blob: 4774ac1e3d5f3934f78feaa6f70ad02801b1837d [file] [log] [blame]
/*
* Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
*
* Parts came from builtin-{top,stat,record}.c, see those files for further
* copyright notes.
*
* Released under the GPL v2. (and only v2, not any later version)
*/
#include "util.h"
#include "debugfs.h"
#include <poll.h>
#include "cpumap.h"
#include "thread_map.h"
#include "target.h"
#include "evlist.h"
#include "evsel.h"
#include <unistd.h>
#include "parse-events.h"
#include <sys/mman.h>
#include <linux/bitops.h>
#include <linux/hash.h>
#define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
#define SID(e, x, y) xyarray__entry(e->sample_id, x, y)
void perf_evlist__init(struct perf_evlist *evlist, struct cpu_map *cpus,
struct thread_map *threads)
{
int i;
for (i = 0; i < PERF_EVLIST__HLIST_SIZE; ++i)
INIT_HLIST_HEAD(&evlist->heads[i]);
INIT_LIST_HEAD(&evlist->entries);
perf_evlist__set_maps(evlist, cpus, threads);
evlist->workload.pid = -1;
}
struct perf_evlist *perf_evlist__new(struct cpu_map *cpus,
struct thread_map *threads)
{
struct perf_evlist *evlist = zalloc(sizeof(*evlist));
if (evlist != NULL)
perf_evlist__init(evlist, cpus, threads);
return evlist;
}
void perf_evlist__config_attrs(struct perf_evlist *evlist,
struct perf_record_opts *opts)
{
struct perf_evsel *evsel, *first;
if (evlist->cpus->map[0] < 0)
opts->no_inherit = true;
first = perf_evlist__first(evlist);
list_for_each_entry(evsel, &evlist->entries, node) {
perf_evsel__config(evsel, opts, first);
if (evlist->nr_entries > 1)
evsel->attr.sample_type |= PERF_SAMPLE_ID;
}
}
static void perf_evlist__purge(struct perf_evlist *evlist)
{
struct perf_evsel *pos, *n;
list_for_each_entry_safe(pos, n, &evlist->entries, node) {
list_del_init(&pos->node);
perf_evsel__delete(pos);
}
evlist->nr_entries = 0;
}
void perf_evlist__exit(struct perf_evlist *evlist)
{
free(evlist->mmap);
free(evlist->pollfd);
evlist->mmap = NULL;
evlist->pollfd = NULL;
}
void perf_evlist__delete(struct perf_evlist *evlist)
{
perf_evlist__purge(evlist);
perf_evlist__exit(evlist);
free(evlist);
}
void perf_evlist__add(struct perf_evlist *evlist, struct perf_evsel *entry)
{
list_add_tail(&entry->node, &evlist->entries);
++evlist->nr_entries;
}
void perf_evlist__splice_list_tail(struct perf_evlist *evlist,
struct list_head *list,
int nr_entries)
{
list_splice_tail(list, &evlist->entries);
evlist->nr_entries += nr_entries;
}
void __perf_evlist__set_leader(struct list_head *list)
{
struct perf_evsel *evsel, *leader;
leader = list_entry(list->next, struct perf_evsel, node);
leader->leader = NULL;
list_for_each_entry(evsel, list, node) {
if (evsel != leader)
evsel->leader = leader;
}
}
void perf_evlist__set_leader(struct perf_evlist *evlist)
{
if (evlist->nr_entries)
__perf_evlist__set_leader(&evlist->entries);
}
int perf_evlist__add_default(struct perf_evlist *evlist)
{
struct perf_event_attr attr = {
.type = PERF_TYPE_HARDWARE,
.config = PERF_COUNT_HW_CPU_CYCLES,
};
struct perf_evsel *evsel;
event_attr_init(&attr);
evsel = perf_evsel__new(&attr, 0);
if (evsel == NULL)
goto error;
/* use strdup() because free(evsel) assumes name is allocated */
evsel->name = strdup("cycles");
