| /* |
| * Common EFI (Extensible Firmware Interface) support functions |
| * Based on Extensible Firmware Interface Specification version 1.0 |
| * |
| * Copyright (C) 1999 VA Linux Systems |
| * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> |
| * Copyright (C) 1999-2002 Hewlett-Packard Co. |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * Stephane Eranian <eranian@hpl.hp.com> |
| * Copyright (C) 2005-2008 Intel Co. |
| * Fenghua Yu <fenghua.yu@intel.com> |
| * Bibo Mao <bibo.mao@intel.com> |
| * Chandramouli Narayanan <mouli@linux.intel.com> |
| * Huang Ying <ying.huang@intel.com> |
| * Copyright (C) 2013 SuSE Labs |
| * Borislav Petkov <bp@suse.de> - runtime services VA mapping |
| * |
| * Copied from efi_32.c to eliminate the duplicated code between EFI |
| * 32/64 support code. --ying 2007-10-26 |
| * |
| * All EFI Runtime Services are not implemented yet as EFI only |
| * supports physical mode addressing on SoftSDV. This is to be fixed |
| * in a future version. --drummond 1999-07-20 |
| * |
| * Implemented EFI runtime services and virtual mode calls. --davidm |
| * |
| * Goutham Rao: <goutham.rao@intel.com> |
| * Skip non-WB memory and ignore empty memory ranges. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/efi.h> |
| #include <linux/efi-bgrt.h> |
| #include <linux/export.h> |
| #include <linux/bootmem.h> |
| #include <linux/slab.h> |
| #include <linux/memblock.h> |
| #include <linux/spinlock.h> |
| #include <linux/uaccess.h> |
| #include <linux/time.h> |
| #include <linux/io.h> |
| #include <linux/reboot.h> |
| #include <linux/bcd.h> |
| |
| #include <asm/setup.h> |
| #include <asm/efi.h> |
| #include <asm/time.h> |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| #include <asm/x86_init.h> |
| #include <asm/rtc.h> |
| |
| #define EFI_DEBUG |
| |
| #define EFI_MIN_RESERVE 5120 |
| |
| #define EFI_DUMMY_GUID \ |
| EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9) |
| |
| static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 }; |
| |
| struct efi_memory_map memmap; |
| |
| static struct efi efi_phys __initdata; |
| static efi_system_table_t efi_systab __initdata; |
| |
| unsigned long x86_efi_facility; |
| |
| static __initdata efi_config_table_type_t arch_tables[] = { |
| #ifdef CONFIG_X86_UV |
| {UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab}, |
| #endif |
| {NULL_GUID, NULL, NULL}, |
| }; |
| |
| u64 efi_setup; /* efi setup_data physical address */ |
| |
| /* |
| * Returns 1 if 'facility' is enabled, 0 otherwise. |
| */ |
| int efi_enabled(int facility) |
| { |
| return test_bit(facility, &x86_efi_facility) != 0; |
| } |
| EXPORT_SYMBOL(efi_enabled); |
| |
| static bool __initdata disable_runtime = false; |
| static int __init setup_noefi(char *arg) |
| { |
| disable_runtime = true; |
| return 0; |
| } |
| early_param("noefi", setup_noefi); |
| |
| int add_efi_memmap; |
| EXPORT_SYMBOL(add_efi_memmap); |
| |
| static int __init setup_add_efi_memmap(char *arg) |
| { |
| add_efi_memmap = 1; |
| return 0; |
| } |
| early_param("add_efi_memmap", setup_add_efi_memmap); |
| |
| static bool efi_no_storage_paranoia; |
| |
| static int __init setup_storage_paranoia(char *arg) |
| { |
| efi_no_storage_paranoia = true; |
| return 0; |
| } |
| early_param("efi_no_storage_paranoia", setup_storage_paranoia); |
| |
| static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc) |
| { |
| unsigned long flags; |
| efi_status_t status; |
| |
| spin_lock_irqsave(&rtc_lock, flags); |
| status = efi_call_virt2(get_time, tm, tc); |
| spin_unlock_irqrestore(&rtc_lock, flags); |
| return status; |
| } |
| |
| static efi_status_t virt_efi_set_time(efi_time_t *tm) |
| { |
| unsigned long flags; |
| efi_status_t status; |
| |
| spin_lock_irqsave(&rtc_lock, flags); |
| status = efi_call_virt1(set_time, tm); |
| spin_unlock_irqrestore(&rtc_lock, flags); |
| return status; |
| } |
| |
| static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled, |
| efi_bool_t *pending, |
| efi_time_t *tm) |
| { |
| unsigned long flags; |
| efi_status_t status; |
| |
| spin_lock_irqsave(&rtc_lock, flags); |
| status = efi_call_virt3(get_wakeup_time, |
| enabled, pending, tm); |
