
| } else if (!ecc->legacy_mode) { |
| dev_info(ecc->dev, "memcpy is disabled\n"); |
| } |
| |
| for (i = 0; i < ecc->num_channels; i++) { |
| struct edma_chan *echan = &ecc->slave_chans[i]; |
| echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i); |
| echan->ecc = ecc; |
| echan->vchan.desc_free = edma_desc_free; |
| |
| if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels)) |
| vchan_init(&echan->vchan, m_ddev); |
| else |
| vchan_init(&echan->vchan, s_ddev); |
| |
| INIT_LIST_HEAD(&echan->node); |
| for (j = 0; j < EDMA_MAX_SLOTS; j++) |
| echan->slot[j] = -1; |
| } |
| } |
| |
| static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata, |
| struct edma_cc *ecc) |
| { |
| int i; |
| u32 value, cccfg; |
| s8 (*queue_priority_map)[2]; |
| |
| /* Decode the eDMA3 configuration from CCCFG register */ |
| cccfg = edma_read(ecc, EDMA_CCCFG); |
| |
| value = GET_NUM_REGN(cccfg); |
| ecc->num_region = BIT(value); |
| |
| value = GET_NUM_DMACH(cccfg); |
| ecc->num_channels = BIT(value + 1); |
| |
| value = GET_NUM_QDMACH(cccfg); |
| ecc->num_qchannels = value * 2; |
| |
| value = GET_NUM_PAENTRY(cccfg); |
| ecc->num_slots = BIT(value + 4); |
| |
| value = GET_NUM_EVQUE(cccfg); |
| ecc->num_tc = value + 1; |
| |
| ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false; |
| |
| dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg); |
| dev_dbg(dev, "num_region: %u\n", ecc->num_region); |
| dev_dbg(dev, "num_channels: %u\n", ecc->num_channels); |
| dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels); |
| dev_dbg(dev, "num_slots: %u\n", ecc->num_slots); |
| dev_dbg(dev, "num_tc: %u\n", ecc->num_tc); |
| dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no"); |
| |
| /* Nothing need to be done if queue priority is provided */ |
| if (pdata->queue_priority_mapping) |
| return 0; |
| |
| /* |
| * Configure TC/queue priority as follows: |
| * Q0 - priority 0 |
| * Q1 - priority 1 |
| * Q2 - priority 2 |
| * ... |
| * The meaning of priority numbers: 0 highest priority, 7 lowest |
| * priority. So Q0 is the highest priority queue and the last queue has |
| * the lowest priority. |
| */ |
| queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8), |
| GFP_KERNEL); |
| if (!queue_priority_map) |
| return -ENOMEM; |
| |
| for (i = 0; i < ecc->num_tc; i++) { |
| queue_priority_map[i][0] = i; |
| queue_priority_map[i][1] = i; |
| } |
| queue_priority_map[i][0] = -1; |
| queue_priority_map[i][1] = -1; |
| |
| pdata->queue_priority_mapping = queue_priority_map; |
| /* Default queue has the lowest priority */ |
| pdata->default_queue = i - 1; |
| |
| return 0; |
| } |
| |
| #if IS_ENABLED(CONFIG_OF) |
| static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata, |
| size_t sz) |
| { |
| const char pname[] = "ti,edma-xbar-event-map"; |
| struct resource res; |
| void __iomem *xbar; |
| s16 (*xbar_chans)[2]; |
| size_t nelm = sz / sizeof(s16); |
| u32 shift, offset, mux; |
| int ret, i; |
| |
| xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL); |
| if (!xbar_chans) |
| return -ENOMEM; |
| |
| ret = of_address_to_resource(dev->of_node, 1, &res); |
| if (ret) |
| return -ENOMEM; |
| |
| xbar = devm_ioremap(dev, res.start, resource_size(&res)); |
| if (!xbar) |
| return -ENOMEM; |
| |
| ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans, |
| nelm); |
| if (ret) |
| return -EIO; |
| |
| /* Invalidate last entry for the other user of this mess */ |
| nelm >>= 1; |
| xbar_chans[nelm][0] = -1; |
| xbar_chans[nelm][1] = -1; |
| |