if (!evsel->name)
goto error_free;
perf_evlist__add(evlist, evsel);
return 0;
error_free:
perf_evsel__delete(evsel);
error:
return -ENOMEM;
}
int perf_evlist__add_attrs(struct perf_evlist *evlist,
struct perf_event_attr *attrs, size_t nr_attrs)
{
struct perf_evsel *evsel, *n;
LIST_HEAD(head);
size_t i;
for (i = 0; i < nr_attrs; i++) {
evsel = perf_evsel__new(attrs + i, evlist->nr_entries + i);
if (evsel == NULL)
goto out_delete_partial_list;
list_add_tail(&evsel->node, &head);
}
perf_evlist__splice_list_tail(evlist, &head, nr_attrs);
return 0;
out_delete_partial_list:
list_for_each_entry_safe(evsel, n, &head, node)
perf_evsel__delete(evsel);
return -1;
}
int __perf_evlist__add_default_attrs(struct perf_evlist *evlist,
struct perf_event_attr *attrs, size_t nr_attrs)
{
size_t i;
for (i = 0; i < nr_attrs; i++)
event_attr_init(attrs + i);
return perf_evlist__add_attrs(evlist, attrs, nr_attrs);
}
static int trace_event__id(const char *evname)
{
char *filename, *colon;
int err = -1, fd;
if (asprintf(&filename, "%s/%s/id", tracing_events_path, evname) < 0)
return -1;
colon = strrchr(filename, ':');
if (colon != NULL)
*colon = '/';
fd = open(filename, O_RDONLY);
if (fd >= 0) {
char id[16];
if (read(fd, id, sizeof(id)) > 0)
err = atoi(id);
close(fd);
}
free(filename);
return err;
}
int perf_evlist__add_tracepoints(struct perf_evlist *evlist,
const char *tracepoints[],
size_t nr_tracepoints)
{
int err;
size_t i;
struct perf_event_attr *attrs = zalloc(nr_tracepoints * sizeof(*attrs));
if (attrs == NULL)
return -1;
for (i = 0; i < nr_tracepoints; i++) {
err = trace_event__id(tracepoints[i]);
if (err < 0)
goto out_free_attrs;
attrs[i].type = PERF_TYPE_TRACEPOINT;
attrs[i].config = err;
attrs[i].sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD);
attrs[i].sample_period = 1;
}
err = perf_evlist__add_attrs(evlist, attrs, nr_tracepoints);
out_free_attrs:
free(attrs);
return err;
}
struct perf_evsel *
perf_evlist__find_tracepoint_by_id(struct perf_evlist *evlist, int id)
{
struct perf_evsel *evsel;
list_for_each_entry(evsel, &evlist->entries, node) {
if (evsel->attr.type == PERF_TYPE_TRACEPOINT &&
(int)evsel->attr.config == id)
return evsel;
}
return NULL;
}
int perf_evlist__set_tracepoints_handlers(struct perf_evlist *evlist,
const struct perf_evsel_str_handler *assocs,
size_t nr_assocs)
{
struct perf_evsel *evsel;
int err;
size_t i;
for (i = 0; i < nr_assocs; i++) {
err = trace_event__id(assocs[i].name);
if (err < 0)
goto out;
evsel = perf_evlist__find_tracepoint_by_id(evlist, err);
if (evsel == NULL)
continue;
err = -EEXIST;
if (evsel->handler.func != NULL)
goto out;
evsel->handler.func = assocs[i].handler;
}
err = 0;
out:
return err;
}
void perf_evlist__disable(struct perf_evlist *evlist)
{
int cpu, thread;
struct perf_evsel *pos;
for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
list_for_each_entry(pos, &evlist->entries, node) {
for (thread = 0; thread < evlist->threads->nr; thread++)
ioctl(FD(pos, cpu, thread),
PERF_EVENT_IOC_DISABLE, 0);
}
}
}
void perf_evlist__enable(struct perf_evlist *evlist)
{
int cpu, thread;
struct perf_evsel *pos;
for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
list_for_each_entry(pos, &evlist->entries, node) {