| spin_unlock_irqrestore(&rtc_lock, flags); |
| return status; |
| } |
| |
| static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm) |
| { |
| unsigned long flags; |
| efi_status_t status; |
| |
| spin_lock_irqsave(&rtc_lock, flags); |
| status = efi_call_virt2(set_wakeup_time, |
| enabled, tm); |
| spin_unlock_irqrestore(&rtc_lock, flags); |
| return status; |
| } |
| |
| static efi_status_t virt_efi_get_variable(efi_char16_t *name, |
| efi_guid_t *vendor, |
| u32 *attr, |
| unsigned long *data_size, |
| void *data) |
| { |
| return efi_call_virt5(get_variable, |
| name, vendor, attr, |
| data_size, data); |
| } |
| |
| static efi_status_t virt_efi_get_next_variable(unsigned long *name_size, |
| efi_char16_t *name, |
| efi_guid_t *vendor) |
| { |
| return efi_call_virt3(get_next_variable, |
| name_size, name, vendor); |
| } |
| |
| static efi_status_t virt_efi_set_variable(efi_char16_t *name, |
| efi_guid_t *vendor, |
| u32 attr, |
| unsigned long data_size, |
| void *data) |
| { |
| return efi_call_virt5(set_variable, |
| name, vendor, attr, |
| data_size, data); |
| } |
| |
| static efi_status_t virt_efi_query_variable_info(u32 attr, |
| u64 *storage_space, |
| u64 *remaining_space, |
| u64 *max_variable_size) |
| { |
| if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) |
| return EFI_UNSUPPORTED; |
| |
| return efi_call_virt4(query_variable_info, attr, storage_space, |
| remaining_space, max_variable_size); |
| } |
| |
| static efi_status_t virt_efi_get_next_high_mono_count(u32 *count) |
| { |
| return efi_call_virt1(get_next_high_mono_count, count); |
| } |
| |
| static void virt_efi_reset_system(int reset_type, |
| efi_status_t status, |
| unsigned long data_size, |
| efi_char16_t *data) |
| { |
| efi_call_virt4(reset_system, reset_type, status, |
| data_size, data); |
| } |
| |
| static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules, |
| unsigned long count, |
| unsigned long sg_list) |
| { |
| if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) |
| return EFI_UNSUPPORTED; |
| |
| return efi_call_virt3(update_capsule, capsules, count, sg_list); |
| } |
| |
| static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules, |
| unsigned long count, |
| u64 *max_size, |
| int *reset_type) |
| { |
| if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) |
| return EFI_UNSUPPORTED; |
| |
| return efi_call_virt4(query_capsule_caps, capsules, count, max_size, |
| reset_type); |
| } |
| |
| static efi_status_t __init phys_efi_set_virtual_address_map( |
| unsigned long memory_map_size, |
| unsigned long descriptor_size, |
| u32 descriptor_version, |
| efi_memory_desc_t *virtual_map) |
| { |
| efi_status_t status; |
| |
| efi_call_phys_prelog(); |
| status = efi_call_phys4(efi_phys.set_virtual_address_map, |
| memory_map_size, descriptor_size, |
| descriptor_version, virtual_map); |
| efi_call_phys_epilog(); |
| return status; |
| } |
| |
| static efi_status_t __init phys_efi_get_time(efi_time_t *tm, |
| efi_time_cap_t *tc) |
| { |
| unsigned long flags; |
| efi_status_t status; |
| |
| spin_lock_irqsave(&rtc_lock, flags); |
| efi_call_phys_prelog(); |
| status = efi_call_phys2(efi_phys.get_time, virt_to_phys(tm), |
| virt_to_phys(tc)); |
| efi_call_phys_epilog(); |
| spin_unlock_irqrestore(&rtc_lock, flags); |
| return status; |
| } |
| |
| int efi_set_rtc_mmss(const struct timespec *now) |
| { |
| unsigned long nowtime = now->tv_sec; |
| efi_status_t status; |
| efi_time_t eft; |
| efi_time_cap_t cap; |
| struct rtc_time tm; |
| |
| status = efi.get_time(&eft, &cap); |
| if (status != EFI_SUCCESS) { |
| pr_err("Oops: efitime: can't read time!\n"); |
| return -1; |
| } |
| |
| rtc_time_to_tm(nowtime, &tm); |
| if (!rtc_valid_tm(&tm)) { |
| eft.year = tm.tm_year + 1900; |
| eft.month = tm.tm_mon + 1; |
| eft.day = tm.tm_mday; |
| eft.minute = tm.tm_min; |
| eft.second = tm.tm_sec; |
| eft.nanosecond = 0; |
| } else { |
| printk(KERN_ERR |
| "%s: Invalid EFI RTC value: write of %lx to EFI RTC failed\n", |
| __FUNCTION__, nowtime); |
| return -1; |
| } |
| |
| status = efi.set_time(&eft); |
| if (status != EFI_SUCCESS) { |
| pr_err("Oops: efitime: can't write time!\n"); |
| return -1; |
| } |