| for (i = 0; i < nelm; i++) { |
| shift = (xbar_chans[i][1] & 0x03) << 3; |
| offset = xbar_chans[i][1] & 0xfffffffc; |
| mux = readl(xbar + offset); |
| mux &= ~(0xff << shift); |
| mux |= xbar_chans[i][0] << shift; |
| writel(mux, (xbar + offset)); |
| } |
| |
| pdata->xbar_chans = (const s16 (*)[2]) xbar_chans; |
| return 0; |
| } |
| |
| static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, |
| bool legacy_mode) |
| { |
| struct edma_soc_info *info; |
| struct property *prop; |
| int sz, ret; |
| |
| info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL); |
| if (!info) |
| return ERR_PTR(-ENOMEM); |
| |
| if (legacy_mode) { |
| prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map", |
| &sz); |
| if (prop) { |
| ret = edma_xbar_event_map(dev, info, sz); |
| if (ret) |
| return ERR_PTR(ret); |
| } |
| return info; |
| } |
| |
| /* Get the list of channels allocated to be used for memcpy */ |
| prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz); |
| if (prop) { |
| const char pname[] = "ti,edma-memcpy-channels"; |
| size_t nelm = sz / sizeof(s32); |
| s32 *memcpy_ch; |
| |
| memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32), |
| GFP_KERNEL); |
| if (!memcpy_ch) |
| return ERR_PTR(-ENOMEM); |
| |
| ret = of_property_read_u32_array(dev->of_node, pname, |
| (u32 *)memcpy_ch, nelm); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| memcpy_ch[nelm] = -1; |
| info->memcpy_channels = memcpy_ch; |
| } |
| |
| prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges", |
| &sz); |
| if (prop) { |
| const char pname[] = "ti,edma-reserved-slot-ranges"; |
| u32 (*tmp)[2]; |
| s16 (*rsv_slots)[2]; |
| size_t nelm = sz / sizeof(*tmp); |
| struct edma_rsv_info *rsv_info; |
| int i; |
| |
| if (!nelm) |
| return info; |
| |
| tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL); |
| if (!tmp) |
| return ERR_PTR(-ENOMEM); |
| |
| rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL); |
| if (!rsv_info) { |
| kfree(tmp); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots), |
| GFP_KERNEL); |
| if (!rsv_slots) { |
| kfree(tmp); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| ret = of_property_read_u32_array(dev->of_node, pname, |
| (u32 *)tmp, nelm * 2); |
| if (ret) { |
| kfree(tmp); |
| return ERR_PTR(ret); |
| } |
| |
| for (i = 0; i < nelm; i++) { |
| rsv_slots[i][0] = tmp[i][0]; |
| rsv_slots[i][1] = tmp[i][1]; |
| } |
| rsv_slots[nelm][0] = -1; |
| rsv_slots[nelm][1] = -1; |
| |
| info->rsv = rsv_info; |
| info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots; |
| |
| kfree(tmp); |
| } |
| |
| return info; |
| } |
| |
| static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, |
| struct of_dma *ofdma) |
| { |
| struct edma_cc *ecc = ofdma->of_dma_data; |
| struct dma_chan *chan = NULL; |
| struct edma_chan *echan; |
| int i; |
| |
| if (!ecc || dma_spec->args_count < 1) |
| return NULL; |
| |
| for (i = 0; i < ecc->num_channels; i++) { |
| echan = &ecc->slave_chans[i]; |
| if (echan->ch_num == dma_spec->args[0]) { |
| chan = &echan->vchan.chan; |
| break; |
| } |
| } |
| |
| if (!chan) |
| return NULL; |
| |
| if (echan->ecc->legacy_mode && dma_spec->args_count == 1) |
| goto out; |
| |
| if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 && |
| dma_spec->args[1] < echan->ecc->num_tc) { |
| echan->tc = &echan->ecc->tc_list[dma_spec->args[1]]; |
| goto out; |
| } |
| |
| return NULL; |
| out: |
| /* The channel is going to be used as HW synchronized */ |
| echan->hw_triggered = true; |