for (thread = 0; thread < evlist->threads->nr; thread++)
ioctl(FD(pos, cpu, thread),
PERF_EVENT_IOC_ENABLE, 0);
}
}
}
static int perf_evlist__alloc_pollfd(struct perf_evlist *evlist)
{
int nfds = evlist->cpus->nr * evlist->threads->nr * evlist->nr_entries;
evlist->pollfd = malloc(sizeof(struct pollfd) * nfds);
return evlist->pollfd != NULL ? 0 : -ENOMEM;
}
void perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd)
{
fcntl(fd, F_SETFL, O_NONBLOCK);
evlist->pollfd[evlist->nr_fds].fd = fd;
evlist->pollfd[evlist->nr_fds].events = POLLIN;
evlist->nr_fds++;
}
static void perf_evlist__id_hash(struct perf_evlist *evlist,
struct perf_evsel *evsel,
int cpu, int thread, u64 id)
{
int hash;
struct perf_sample_id *sid = SID(evsel, cpu, thread);
sid->id = id;
sid->evsel = evsel;
hash = hash_64(sid->id, PERF_EVLIST__HLIST_BITS);
hlist_add_head(&sid->node, &evlist->heads[hash]);
}
void perf_evlist__id_add(struct perf_evlist *evlist, struct perf_evsel *evsel,
int cpu, int thread, u64 id)
{
perf_evlist__id_hash(evlist, evsel, cpu, thread, id);
evsel->id[evsel->ids++] = id;
}
static int perf_evlist__id_add_fd(struct perf_evlist *evlist,
struct perf_evsel *evsel,
int cpu, int thread, int fd)
{
u64 read_data[4] = { 0, };
int id_idx = 1; /* The first entry is the counter value */
if (!(evsel->attr.read_format & PERF_FORMAT_ID) ||
read(fd, &read_data, sizeof(read_data)) == -1)
return -1;
if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
++id_idx;
if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
++id_idx;
perf_evlist__id_add(evlist, evsel, cpu, thread, read_data[id_idx]);
return 0;
}
struct perf_evsel *perf_evlist__id2evsel(struct perf_evlist *evlist, u64 id)
{
struct hlist_head *head;
struct hlist_node *pos;
struct perf_sample_id *sid;
int hash;
if (evlist->nr_entries == 1)
return perf_evlist__first(evlist);
hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
head = &evlist->heads[hash];
hlist_for_each_entry(sid, pos, head, node)
if (sid->id == id)
return sid->evsel;
if (!perf_evlist__sample_id_all(evlist))
return perf_evlist__first(evlist);
return NULL;
}
union perf_event *perf_evlist__mmap_read(struct perf_evlist *evlist, int idx)
{
/* XXX Move this to perf.c, making it generally available */
unsigned int page_size = sysconf(_SC_PAGE_SIZE);
struct perf_mmap *md = &evlist->mmap[idx];
unsigned int head = perf_mmap__read_head(md);
unsigned int old = md->prev;
unsigned char *data = md->base + page_size;
union perf_event *event = NULL;
if (evlist->overwrite) {
/*
* If we're further behind than half the buffer, there's a chance
* the writer will bite our tail and mess up the samples under us.
*
* If we somehow ended up ahead of the head, we got messed up.
*
* In either case, truncate and restart at head.
*/
int diff = head - old;
if (diff > md->mask / 2 || diff < 0) {
fprintf(stderr, "WARNING: failed to keep up with mmap data.\n");
/*
* head points to a known good entry, start there.
*/
old = head;
}
}
if (old != head) {
size_t size;
event = (union perf_event *)&data[old & md->mask];
size = event->header.size;
/*
* Event straddles the mmap boundary -- header should always
* be inside due to u64 alignment of output.