| return 0; |
| } |
| |
| void efi_get_time(struct timespec *now) |
| { |
| efi_status_t status; |
| efi_time_t eft; |
| efi_time_cap_t cap; |
| |
| status = efi.get_time(&eft, &cap); |
| if (status != EFI_SUCCESS) |
| pr_err("Oops: efitime: can't read time!\n"); |
| |
| now->tv_sec = mktime(eft.year, eft.month, eft.day, eft.hour, |
| eft.minute, eft.second); |
| now->tv_nsec = 0; |
| } |
| |
| /* |
| * Tell the kernel about the EFI memory map. This might include |
| * more than the max 128 entries that can fit in the e820 legacy |
| * (zeropage) memory map. |
| */ |
| |
| static void __init do_add_efi_memmap(void) |
| { |
| void *p; |
| |
| for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { |
| efi_memory_desc_t *md = p; |
| unsigned long long start = md->phys_addr; |
| unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; |
| int e820_type; |
| |
| switch (md->type) { |
| case EFI_LOADER_CODE: |
| case EFI_LOADER_DATA: |
| case EFI_BOOT_SERVICES_CODE: |
| case EFI_BOOT_SERVICES_DATA: |
| case EFI_CONVENTIONAL_MEMORY: |
| if (md->attribute & EFI_MEMORY_WB) |
| e820_type = E820_RAM; |
| else |
| e820_type = E820_RESERVED; |
| break; |
| case EFI_ACPI_RECLAIM_MEMORY: |
| e820_type = E820_ACPI; |
| break; |
| case EFI_ACPI_MEMORY_NVS: |
| e820_type = E820_NVS; |
| break; |
| case EFI_UNUSABLE_MEMORY: |
| e820_type = E820_UNUSABLE; |
| break; |
| default: |
| /* |
| * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE |
| * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO |
| * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE |
| */ |
| e820_type = E820_RESERVED; |
| break; |
| } |
| e820_add_region(start, size, e820_type); |
| } |
| sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map); |
| } |
| |
| int __init efi_memblock_x86_reserve_range(void) |
| { |
| struct efi_info *e = &boot_params.efi_info; |
| unsigned long pmap; |
| |
| #ifdef CONFIG_X86_32 |
| /* Can't handle data above 4GB at this time */ |
| if (e->efi_memmap_hi) { |
| pr_err("Memory map is above 4GB, disabling EFI.\n"); |
| return -EINVAL; |
| } |
| pmap = e->efi_memmap; |
| #else |
| pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32)); |
| #endif |
| memmap.phys_map = (void *)pmap; |
| memmap.nr_map = e->efi_memmap_size / |
| e->efi_memdesc_size; |
| memmap.desc_size = e->efi_memdesc_size; |
| memmap.desc_version = e->efi_memdesc_version; |
| |
| memblock_reserve(pmap, memmap.nr_map * memmap.desc_size); |
| |
| efi.memmap = &memmap; |
| |
| return 0; |
| } |
| |
| static void __init print_efi_memmap(void) |
| { |
| #ifdef EFI_DEBUG |
| efi_memory_desc_t *md; |
| void *p; |
| int i; |
| |
| for (p = memmap.map, i = 0; |
| p < memmap.map_end; |
| p += memmap.desc_size, i++) { |
| md = p; |
| pr_info("mem%02u: type=%u, attr=0x%llx, " |
| "range=[0x%016llx-0x%016llx) (%lluMB)\n", |
| i, md->type, md->attribute, md->phys_addr, |
| md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), |
| (md->num_pages >> (20 - EFI_PAGE_SHIFT))); |
| } |
| #endif /* EFI_DEBUG */ |
| } |
| |
| void __init efi_reserve_boot_services(void) |
| { |
| void *p; |
| |
| for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { |
| efi_memory_desc_t *md = p; |
| u64 start = md->phys_addr; |
| u64 size = md->num_pages << EFI_PAGE_SHIFT; |
| |
| if (md->type != EFI_BOOT_SERVICES_CODE && |
| md->type != EFI_BOOT_SERVICES_DATA) |
| continue; |
| /* Only reserve where possible: |
| * - Not within any already allocated areas |
| * - Not over any memory area (really needed, if above?) |
| * - Not within any part of the kernel |
| * - Not the bios reserved area |
| */ |
| if ((start + size > __pa_symbol(_text) |
| && start <= __pa_symbol(_end)) || |
| !e820_all_mapped(start, start+size, E820_RAM) || |
| memblock_is_region_reserved(start, size)) { |
| /* Could not reserve, skip it */ |
| md->num_pages = 0; |
| memblock_dbg("Could not reserve boot range " |
| "[0x%010llx-0x%010llx]\n", |
| start, start+size-1); |
| } else |
| memblock_reserve(start, size); |
| } |
| } |
| |
| void __init efi_unmap_memmap(void) |
| { |
| clear_bit(EFI_MEMMAP, &x86_efi_facility); |
| if (memmap.map) { |
| early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size); |