| return dma_get_slave_channel(chan); |
| } |
| #else |
| static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, |
| bool legacy_mode) |
| { |
| return ERR_PTR(-EINVAL); |
| } |
| |
| static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, |
| struct of_dma *ofdma) |
| { |
| return NULL; |
| } |
| #endif |
| |
| static int edma_probe(struct platform_device *pdev) |
| { |
| struct edma_soc_info *info = pdev->dev.platform_data; |
| s8 (*queue_priority_mapping)[2]; |
| int i, off, ln; |
| const s16 (*rsv_slots)[2]; |
| const s16 (*xbar_chans)[2]; |
| int irq; |
| char *irq_name; |
| struct resource *mem; |
| struct device_node *node = pdev->dev.of_node; |
| struct device *dev = &pdev->dev; |
| struct edma_cc *ecc; |
| bool legacy_mode = true; |
| int ret; |
| |
| if (node) { |
| const struct of_device_id *match; |
| |
| match = of_match_node(edma_of_ids, node); |
| if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC) |
| legacy_mode = false; |
| |
| info = edma_setup_info_from_dt(dev, legacy_mode); |
| if (IS_ERR(info)) { |
| dev_err(dev, "failed to get DT data\n"); |
| return PTR_ERR(info); |
| } |
| } |
| |
| if (!info) |
| return -ENODEV; |
| |
| pm_runtime_enable(dev); |
| ret = pm_runtime_get_sync(dev); |
| if (ret < 0) { |
| dev_err(dev, "pm_runtime_get_sync() failed\n"); |
| return ret; |
| } |
| |
| ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); |
| if (ret) |
| return ret; |
| |
| ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); |
| if (!ecc) |
| return -ENOMEM; |
| |
| ecc->dev = dev; |
| ecc->id = pdev->id; |
| ecc->legacy_mode = legacy_mode; |
| /* When booting with DT the pdev->id is -1 */ |
| if (ecc->id < 0) |
| ecc->id = 0; |
| |
| mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc"); |
| if (!mem) { |
| dev_dbg(dev, "mem resource not found, using index 0\n"); |
| mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!mem) { |
| dev_err(dev, "no mem resource?\n"); |
| return -ENODEV; |
| } |
| } |
| ecc->base = devm_ioremap_resource(dev, mem); |
| if (IS_ERR(ecc->base)) |
| return PTR_ERR(ecc->base); |
| |
| platform_set_drvdata(pdev, ecc); |
| |
| /* Get eDMA3 configuration from IP */ |
| ret = edma_setup_from_hw(dev, info, ecc); |
| if (ret) |
| return ret; |
| |
| /* Allocate memory based on the information we got from the IP */ |
| ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels, |
| sizeof(*ecc->slave_chans), GFP_KERNEL); |
| if (!ecc->slave_chans) |
| return -ENOMEM; |
| |
| ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots), |
| sizeof(unsigned long), GFP_KERNEL); |
| if (!ecc->slot_inuse) |
| return -ENOMEM; |
| |
| ecc->default_queue = info->default_queue; |
| |
| for (i = 0; i < ecc->num_slots; i++) |
| edma_write_slot(ecc, i, &dummy_paramset); |
| |
| if (info->rsv) { |
| /* Set the reserved slots in inuse list */ |
| rsv_slots = info->rsv->rsv_slots; |
| if (rsv_slots) { |
| for (i = 0; rsv_slots[i][0] != -1; i++) { |
| off = rsv_slots[i][0]; |
| ln = rsv_slots[i][1]; |
| edma_set_bits(off, ln, ecc->slot_inuse); |
| } |
| } |
| } |
| |
| /* Clear the xbar mapped channels in unused list */ |
| xbar_chans = info->xbar_chans; |
| if (xbar_chans) { |
| for (i = 0; xbar_chans[i][1] != -1; i++) { |
| off = xbar_chans[i][1]; |
| } |
| } |
| |
| irq = platform_get_irq_byname(pdev, "edma3_ccint"); |
| if (irq < 0 && node) |
| irq = irq_of_parse_and_map(node, 0); |
| |
| if (irq >= 0) { |
| irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint", |
| dev_name(dev)); |
| ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name, |
| ecc); |
| if (ret) { |
| dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret); |
| return ret; |
| } |
| ecc->ccint = irq; |
| } |
| |
| irq = platform_get_irq_byname(pdev, "edma3_ccerrint"); |
| if (irq < 0 && node) |
| irq = irq_of_parse_and_map(node, 2); |
| |
| if (irq >= 0) { |
| irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint", |
| dev_name(dev)); |
| ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name, |
| ecc); |
| if (ret) { |
| dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret); |
| return ret; |
| } |
| ecc->ccerrint = irq; |
| } |
| |
| ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY); |
| if (ecc->dummy_slot < 0) { |
| dev_err(dev, "Can't allocate PaRAM dummy slot\n"); |
| return ecc->dummy_slot; |
| } |
| |
| queue_priority_mapping = info->queue_priority_mapping; |
| |
| if (!ecc->legacy_mode) { |
| int lowest_priority = 0; |
| struct of_phandle_args tc_args; |
| |
| ecc->tc_list = devm_kcalloc(dev, ecc->num_tc, |
| sizeof(*ecc->tc_list), GFP_KERNEL); |
| if (!ecc->tc_list) |
| return -ENOMEM; |
| |
| for (i = 0;; i++) { |
| ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs", |
| 1, i, &tc_args); |
| if (ret || i == ecc->num_tc) |
| break; |
| |
| ecc->tc_list[i].node = tc_args.np; |
| ecc->tc_list[i].id = i; |
| queue_priority_mapping[i][1] = tc_args.args[0]; |
| if (queue_priority_mapping[i][1] > lowest_priority) { |
| lowest_priority = queue_priority_mapping[i][1]; |
| info->default_queue = i; |
| } |
| } |
| } |
| |
| /* Event queue priority mapping */ |
| for (i = 0; queue_priority_mapping[i][0] != -1; i++) |
| edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], |
| queue_priority_mapping[i][1]); |
| |
| for (i = 0; i < ecc->num_region; i++) { |
| edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0); |
| edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0); |
| edma_write_array(ecc, EDMA_QRAE, i, 0x0); |
| } |
| ecc->info = info; |
| |
| /* Init the dma device and channels */ |
| edma_dma_init(ecc, legacy_mode); |
| |
| for (i = 0; i < ecc->num_channels; i++) { |
| /* Assign all channels to the default queue */ |
| edma_assign_channel_eventq(&ecc->slave_chans[i], |
| info->default_queue); |
| /* Set entry slot to the dummy slot */ |
| edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot); |
| } |
| |
| ecc->dma_slave.filter.map = info->slave_map; |
| ecc->dma_slave.filter.mapcnt = info->slavecnt; |
| ecc->dma_slave.filter.fn = edma_filter_fn; |
| |
| ret = dma_async_device_register(&ecc->dma_slave); |
| if (ret) { |
| dev_err(dev, "slave ddev registration failed (%d)\n", ret); |
| goto err_reg1; |
| } |
| |
| if (ecc->dma_memcpy) { |
| ret = dma_async_device_register(ecc->dma_memcpy); |
| if (ret) { |
| dev_err(dev, "memcpy ddev registration failed (%d)\n", |
| ret); |
| dma_async_device_unregister(&ecc->dma_slave); |
| goto err_reg1; |
| } |
| } |
| |
| if (node) |
| of_dma_controller_register(node, of_edma_xlate, ecc); |
| |
| dev_info(dev, "TI EDMA DMA engine driver\n"); |
| |
| return 0; |
| |
| err_reg1: |
| edma_free_slot(ecc, ecc->dummy_slot); |
| return ret; |
| } |
| |
| static void edma_cleanupp_vchan(struct dma_device *dmadev) |
| { |
| struct edma_chan *echan, *_echan; |
| |
| list_for_each_entry_safe(echan, _echan, |
| &dmadev->channels, vchan.chan.device_node) { |
| list_del(&echan->vchan.chan.device_node); |
| tasklet_kill(&echan->vchan.task); |
| } |
| } |
| |