*/
if ((old & md->mask) + size != ((old + size) & md->mask)) {
unsigned int offset = old;
unsigned int len = min(sizeof(*event), size), cpy;
void *dst = &evlist->event_copy;
do {
cpy = min(md->mask + 1 - (offset & md->mask), len);
memcpy(dst, &data[offset & md->mask], cpy);
offset += cpy;
dst += cpy;
len -= cpy;
} while (len);
event = &evlist->event_copy;
}
old += size;
}
md->prev = old;
if (!evlist->overwrite)
perf_mmap__write_tail(md, old);
return event;
}
void perf_evlist__munmap(struct perf_evlist *evlist)
{
int i;
for (i = 0; i < evlist->nr_mmaps; i++) {
if (evlist->mmap[i].base != NULL) {
munmap(evlist->mmap[i].base, evlist->mmap_len);
evlist->mmap[i].base = NULL;
}
}
free(evlist->mmap);
evlist->mmap = NULL;
}
static int perf_evlist__alloc_mmap(struct perf_evlist *evlist)
{
evlist->nr_mmaps = evlist->cpus->nr;
if (evlist->cpus->map[0] == -1)
evlist->nr_mmaps = evlist->threads->nr;
evlist->mmap = zalloc(evlist->nr_mmaps * sizeof(struct perf_mmap));
return evlist->mmap != NULL ? 0 : -ENOMEM;
}
static int __perf_evlist__mmap(struct perf_evlist *evlist,
int idx, int prot, int mask, int fd)
{
evlist->mmap[idx].prev = 0;
evlist->mmap[idx].mask = mask;
evlist->mmap[idx].base = mmap(NULL, evlist->mmap_len, prot,
MAP_SHARED, fd, 0);
if (evlist->mmap[idx].base == MAP_FAILED) {
evlist->mmap[idx].base = NULL;
return -1;
}
perf_evlist__add_pollfd(evlist, fd);
return 0;
}
static int perf_evlist__mmap_per_cpu(struct perf_evlist *evlist, int prot, int mask)
{
struct perf_evsel *evsel;
int cpu, thread;
for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
int output = -1;
for (thread = 0; thread < evlist->threads->nr; thread++) {
list_for_each_entry(evsel, &evlist->entries, node) {
int fd = FD(evsel, cpu, thread);
if (output == -1) {
output = fd;
if (__perf_evlist__mmap(evlist, cpu,
prot, mask, output) < 0)
goto out_unmap;
} else {
if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
goto out_unmap;
}
if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
perf_evlist__id_add_fd(evlist, evsel, cpu, thread, fd) < 0)
goto out_unmap;
}
}
}
return 0;
out_unmap:
for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
if (evlist->mmap[cpu].base != NULL) {
munmap(evlist->mmap[cpu].base, evlist->mmap_len);
evlist->mmap[cpu].base = NULL;
}
}
return -1;
}
static int perf_evlist__mmap_per_thread(struct perf_evlist *evlist, int prot, int mask)
{
struct perf_evsel *evsel;
int thread;
for (thread = 0; thread < evlist->threads->nr; thread++) {
int output = -1;
list_for_each_entry(evsel, &evlist->entries, node) {
int fd = FD(evsel, 0, thread);
if (output == -1) {
output = fd;
if (__perf_evlist__mmap(evlist, thread,
prot, mask, output) < 0)
goto out_unmap;
} else {
if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
goto out_unmap;
}
if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
perf_evlist__id_add_fd(evlist, evsel, 0, thread, fd) < 0)
goto out_unmap;
}
}
return 0;
out_unmap:
for (thread = 0; thread < evlist->threads->nr; thread++) {
if (evlist->mmap[thread].base != NULL) {
munmap(evlist->mmap[thread].base, evlist->mmap_len);
evlist->mmap[thread].base = NULL;
}
}
return -1;
}
/** perf_evlist__mmap - Create per cpu maps to receive events
*
* @evlist - list of events
* @pages - map length in pages
* @overwrite - overwrite older events?
*
* If overwrite is false the user needs to signal event consuption using:
*
* struct perf_mmap *m = &evlist->mmap[cpu];
* unsigned int head = perf_mmap__read_head(m);
*
* perf_mmap__write_tail(m, head)
*
* Using perf_evlist__read_on_cpu does this automatically.