| memmap.map = NULL; |
| } |
| } |
| |
| void __init efi_free_boot_services(void) |
| { |
| void *p; |
| |
| if (!efi_is_native()) |
| return; |
| |
| for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { |
| efi_memory_desc_t *md = p; |
| unsigned long long start = md->phys_addr; |
| unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; |
| |
| if (md->type != EFI_BOOT_SERVICES_CODE && |
| md->type != EFI_BOOT_SERVICES_DATA) |
| continue; |
| |
| /* Could not reserve boot area */ |
| if (!size) |
| continue; |
| |
| free_bootmem_late(start, size); |
| } |
| |
| efi_unmap_memmap(); |
| } |
| |
| static int __init efi_systab_init(void *phys) |
| { |
| if (efi_enabled(EFI_64BIT)) { |
| efi_system_table_64_t *systab64; |
| struct efi_setup_data *data = NULL; |
| u64 tmp = 0; |
| |
| if (efi_setup) { |
| data = early_memremap(efi_setup, sizeof(*data)); |
| if (!data) |
| return -ENOMEM; |
| } |
| systab64 = early_ioremap((unsigned long)phys, |
| sizeof(*systab64)); |
| if (systab64 == NULL) { |
| pr_err("Couldn't map the system table!\n"); |
| if (data) |
| early_iounmap(data, sizeof(*data)); |
| return -ENOMEM; |
| } |
| |
| efi_systab.hdr = systab64->hdr; |
| efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor : |
| systab64->fw_vendor; |
| tmp |= data ? data->fw_vendor : systab64->fw_vendor; |
| efi_systab.fw_revision = systab64->fw_revision; |
| efi_systab.con_in_handle = systab64->con_in_handle; |
| tmp |= systab64->con_in_handle; |
| efi_systab.con_in = systab64->con_in; |
| tmp |= systab64->con_in; |
| efi_systab.con_out_handle = systab64->con_out_handle; |
| tmp |= systab64->con_out_handle; |
| efi_systab.con_out = systab64->con_out; |
| tmp |= systab64->con_out; |
| efi_systab.stderr_handle = systab64->stderr_handle; |
| tmp |= systab64->stderr_handle; |
| efi_systab.stderr = systab64->stderr; |
| tmp |= systab64->stderr; |
| efi_systab.runtime = data ? |
| (void *)(unsigned long)data->runtime : |
| (void *)(unsigned long)systab64->runtime; |
| tmp |= data ? data->runtime : systab64->runtime; |
| efi_systab.boottime = (void *)(unsigned long)systab64->boottime; |
| tmp |= systab64->boottime; |
| efi_systab.nr_tables = systab64->nr_tables; |
| efi_systab.tables = data ? (unsigned long)data->tables : |
| systab64->tables; |
| tmp |= data ? data->tables : systab64->tables; |
| |
| early_iounmap(systab64, sizeof(*systab64)); |
| if (data) |
| early_iounmap(data, sizeof(*data)); |
| #ifdef CONFIG_X86_32 |
| if (tmp >> 32) { |
| pr_err("EFI data located above 4GB, disabling EFI.\n"); |
| return -EINVAL; |
| } |
| #endif |
| } else { |
| efi_system_table_32_t *systab32; |
| |
| systab32 = early_ioremap((unsigned long)phys, |
| sizeof(*systab32)); |
| if (systab32 == NULL) { |
| pr_err("Couldn't map the system table!\n"); |
| return -ENOMEM; |
| } |
| |
| efi_systab.hdr = systab32->hdr; |
| efi_systab.fw_vendor = systab32->fw_vendor; |
| efi_systab.fw_revision = systab32->fw_revision; |
| efi_systab.con_in_handle = systab32->con_in_handle; |
| efi_systab.con_in = systab32->con_in; |
| efi_systab.con_out_handle = systab32->con_out_handle; |
| efi_systab.con_out = systab32->con_out; |
| efi_systab.stderr_handle = systab32->stderr_handle; |
| efi_systab.stderr = systab32->stderr; |
| efi_systab.runtime = (void *)(unsigned long)systab32->runtime; |
| efi_systab.boottime = (void *)(unsigned long)systab32->boottime; |
| efi_systab.nr_tables = systab32->nr_tables; |
| efi_systab.tables = systab32->tables; |
| |
| early_iounmap(systab32, sizeof(*systab32)); |
| } |
| |
| efi.systab = &efi_systab; |
| |
| /* |
| * Verify the EFI Table |
| */ |
| if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) { |
| pr_err("System table signature incorrect!\n"); |
| return -EINVAL; |
| } |
| if ((efi.systab->hdr.revision >> 16) == 0) |
| pr_err("Warning: System table version " |
| "%d.%02d, expected 1.00 or greater!\n", |
| efi.systab->hdr.revision >> 16, |
| efi.systab->hdr.revision & 0xffff); |
| |
| return 0; |
| } |
| |
| static int __init efi_runtime_init(void) |
| { |
| efi_runtime_services_t *runtime; |
| |
| /* |
| * Check out the runtime services table. We need to map |