| static int edma_remove(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct edma_cc *ecc = dev_get_drvdata(dev); |
| |
| devm_free_irq(dev, ecc->ccint, ecc); |
| devm_free_irq(dev, ecc->ccerrint, ecc); |
| |
| edma_cleanupp_vchan(&ecc->dma_slave); |
| |
| if (dev->of_node) |
| of_dma_controller_free(dev->of_node); |
| dma_async_device_unregister(&ecc->dma_slave); |
| if (ecc->dma_memcpy) |
| dma_async_device_unregister(ecc->dma_memcpy); |
| edma_free_slot(ecc, ecc->dummy_slot); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int edma_pm_suspend(struct device *dev) |
| { |
| struct edma_cc *ecc = dev_get_drvdata(dev); |
| struct edma_chan *echan = ecc->slave_chans; |
| int i; |
| |
| for (i = 0; i < ecc->num_channels; i++) { |
| if (echan[i].alloced) |
| edma_setup_interrupt(&echan[i], false); |
| } |
| |
| return 0; |
| } |
| |
| static int edma_pm_resume(struct device *dev) |
| { |
| struct edma_cc *ecc = dev_get_drvdata(dev); |
| struct edma_chan *echan = ecc->slave_chans; |
| int i; |
| s8 (*queue_priority_mapping)[2]; |
| |
| /* re initialize dummy slot to dummy param set */ |
| edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset); |
| |
| queue_priority_mapping = ecc->info->queue_priority_mapping; |
| |
| /* Event queue priority mapping */ |
| for (i = 0; queue_priority_mapping[i][0] != -1; i++) |
| edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], |
| queue_priority_mapping[i][1]); |
| |
| for (i = 0; i < ecc->num_channels; i++) { |
| if (echan[i].alloced) { |
| /* ensure access through shadow region 0 */ |
| edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5, |
| BIT(i & 0x1f)); |
| |
| edma_setup_interrupt(&echan[i], true); |
| |
| /* Set up channel -> slot mapping for the entry slot */ |
| edma_set_chmap(&echan[i], echan[i].slot[0]); |
| } |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| static const struct dev_pm_ops edma_pm_ops = { |
| SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume) |
| }; |
| |
| static struct platform_driver edma_driver = { |
| .probe = edma_probe, |
| .remove = edma_remove, |
| .driver = { |
| .name = "edma", |
| .pm = &edma_pm_ops, |
| .of_match_table = edma_of_ids, |
| }, |
| }; |
| |
| static int edma_tptc_probe(struct platform_device *pdev) |
| { |
| pm_runtime_enable(&pdev->dev); |
| return pm_runtime_get_sync(&pdev->dev); |
| } |
| |
| static struct platform_driver edma_tptc_driver = { |
| .probe = edma_tptc_probe, |
| .driver = { |
| .name = "edma3-tptc", |
| .of_match_table = edma_tptc_of_ids, |
| }, |
| }; |
| |
| bool edma_filter_fn(struct dma_chan *chan, void *param) |
| { |
| bool match = false; |
| |
| if (chan->device->dev->driver == &edma_driver.driver) { |
| struct edma_chan *echan = to_edma_chan(chan); |
| unsigned ch_req = *(unsigned *)param; |
| if (ch_req == echan->ch_num) { |
| /* The channel is going to be used as HW synchronized */ |
| echan->hw_triggered = true; |
| match = true; |
| } |
| } |
| return match; |
| } |
| EXPORT_SYMBOL(edma_filter_fn); |
| |
| static int edma_init(void) |
| { |
| int ret; |
| |
| ret = platform_driver_register(&edma_tptc_driver); |
| if (ret) |
| return ret; |
| |
| return platform_driver_register(&edma_driver); |
| } |
| subsys_initcall(edma_init); |
| |
| static void __exit edma_exit(void) |
| { |
| platform_driver_unregister(&edma_driver); |
| platform_driver_unregister(&edma_tptc_driver); |
| } |
| module_exit(edma_exit); |
| |
| MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>"); |
| MODULE_DESCRIPTION("TI EDMA DMA engine driver"); |
| MODULE_LICENSE("GPL v2"); |