*/
int perf_evlist__mmap(struct perf_evlist *evlist, unsigned int pages,
bool overwrite)
{
unsigned int page_size = sysconf(_SC_PAGE_SIZE);
struct perf_evsel *evsel;
const struct cpu_map *cpus = evlist->cpus;
const struct thread_map *threads = evlist->threads;
int prot = PROT_READ | (overwrite ? 0 : PROT_WRITE), mask;
/* 512 kiB: default amount of unprivileged mlocked memory */
if (pages == UINT_MAX)
pages = (512 * 1024) / page_size;
else if (!is_power_of_2(pages))
return -EINVAL;
mask = pages * page_size - 1;
if (evlist->mmap == NULL && perf_evlist__alloc_mmap(evlist) < 0)
return -ENOMEM;
if (evlist->pollfd == NULL && perf_evlist__alloc_pollfd(evlist) < 0)
return -ENOMEM;
evlist->overwrite = overwrite;
evlist->mmap_len = (pages + 1) * page_size;
list_for_each_entry(evsel, &evlist->entries, node) {
if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
evsel->sample_id == NULL &&
perf_evsel__alloc_id(evsel, cpus->nr, threads->nr) < 0)
return -ENOMEM;
}
if (evlist->cpus->map[0] == -1)
return perf_evlist__mmap_per_thread(evlist, prot, mask);
return perf_evlist__mmap_per_cpu(evlist, prot, mask);
}
int perf_evlist__create_maps(struct perf_evlist *evlist,
struct perf_target *target)
{
evlist->threads = thread_map__new_str(target->pid, target->tid,
target->uid);
if (evlist->threads == NULL)
return -1;
if (perf_target__has_task(target))
evlist->cpus = cpu_map__dummy_new();
else if (!perf_target__has_cpu(target) && !target->uses_mmap)
evlist->cpus = cpu_map__dummy_new();
else
evlist->cpus = cpu_map__new(target->cpu_list);
if (evlist->cpus == NULL)
goto out_delete_threads;
return 0;
out_delete_threads:
thread_map__delete(evlist->threads);
return -1;
}
void perf_evlist__delete_maps(struct perf_evlist *evlist)
{
cpu_map__delete(evlist->cpus);
thread_map__delete(evlist->threads);
evlist->cpus = NULL;
evlist->threads = NULL;
}
int perf_evlist__set_filters(struct perf_evlist *evlist)
{
const struct thread_map *threads = evlist->threads;
const struct cpu_map *cpus = evlist->cpus;
struct perf_evsel *evsel;
char *filter;
int thread;
int cpu;
int err;
int fd;
list_for_each_entry(evsel, &evlist->entries, node) {
filter = evsel->filter;
if (!filter)
continue;
for (cpu = 0; cpu < cpus->nr; cpu++) {
for (thread = 0; thread < threads->nr; thread++) {
fd = FD(evsel, cpu, thread);
err = ioctl(fd, PERF_EVENT_IOC_SET_FILTER, filter);
if (err)
return err;
}
}
}
return 0;
}
bool perf_evlist__valid_sample_type(struct perf_evlist *evlist)
{
struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
list_for_each_entry_continue(pos, &evlist->entries, node) {
if (first->attr.sample_type != pos->attr.sample_type)
return false;
}
return true;
}
u64 perf_evlist__sample_type(struct perf_evlist *evlist)
{
struct perf_evsel *first = perf_evlist__first(evlist);
return first->attr.sample_type;
}
u16 perf_evlist__id_hdr_size(struct perf_evlist *evlist)
{
struct perf_evsel *first = perf_evlist__first(evlist);
struct perf_sample *data;
u64 sample_type;
u16 size = 0;
if (!first->attr.sample_id_all)
goto out;
sample_type = first->attr.sample_type;
if (sample_type & PERF_SAMPLE_TID)
size += sizeof(data->tid) * 2;
if (sample_type & PERF_SAMPLE_TIME)
size += sizeof(data->time);
if (sample_type & PERF_SAMPLE_ID)