| * the runtime services table so that we can grab the physical |
| * address of several of the EFI runtime functions, needed to |
| * set the firmware into virtual mode. |
| */ |
| runtime = early_ioremap((unsigned long)efi.systab->runtime, |
| sizeof(efi_runtime_services_t)); |
| if (!runtime) { |
| pr_err("Could not map the runtime service table!\n"); |
| return -ENOMEM; |
| } |
| /* |
| * We will only need *early* access to the following |
| * two EFI runtime services before set_virtual_address_map |
| * is invoked. |
| */ |
| efi_phys.get_time = (efi_get_time_t *)runtime->get_time; |
| efi_phys.set_virtual_address_map = |
| (efi_set_virtual_address_map_t *) |
| runtime->set_virtual_address_map; |
| /* |
| * Make efi_get_time can be called before entering |
| * virtual mode. |
| */ |
| efi.get_time = phys_efi_get_time; |
| early_iounmap(runtime, sizeof(efi_runtime_services_t)); |
| |
| return 0; |
| } |
| |
| static int __init efi_memmap_init(void) |
| { |
| /* Map the EFI memory map */ |
| memmap.map = early_ioremap((unsigned long)memmap.phys_map, |
| memmap.nr_map * memmap.desc_size); |
| if (memmap.map == NULL) { |
| pr_err("Could not map the memory map!\n"); |
| return -ENOMEM; |
| } |
| memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size); |
| |
| if (add_efi_memmap) |
| do_add_efi_memmap(); |
| |
| return 0; |
| } |
| |
| /* |
| * A number of config table entries get remapped to virtual addresses |
| * after entering EFI virtual mode. However, the kexec kernel requires |
| * their physical addresses therefore we pass them via setup_data and |
| * correct those entries to their respective physical addresses here. |
| * |
| * Currently only handles smbios which is necessary for some firmware |
| * implementation. |
| */ |
| static int __init efi_reuse_config(u64 tables, int nr_tables) |
| { |
| int i, sz, ret = 0; |
| void *p, *tablep; |
| struct efi_setup_data *data; |
| |
| if (!efi_setup) |
| return 0; |
| |
| if (!efi_enabled(EFI_64BIT)) |
| return 0; |
| |
| data = early_memremap(efi_setup, sizeof(*data)); |
| if (!data) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| if (!data->smbios) |
| goto out_memremap; |
| |
| sz = sizeof(efi_config_table_64_t); |
| |
| p = tablep = early_memremap(tables, nr_tables * sz); |
| if (!p) { |
| pr_err("Could not map Configuration table!\n"); |
| ret = -ENOMEM; |
| goto out_memremap; |
| } |
| |
| for (i = 0; i < efi.systab->nr_tables; i++) { |
| efi_guid_t guid; |
| |
| guid = ((efi_config_table_64_t *)p)->guid; |
| |
| if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID)) |
| ((efi_config_table_64_t *)p)->table = data->smbios; |
| p += sz; |
| } |
| early_iounmap(tablep, nr_tables * sz); |
| |
| out_memremap: |
| early_iounmap(data, sizeof(*data)); |
| out: |
| return ret; |
| } |
| |
| void __init efi_init(void) |
| { |
| efi_char16_t *c16; |
| char vendor[100] = "unknown"; |
| int i = 0; |
| void *tmp; |
| |
| #ifdef CONFIG_X86_32 |
| if (boot_params.efi_info.efi_systab_hi || |
| boot_params.efi_info.efi_memmap_hi) { |
| pr_info("Table located above 4GB, disabling EFI.\n"); |
| return; |
| } |
| efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab; |
| #else |
| efi_phys.systab = (efi_system_table_t *) |
| (boot_params.efi_info.efi_systab | |
| ((__u64)boot_params.efi_info.efi_systab_hi<<32)); |
| #endif |
| |
| if (efi_systab_init(efi_phys.systab)) |
| return; |
| |
| set_bit(EFI_SYSTEM_TABLES, &x86_efi_facility); |
| |
| efi.config_table = (unsigned long)efi.systab->tables; |
| efi.fw_vendor = (unsigned long)efi.systab->fw_vendor; |
| efi.runtime = (unsigned long)efi.systab->runtime; |
| |
| /* |
| * Show what we know for posterity |
| */ |
| c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2); |
| if (c16) { |
| for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i) |
| vendor[i] = *c16++; |
| vendor[i] = '\0'; |
| } else |
| pr_err("Could not map the firmware vendor!\n"); |
| early_iounmap(tmp, 2); |
| |
| pr_info("EFI v%u.%.02u by %s\n", |
| efi.systab->hdr.revision >> 16, |
| efi.systab->hdr.revision & 0xffff, vendor); |
| |
| if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables)) |
| return; |
| |
| if (efi_config_init(arch_tables)) |
| return; |
| |
| set_bit(EFI_CONFIG_TABLES, &x86_efi_facility); |
| |
| /* |
| * Note: We currently don't support runtime services on an EFI |
| * that doesn't match the kernel 32/64-bit mode. |
| */ |
| |
| if (!efi_is_native()) |
| pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n"); |
| else { |
| if (disable_runtime || efi_runtime_init()) |
| return; |
| set_bit(EFI_RUNTIME_SERVICES, &x86_efi_facility); |
| } |
| if (efi_memmap_init()) |
| return; |
| |
| set_bit(EFI_MEMMAP, &x86_efi_facility); |
| |
| print_efi_memmap(); |
| } |
| |
| void __init efi_late_init(void) |
| { |
| efi_bgrt_init(); |
| } |
| |
| void __init efi_set_executable(efi_memory_desc_t *md, bool executable) |
| { |
| u64 addr, npages; |
| |
| addr = md->virt_addr; |
| npages = md->num_pages; |
| |
| memrange_efi_to_native(&addr, &npages); |
| |
| if (executable) |
| set_memory_x(addr, npages); |
| else |
| set_memory_nx(addr, npages); |
| } |
| |
| void __init runtime_code_page_mkexec(void) |
| { |
| efi_memory_desc_t *md; |
| void *p; |
| |
| /* Make EFI runtime service code area executable */ |
| for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { |
| md = p; |
| |
| if (md->type != EFI_RUNTIME_SERVICES_CODE) |
| continue; |
| |
| efi_set_executable(md, true); |
| } |
| } |
| |
| void efi_memory_uc(u64 addr, unsigned long size) |
| { |
| unsigned long page_shift = 1UL << EFI_PAGE_SHIFT; |
| u64 npages; |
| |
| npages = round_up(size, page_shift) / page_shift; |
| memrange_efi_to_native(&addr, &npages); |
| set_memory_uc(addr, npages); |
| } |
| |
| void __init old_map_region(efi_memory_desc_t *md) |
| { |
| u64 start_pfn, end_pfn, end; |
| unsigned long size; |
| void *va; |
| |
| start_pfn = PFN_DOWN(md->phys_addr); |
| size = md->num_pages << PAGE_SHIFT; |
| end = md->phys_addr + size; |
| end_pfn = PFN_UP(end); |
| |
| if (pfn_range_is_mapped(start_pfn, end_pfn)) { |
| va = __va(md->phys_addr); |
| |
| if (!(md->attribute & EFI_MEMORY_WB)) |
| efi_memory_uc((u64)(unsigned long)va, size); |
| } else |
| va = efi_ioremap(md->phys_addr, size, |
| md->type, md->attribute); |
| |
| md->virt_addr = (u64) (unsigned long) va; |
| if (!va) |
| pr_err("ioremap of 0x%llX failed!\n", |
| (unsigned long long)md->phys_addr); |
| } |
| |
| /* Merge contiguous regions of the same type and attribute */ |
| static void __init efi_merge_regions(void) |
| { |
| void *p; |
| efi_memory_desc_t *md, *prev_md = NULL; |
| |
| for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { |
| u64 prev_size; |
| md = p; |
| |
| if (!prev_md) { |
| prev_md = md; |
| continue; |
| } |
| |
| if (prev_md->type != md->type || |
| prev_md->attribute != md->attribute) { |
| prev_md = md; |
| continue; |
| } |
| |
| prev_size = prev_md->num_pages << EFI_PAGE_SHIFT; |
| |
| if (md->phys_addr == (prev_md->phys_addr + prev_size)) { |
| prev_md->num_pages += md->num_pages; |
| md->type = EFI_RESERVED_TYPE; |
| md->attribute = 0; |
| continue; |
| } |
| prev_md = md; |
| } |
| } |
| |
| static void __init get_systab_virt_addr(efi_memory_desc_t *md) |
| { |
| unsigned long size; |
| u64 end, systab; |
| |
| size = md->num_pages << EFI_PAGE_SHIFT; |
| end = md->phys_addr + size; |
| systab = (u64)(unsigned long)efi_phys.systab; |
| if (md->phys_addr <= systab && systab < end) { |
| systab += md->virt_addr - md->phys_addr; |
| efi.systab = (efi_system_table_t *)(unsigned long)systab; |
| } |
| } |
| |
| static int __init save_runtime_map(void) |
| { |
| efi_memory_desc_t *md; |
| void *tmp, *p, *q = NULL; |
| int count = 0; |
| |
| for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { |
| md = p; |
| |
| if (!(md->attribute & EFI_MEMORY_RUNTIME) || |
| (md->type == EFI_BOOT_SERVICES_CODE) || |
| (md->type == EFI_BOOT_SERVICES_DATA)) |
| continue; |
| tmp = krealloc(q, (count + 1) * memmap.desc_size, GFP_KERNEL); |
| if (!tmp) |
| goto out; |
| q = tmp; |
| |
| memcpy(q + count * memmap.desc_size, md, memmap.desc_size); |
| count++; |
| } |
| |
| efi_runtime_map_setup(q, count, memmap.desc_size); |
| |
| return 0; |
| out: |
| kfree(q); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Map efi regions which were passed via setup_data. The virt_addr is a fixed |