size += sizeof(data->id);
if (sample_type & PERF_SAMPLE_STREAM_ID)
size += sizeof(data->stream_id);
if (sample_type & PERF_SAMPLE_CPU)
size += sizeof(data->cpu) * 2;
out:
return size;
}
bool perf_evlist__valid_sample_id_all(struct perf_evlist *evlist)
{
struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
list_for_each_entry_continue(pos, &evlist->entries, node) {
if (first->attr.sample_id_all != pos->attr.sample_id_all)
return false;
}
return true;
}
bool perf_evlist__sample_id_all(struct perf_evlist *evlist)
{
struct perf_evsel *first = perf_evlist__first(evlist);
return first->attr.sample_id_all;
}
void perf_evlist__set_selected(struct perf_evlist *evlist,
struct perf_evsel *evsel)
{
evlist->selected = evsel;
}
int perf_evlist__open(struct perf_evlist *evlist)
{
struct perf_evsel *evsel;
int err, ncpus, nthreads;
list_for_each_entry(evsel, &evlist->entries, node) {
err = perf_evsel__open(evsel, evlist->cpus, evlist->threads);
if (err < 0)
goto out_err;
}
return 0;
out_err:
ncpus = evlist->cpus ? evlist->cpus->nr : 1;
nthreads = evlist->threads ? evlist->threads->nr : 1;
list_for_each_entry_reverse(evsel, &evlist->entries, node)
perf_evsel__close(evsel, ncpus, nthreads);
errno = -err;
return err;
}
int perf_evlist__prepare_workload(struct perf_evlist *evlist,
struct perf_record_opts *opts,
const char *argv[])
{
int child_ready_pipe[2], go_pipe[2];
char bf;
if (pipe(child_ready_pipe) < 0) {
perror("failed to create 'ready' pipe");
return -1;
}
if (pipe(go_pipe) < 0) {
perror("failed to create 'go' pipe");
goto out_close_ready_pipe;
}
evlist->workload.pid = fork();
if (evlist->workload.pid < 0) {
perror("failed to fork");
goto out_close_pipes;
}
if (!evlist->workload.pid) {
if (opts->pipe_output)
dup2(2, 1);
close(child_ready_pipe[0]);
close(go_pipe[1]);
fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
/*
* Do a dummy execvp to get the PLT entry resolved,
* so we avoid the resolver overhead on the real
* execvp call.
*/
execvp("", (char **)argv);
/*
* Tell the parent we're ready to go
*/
close(child_ready_pipe[1]);
/*
* Wait until the parent tells us to go.
*/
if (read(go_pipe[0], &bf, 1) == -1)
perror("unable to read pipe");
execvp(argv[0], (char **)argv);
perror(argv[0]);
kill(getppid(), SIGUSR1);
exit(-1);
}
if (perf_target__none(&opts->target))
evlist->threads->map[0] = evlist->workload.pid;
close(child_ready_pipe[1]);
close(go_pipe[0]);
/*
* wait for child to settle
*/
if (read(child_ready_pipe[0], &bf, 1) == -1) {
perror("unable to read pipe");
goto out_close_pipes;
}
evlist->workload.cork_fd = go_pipe[1];
close(child_ready_pipe[0]);
return 0;
out_close_pipes:
close(go_pipe[0]);
close(go_pipe[1]);
out_close_ready_pipe:
close(child_ready_pipe[0]);
close(child_ready_pipe[1]);
return -1;
}
int perf_evlist__start_workload(struct perf_evlist *evlist)
{
if (evlist->workload.cork_fd > 0) {
/*
* Remove the cork, let it rip!
*/
return close(evlist->workload.cork_fd);
}
return 0;
}
int perf_evlist__parse_sample(struct perf_evlist *evlist, union perf_event *event,
struct perf_sample *sample, bool swapped)
{
struct perf_evsel *evsel = perf_evlist__first(evlist);
return perf_evsel__parse_sample(evsel, event, sample, swapped);
}