| * addr which was used in first kernel of a kexec boot. |
| */ |
| static void __init efi_map_regions_fixed(void) |
| { |
| void *p; |
| efi_memory_desc_t *md; |
| |
| for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { |
| md = p; |
| efi_map_region_fixed(md); /* FIXME: add error handling */ |
| get_systab_virt_addr(md); |
| } |
| |
| } |
| |
| /* |
| * Map efi memory ranges for runtime serivce and update new_memmap with virtual |
| * addresses. |
| */ |
| static void * __init efi_map_regions(int *count) |
| { |
| efi_memory_desc_t *md; |
| void *p, *tmp, *new_memmap = NULL; |
| |
| for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { |
| md = p; |
| if (!(md->attribute & EFI_MEMORY_RUNTIME)) { |
| #ifdef CONFIG_X86_64 |
| if (md->type != EFI_BOOT_SERVICES_CODE && |
| md->type != EFI_BOOT_SERVICES_DATA) |
| #endif |
| continue; |
| } |
| |
| efi_map_region(md); |
| get_systab_virt_addr(md); |
| |
| tmp = krealloc(new_memmap, (*count + 1) * memmap.desc_size, |
| GFP_KERNEL); |
| if (!tmp) |
| goto out; |
| new_memmap = tmp; |
| memcpy(new_memmap + (*count * memmap.desc_size), md, |
| memmap.desc_size); |
| (*count)++; |
| } |
| |
| return new_memmap; |
| out: |
| kfree(new_memmap); |
| return NULL; |
| } |
| |
| /* |
| * This function will switch the EFI runtime services to virtual mode. |
| * Essentially, we look through the EFI memmap and map every region that |
| * has the runtime attribute bit set in its memory descriptor into the |
| * ->trampoline_pgd page table using a top-down VA allocation scheme. |
| * |
| * The old method which used to update that memory descriptor with the |
| * virtual address obtained from ioremap() is still supported when the |
| * kernel is booted with efi=old_map on its command line. Same old |
| * method enabled the runtime services to be called without having to |
| * thunk back into physical mode for every invocation. |
| * |
| * The new method does a pagetable switch in a preemption-safe manner |
| * so that we're in a different address space when calling a runtime |
| * function. For function arguments passing we do copy the PGDs of the |
| * kernel page table into ->trampoline_pgd prior to each call. |
| * |
| * Specially for kexec boot, efi runtime maps in previous kernel should |
| * be passed in via setup_data. In that case runtime ranges will be mapped |
| * to the same virtual addresses as the first kernel. |
| */ |
| void __init efi_enter_virtual_mode(void) |
| { |
| efi_status_t status; |
| void *new_memmap = NULL; |
| int err, count = 0; |
| |
| efi.systab = NULL; |
| |
| /* |
| * We don't do virtual mode, since we don't do runtime services, on |
| * non-native EFI |
| */ |
| if (!efi_is_native()) { |
| efi_unmap_memmap(); |
| return; |
| } |
| |
| if (efi_setup) { |
| efi_map_regions_fixed(); |
| } else { |
| efi_merge_regions(); |
| new_memmap = efi_map_regions(&count); |
| if (!new_memmap) { |
| pr_err("Error reallocating memory, EFI runtime non-functional!\n"); |
| return; |
| } |
| } |
| |
| err = save_runtime_map(); |
| if (err) |
| pr_err("Error saving runtime map, efi runtime on kexec non-functional!!\n"); |
| |
| BUG_ON(!efi.systab); |
| |
| efi_setup_page_tables(); |
| efi_sync_low_kernel_mappings(); |
| |
| if (!efi_setup) { |
| status = phys_efi_set_virtual_address_map( |
| memmap.desc_size * count, |
| memmap.desc_size, |
| memmap.desc_version, |
| (efi_memory_desc_t *)__pa(new_memmap)); |
| |
| if (status != EFI_SUCCESS) { |
| pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n", |
| status); |
| panic("EFI call to SetVirtualAddressMap() failed!"); |
| } |
| } |
| |
| /* |
| * Now that EFI is in virtual mode, update the function |
| * pointers in the runtime service table to the new virtual addresses. |
| * |
| * Call EFI services through wrapper functions. |
| */ |
| efi.runtime_version = efi_systab.hdr.revision; |
| efi.get_time = virt_efi_get_time; |
| efi.set_time = virt_efi_set_time; |
| efi.get_wakeup_time = virt_efi_get_wakeup_time; |
| efi.set_wakeup_time = virt_efi_set_wakeup_time; |
| efi.get_variable = virt_efi_get_variable; |
| efi.get_next_variable = virt_efi_get_next_variable; |
| efi.set_variable = virt_efi_set_variable; |
| efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count; |
| efi.reset_system = virt_efi_reset_system; |
| efi.set_virtual_address_map = NULL; |
| efi.query_variable_info = virt_efi_query_variable_info; |
| efi.update_capsule = virt_efi_update_capsule; |
| efi.query_capsule_caps = virt_efi_query_capsule_caps; |
| |
| efi_runtime_mkexec(); |
| |
| kfree(new_memmap); |
| |
| /* clean DUMMY object */ |
| efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID, |
| EFI_VARIABLE_NON_VOLATILE | |
| EFI_VARIABLE_BOOTSERVICE_ACCESS | |
| EFI_VARIABLE_RUNTIME_ACCESS, |
| 0, NULL); |
| } |
| |
| /* |
| * Convenience functions to obtain memory types and attributes |
| */ |
| u32 efi_mem_type(unsigned long phys_addr) |
| { |
| efi_memory_desc_t *md; |
| void *p; |
| |
| if (!efi_enabled(EFI_MEMMAP)) |
| return 0; |
| |
| for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { |
| md = p; |
| if ((md->phys_addr <= phys_addr) && |
| (phys_addr < (md->phys_addr + |
| (md->num_pages << EFI_PAGE_SHIFT)))) |
| return md->type; |
| } |
| return 0; |
| } |
| |
| u64 efi_mem_attributes(unsigned long phys_addr) |
| { |
| efi_memory_desc_t *md; |
| void *p; |
| |
| for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { |
| md = p; |
| if ((md->phys_addr <= phys_addr) && |
| (phys_addr < (md->phys_addr + |
| (md->num_pages << EFI_PAGE_SHIFT)))) |
| return md->attribute; |
| } |
| return 0; |
| } |
| |
| /* |
| * Some firmware has serious problems when using more than 50% of the EFI |
| * variable store, i.e. it triggers bugs that can brick machines. Ensure that |
| * we never use more than this safe limit. |
| * |
| * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable |
| * store. |
| */ |
| efi_status_t efi_query_variable_store(u32 attributes, unsigned long size) |
| { |
| efi_status_t status; |
| u64 storage_size, remaining_size, max_size; |
| |
| if (!(attributes & EFI_VARIABLE_NON_VOLATILE)) |
| return 0; |
| |
| status = efi.query_variable_info(attributes, &storage_size, |
| &remaining_size, &max_size); |
| if (status != EFI_SUCCESS) |
| return status; |
| |
| /* |
| * Some firmware implementations refuse to boot if there's insufficient |
| * space in the variable store. We account for that by refusing the |
| * write if permitting it would reduce the available space to under |
| * 5KB. This figure was provided by Samsung, so should be safe. |
| */ |
| if ((remaining_size - size < EFI_MIN_RESERVE) && |
| !efi_no_storage_paranoia) { |
| |
| /* |
| * Triggering garbage collection may require that the firmware |
| * generate a real EFI_OUT_OF_RESOURCES error. We can force |
| * that by attempting to use more space than is available. |
| */ |
| unsigned long dummy_size = remaining_size + 1024; |
| void *dummy = kzalloc(dummy_size, GFP_ATOMIC); |
| |
| if (!dummy) |
| return EFI_OUT_OF_RESOURCES; |
| |
| status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID, |
| EFI_VARIABLE_NON_VOLATILE | |
| EFI_VARIABLE_BOOTSERVICE_ACCESS | |
| EFI_VARIABLE_RUNTIME_ACCESS, |
| dummy_size, dummy); |
| |
| if (status == EFI_SUCCESS) { |
| /* |
| * This should have failed, so if it didn't make sure |
| * that we delete it... |
| */ |
| efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID, |
| EFI_VARIABLE_NON_VOLATILE | |
| EFI_VARIABLE_BOOTSERVICE_ACCESS | |
| EFI_VARIABLE_RUNTIME_ACCESS, |
| 0, dummy); |
| } |
| |
| kfree(dummy); |
| |
| /* |
| * The runtime code may now have triggered a garbage collection |
| * run, so check the variable info again |
| */ |
| status = efi.query_variable_info(attributes, &storage_size, |
| &remaining_size, &max_size); |
| |
| if (status != EFI_SUCCESS) |
| return status; |
| |
| /* |
| * There still isn't enough room, so return an error |
| */ |
| if (remaining_size - size < EFI_MIN_RESERVE) |
| return EFI_OUT_OF_RESOURCES; |
| } |
| |
| return EFI_SUCCESS; |
| } |
| EXPORT_SYMBOL_GPL(efi_query_variable_store); |
| |
| static int __init parse_efi_cmdline(char *str) |
| { |
| if (*str == '=') |
| str++; |
| |
| if (!strncmp(str, "old_map", 7)) |
| set_bit(EFI_OLD_MEMMAP, &x86_efi_facility); |
| |
| return 0; |
| } |
| early_param("efi", parse_efi_cmdline); |